Dogwood Anthracnose Caused by Discula Destructiva on Cornus Spp

Total Page:16

File Type:pdf, Size:1020Kb

Dogwood Anthracnose Caused by Discula Destructiva on Cornus Spp Dogwood Anthracnose Caused by Discula destructiva on Cornus spp. in Canada by Mihaela Stanescu A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Environmental Biology Guelph, Ontario, Canada © Mihaela Stanescu, December, 2013 ABSTRACT DOGWOOD ANTHRACNOSE CAUSED BY DISCULA DESTRUCTIVA ON CORNUS SPP. IN CANADA Mihaela Stanescu, Advisor: University of Guelph, 2013 Professor T. Hsiang The most important fungal disease of dogwoods in North America is anthracnose caused by Discula destructiva. This disease affects Cornus florida (flowering dogwood), C. nuttallii (Pacific dogwood), and C. kousa (kousa dogwood). It has not been well studied in Ontario nor anywhere in Canada. In this study, over 2,500 fungal isolates were obtained from symptomatic samples of C. alba, C. alternifolia, C. amomum, C. kousa, C. florida, C. nuttallii, C. racemosa and C. sericea. To help distinguish between foliar symptoms of different etiologies, a “Dogwood Disease Symptom Guide” was produced. Isolates were divided into 13 fungal morphotypes, of which D. destructiva accounted for 39% of all isolates. Pathogenicity testing of Discula destructiva on C. florida satisfied Koch’s postulates, and this fungus was confirmed as the causal agent of dogwood anthracnose in southwestern Ontario (C. florida) and southwestern British Columbia (C. nuttallii). Wounds and leaf trichomes may provide a point of entry and help the pathogen survive endophytically without producing symptoms on “non-host” plants such as oak, maple and pear. The pathogen was found to survive for over 12 weeks at -20 °C, and the optimal growth temperature was found to be between 20-25 °C, but temperatures as high as 30 °C inhibited the growth, and the fungus died after one week incubation at 40 °C. The finding of only one mating type within D. destructiva populations (122 isolates) explains the lack of sexual reproduction of this fungus in North America, and along with the SSR results, reconfirms the low genetic variability within its populations. ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Tom Hsiang for giving me the opportunity to obtain my MSc. He helped me not only with his knowledge, guidance and expertise, but also with his encouragements and his constant trust in my ability to complete this project, although at times I wavered. I am also thankful to the other members in the Advisory Committee, Dr. John McLaughlin and Dr. Richard Wilson, for their knowledge and competent advice. I am thankful to the Ontario Ministry of Natural Resources who funded this research. The input of collaborators who helped with sample collection, and the support of nurseries which donated plant material, are also much appreciated. I am also thankful to the lab technician Angie Darbison, who started this project and helped with the DNA extraction of the first Discula destructiva isolate obtained in our lab, for the purpose of genome sequencing. I am very grateful to my lab mates, who with their advice and friendly attitude made my life at the lab a lot easier. Especially I would like to thank Amy Shi and Linda Jewell, for helping me get through the hard times at the beginning of my graduate studies, and also for their constant advice. I am also grateful to my family and friends for their encouragements. Finally, I would like to thank my husband, Adrian, for his unconditional love and priceless support which helped me bring this project to an end. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS...................................................................................................... iii TABLE OF CONTENTS.......................................................................................................... iv LIST OF TABLES.................................................................................................................. viii LIST OF FIGURES.................................................................................................................. x LIST OF APPENDICES.......................................................................................................... xiii LIST OF ABBREVIATIONS AND ACRONYMS.................................................................. xiv Chapter One: Literature Review................................................................................................ 1 1.1 Introduction..................................................................................................................... 1 1.2 Dogwood (Cornus) species............................................................................................. 2 1.3 Major fungal diseases of dogwoods................................................................................ 8 1.3.1 Spot anthracnose caused by Elsinoe corni.............................................................. 8 1.3.2 Septoria leaf spot caused by Septoria cornicola..................................................... 8 1.3.3 Limb dieback caused by Colletotrichum gloeosporioides and C. acutatum........... 9 1.3.4 Powdery mildew caused by Microsphaera penicillata and Phillactinia guttata ... 10 1.3.5 Dogwood anthracnose caused by Discula destructiva............................................. 10 1.3.5.1 Disease history and distribution........................................................................ 10 1.3.5.2 Symptoms......................................................................................................... 12 1.3.5.3 Morphology and reproduction of Discula destructiva ..................................... 14 1.3.5.4 Population structure and origin of Discula destructiva.................................... 15 1.3.5.5 Infection process.............................................................................................. 17 1.4 Hypothesis and objectives............................................................................................... 19 Chapter Two: The Causal Agent of Dogwood Anthracnose...................................................... 33 2.1 Introduction ...................................................................................................................... 33 2.1.1 Morphological identification of fungal isolates ...................................................... 33 2.1.2 Molecular identification of fungal isolates.............................................................. 34 2.1.3 Dogwood diseases .................................................................................................... 35 2.1.4 Objectives................................................................................................................. 36 2.2 Materials and methods..................................................................................................... 37 2.2.1 Sample collection..................................................................................................... 37 2.2.2 Media preparation...................................................................................................... 37 iv 2.2.3 Fungal isolation from symptomatic dogwood tissues............................................. 38 2.2.4 Identification of fungal isolates with morphological techniques............................ 38 2.2.5 DNA extraction...................................................................................................... 39 2.2.6 Sequencing the genome of Discula destructiva...................................................... 40 2.2.7 Specific primer design and selection...................................................................... 40 2.2.8 PCR amplification................................................................................................... 43 2.2.9 Sequencing of PCR products and result analysis ................................................... 43 2.2.10 Pathogenicity testing ........................................................................................... 44 2.3 Results............................................................................................................................ 45 2.3.1 Symptomatic samples of dogwood......................................................................... 45 2.3.2 Morphological characteristics of fungal isolates.................................................... 47 2.3.3 Molecular identification of morphotypes............................................................... 49 2.3.4 Genome sequencing and assembly......................................................................... 50 2.3.5 Primer amplification................................................................................................ 50 2.3.5.1 Testing specific primers.................................................................................. 51 2.3.5.2 Amplification results with the specific primers.............................................. 53 2.3.6 Testing the pathogenicity of Discula destructiva ................................................... 53 2.4 Discussion........................................................................................................................ 54 Chapter Three: Biological Characteristics, Pathogenicity and Genetic Variation in Discula destructiva.................................................................................................................................. 73 3.1 Introduction...................................................................................................................... 73 3.1.1 Growth and survival
Recommended publications
  • Cornaceae – Dogwood Family Cornus Florida Flowering Dogwood
    Cornaceae – dogwood family Cornus florida flowering dogwood Sight ID characteristics Vegetative Features: • Leaf: 2 1/2-5" long, simple, opposite, deciduous, elliptical to ovate with arcuate venation and an entire margin. • Bark: broken into small brown-black plates on mature trees. • Form: usually as several wide-spreading branches with a low dense crown – opposite branching gives candelabra form. • Reproductive Features: • Few, small, perfect, 4-parted flowers with inferior ovaries arranged in heads subtended by 4 notched, showy, white-pink bracts. • Fruits are oval shaped drupes in heads of 5-6, red at maturity, with oval grooved stone. 123 NOTES AND SKETCHES 124 Cornaceae – dogwood family Cornus nuttallii Pacific dogwood Sight ID characteristics Vegetative Features: • Leaf: 2 1/2-4 1/2" long, simple, opposite, deciduous, ovate- elliptical with arcuate venation, margin may be sparsely toothed or entire. • Bark: dark and broken into small plates at maturity. • Form: straight trunk and narrow crown in forested conditions, many-trunked and bushy in open. • Reproductive Features: • Many yellowish-green, small, perfect, 4-parted flowers with inferior ovaries arranged in dense in heads, subtended by 4-7 showy white- pink, petal-like bracts - not notched at the apex. • Fruits are drupes in heads of 30-40, red at maturity and they have smooth stones. 125 NOTES AND SKETCHES 126 Cornaceae – dogwood family Cornus sericea red-osier dogwood Sight ID characteristics Vegetative Features: • Leaf: 2-4" long, simple, opposite, deciduous and somewhat narrow ovate-lanceolate with entire margin. • Twig: bright red, sometimes green splotched with red, white pith. • Bark: red to green with numerous lenticels; later developing larger cracks and splits and turning light brown.
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • A Novel Family of Diaporthales (Ascomycota)
    Phytotaxa 305 (3): 191–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.305.3.6 Melansporellaceae: a novel family of Diaporthales (Ascomycota) ZHUO DU1, KEVIN D. HYDE2, QIN YANG1, YING-MEI LIANG3 & CHENG-MING TIAN1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bail- ongsi, Kunming 650224, PR China 3Museum of Beijing Forestry University, Beijing 100083, PR China *Correspondence author email: [email protected] Abstract Melansporellaceae fam. nov. is introduced to accommodate a genus of diaporthalean fungi that is a phytopathogen caus- ing walnut canker disease in China. The family is typified by Melansporella gen. nov. It can be distinguished from other diaporthalean families based on its irregularly uniseriate ascospores, and ovoid, brown conidia with a hyaline sheath and surface structures. Phylogenetic analysis shows that Melansporella juglandium sp. nov. forms a monophyletic group within Diaporthales (MP/ML/BI=100/96/1) and is a new diaporthalean clade, based on molecular data of ITS and LSU gene re- gions. Thus, a new family is proposed to accommodate this taxon. Key words: diaporthalean fungi, fungal diversity, new taxon, Sordariomycetes, systematics, taxonomy Introduction The ascomycetous order Diaporthales (Sordariomycetes) are well-known fungal plant pathogens, endophytes and saprobes, with wide distributions and broad host ranges (Castlebury et al. 2002, Rossman et al. 2007, Maharachchikumbura et al. 2016).
    [Show full text]
  • Diaporthales), and the Introduction of Apoharknessia Gen
    STUDIES IN MYCOLOGY 50: 235–252. 2004. Phylogenetic reassessment of the coelomycete genus Harknessia and its teleomorph Wuestneia (Diaporthales), and the introduction of Apoharknessia gen. nov. Seonju Lee1, Johannes Z. Groenewald2 and Pedro W. Crous2* 1Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa; 2Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands *Correspondence: Pedro W. Crous, [email protected] Abstract: During routine surveys for microfungi from the Fynbos of the Cape Floral Kingdom in South Africa, isolates of several Harknessia species were collected. Additional isolates of Harknessia spp. were collected from Eucalyptus leaves in South Africa, as well as elsewhere in the world where this crop is grown. Interspecific relationships of Harknessia species were inferred based on partial sequence of the internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA), as well as the b- tubulin and calmodulin genes. From these data, three new species are described, namely H. globispora from Eucalyptus, H. protearum from Leucadendron and Leucospermum, and H. capensis from Brabejum stellatifolium and Eucalyptus sp. Further- more, based on large subunit nrDNA sequence data, Harknessia is shown to be heterogeneous, and a new genus, Apoharknes- sia, is introduced for A. insueta, which is distinguished from H. eucalypti, the type species of Harknessia, by having an apical conidial appendage. A morphologically similar genus, Dwiroopa, which is characterized by several prominent germ slits along the sides of its conidia, is shown to cluster basal to Harknessia. Species of Harknessia, and their teleomorphs accommodated in Wuestneia, are shown to represent an undescribed family in the Diaporthales, as is Apoharknessia, for which no teleomorph is known.
    [Show full text]
  • Red Seal Landscape Horticulturist Identify Plants and Plant Requirements I (Nakano)
    RED SEAL LANDSCAPE HORTICULTURIST IDENTIFY PLANTS AND PLANT REQUIREMENTS I (NAKANO) Michelle Nakano Kwantlen Polytechnic University Book: Red Seal Landscape Horticulturist Identify Plants and Plant Requirements (Nakano) This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Dogwood Anthracnose by the Bartlett Lab Staff
    RESEARCH LABORATORY TECHNICAL REPORT Dogwood Anthracnose By The Bartlett Lab Staff Anthracnose caused by the fungus Discula destructiva is a potentially fatal disease of dogwood. All varieties of the native flowering dogwood (Cornus florida and C. nuttallii) are susceptible. The disease usually starts on lower leaves and progresses into twigs and branches. Infected trees are severely weakened so that secondary canker and root rot diseases can infect and kill the tree. Discula infection usually occurs during cool, rainy periods in the spring. The fungal spores are spread by rain and wind. Symptoms branches (water sprouts) are more susceptible to the fungus. Often, the first symptoms of Discula destructiva anthracnose are spots on the lower leaves and flower The speed at which the disease progresses in the tree bracts. Spots are tan to brown and may have purple depends on weather, tree health, and treatment. With rings around them (Figure 1). This symptom is similar weather favorable to the disease and no treatments, to small spots caused by the fungus Elsinoe corni. If the most infected trees are killed within 3 to 6 years. infection is caused by Discula, leaf tissue will also be killed along the veins or the entire leaf will be killed. Management Those leaves which succumb to infection during the Healthy dogwoods are able to withstand disease summer will stay on the plant after normal leaf. The infection much better than stressed trees. To keep trees infection will also spread from the leaves to the twigs vigorous they should be mulched, watered, fertilized, resulting in cankers and twig dieback.
    [Show full text]
  • Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
    Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C.
    [Show full text]
  • Morphological and Physiological Responses of Cornus Alba to Salt
    HORTSCIENCE 55(2):224–230. 2020. https://doi.org/10.21273/HORTSCI14460-19 and Saha, 2014). Plants under drought stress tend to reduce leaf size, stimulate leaf abscis- sion, enhance root growth, and limit photo- Morphological and Physiological synthesis (Taiz et al., 2015). Some plants can maintain water balance under drought condi- Responses of Cornus alba to Salt tions through osmotic adjustment (Farooq et al., 2008). The fact that drought resistance and Drought Stresses under varies among plant species warrants further investigation to evaluate plant responses to drought conditions and select drought-tolerant Greenhouse Conditions plants for landscape use. Qiang Liu Soil salinity is also a global issue and is College of Life Sciences and Technology, Central South University of caused partially by human activities such as irrigation with poor quality water and poor Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan soil drainage, which result in excess soluble 410004, China; and Hunan Academy of Forestry, 658 South Shaoshan Road, salts in the soil. It is estimated that 20% of Changsha, Hunan 410004, China the irrigated lands in the world are currently affected by salinity stress (Taiz et al., 2015). Youping Sun Salinity induces a series of metabolic dys- Department of Plants, Soils and Climate, Utah State University, 4820 Old functions in plants, including specific ion Main Hill, Logan, UT 84322 toxicity, nutrient imbalance, decreased pho- tosynthesis, and enzyme dysfunction (Munns James Altland and Tester, 2008). The extent of adverse U.S. Department of Agriculture, Agricultural Research Service, Application impact of salinity on plant physiological Technology Research Unit, 1680 Madison Avenue, Wooster, OH 44691 processes depends on the rate and duration of salinity stress.
    [Show full text]
  • (Coleoptera) of the Huron Mountains in Northern Michigan
    The Great Lakes Entomologist Volume 19 Number 3 - Fall 1986 Number 3 - Fall 1986 Article 3 October 1986 Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan D. C. L. Gosling Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gosling, D. C. L. 1986. "Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan," The Great Lakes Entomologist, vol 19 (3) Available at: https://scholar.valpo.edu/tgle/vol19/iss3/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Gosling: Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains i 1986 THE GREAT LAKES ENTOMOLOGIST 153 ECOLOGY OF THE CERAMBYCIDAE (COLEOPTERA) OF THE HURON MOUNTAINS IN NORTHERN MICHIGAN D. C. L Gosling! ABSTRACT Eighty-nine species of Cerambycidae were collected during a five-year survey of the woodboring beetle fauna of the Huron Mountains in Marquette County, Michigan. Host plants were deteTITIined for 51 species. Observations were made of species abundance and phenology, and the blossoms visited by anthophilous cerambycids. The Huron Mountains area comprises approximately 13,000 ha of forested land in northern Marquette County in the Upper Peninsula of Michigan. More than 7000 ha are privately owned by the Huron Mountain Club, including a designated, 2200 ha, Nature Research Area. The variety of habitats combines with differences in the nature and extent of prior disturbance to produce an exceptional diversity of forest communities, making the area particularly valuable for studies of forest insects.
    [Show full text]
  • Example Insect Natural History Data
    Example Insect Natural History Data These data were assembled by participants of a workshop held at the University of Florida from May 30 to June 1 of 2018. The data cover all five major insect orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) and represent most of the various kinds of natural history information found on insect specimen labels. The data also include representative natural history information from literature sources and online databases. For more information about how these data were assembled and why, see Stucky et al. (2019) __________. Except for works in the public domain, data use licenses are as specified by the original data owners. Coleoptera Example 1 Taxonomy: Coleoptera: Buprestidae: Acmaeodera sp. Record type: database Life stage(s): adult Source: iNaturalist Record URL: https://www.inaturalist.org/observations/12840335 Comments and relevant content: "Feeding on wildflowers in an open meadow in the midlands of South Carolina." Example 2 Taxonomy: Coleoptera: Cerambycidae Record type: literature Source: Paro et al. (2011) Relevant text: "Table 1. Association between girdled and available host-plants (listed alphabetically) and Onciderini beetles in Serra do Japi from 2002 to 2006." The table gives the percentages of each plant species that were girdled along with associated beetle species. Example 3 Taxonomy: Coleoptera: Cerambycidae: Rhaesus serricollis Record type: literature Source: Sama et al. (2010) Relevant text: "Host plants: Polyphagous on deciduous trees like Platanus (Platanaceae), Ficus
    [Show full text]