Red Seal Landscape Horticulturist Identify Plants and Plant Requirements I (Nakano)

Total Page:16

File Type:pdf, Size:1020Kb

Red Seal Landscape Horticulturist Identify Plants and Plant Requirements I (Nakano) RED SEAL LANDSCAPE HORTICULTURIST IDENTIFY PLANTS AND PLANT REQUIREMENTS I (NAKANO) Michelle Nakano Kwantlen Polytechnic University Book: Red Seal Landscape Horticulturist Identify Plants and Plant Requirements (Nakano) This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated. The LibreTexts libraries are Powered by MindTouch® and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. This material is based upon work supported by the National Science Foundation under Grant No. 1246120, 1525057, and 1413739. Unless otherwise noted, LibreTexts content is licensed by CC BY-NC-SA 3.0. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation nor the US Department of Education. Have questions or comments? For information about adoptions or adaptions contact [email protected]. More information on our activities can be found via Facebook (https://facebook.com/Libretexts), Twitter (https://twitter.com/libretexts), or our blog (http://Blog.Libretexts.org). This text was compiled on 09/18/2021 TABLE OF CONTENTS Red Seal Landscape Horticulturist Identify Plants and Plant Requirements is an adaptation of KPU HORT 1155 Introduction to Plant Materials Lecture Notes. This first edition supports student achievement of the Level 1 and 2 learning goals for Red Seal Landscape Horticulturist Line F2. UNIT 1: PLANT IDENTIFICATION 1.1: INTRODUCTION TO PLANT IDENTIFICATION 1.2: INTRODUCTION TO TAXONOMY 1.3: INTRODUCTION TO TAXONS 1.4: INTRODUCTION TO BINOMIAL NOMENCLATURE 1.5: CONVENTIONS FOR BINOMIAL NOMENCLATURE 1.6: NOMENCLATURE REVIEW 1.7: THE MEANING OF PLANT NAMES 1.8: PLANT GROWTH 1.9: INTRODUCTION TO PLANT CLASSIFICATION 1.10: CLASSIFY PLANTS BY LIFE CYCLE 1.11: INTRODUCTION TO DICHOTOMOUS KEYS 1.12: KEY TO PLANT CLASSIFICATION 1.13: INTRODUCTION TO PLANT MORPHOLOGY 1.14: PLANT MORPHOLOGY - LEAVES 1.15: PLANT MORPHOLOGY - CONIFERS 1.16: PLANT MORPHOLOGY - FLOWERS AND FRUIT 1.17: PLANT FAMILY CHARACTERISTICS UNIT 2: PLANT REQUIREMENTS AND USE 2.1: PLANT HABITATS 2.2: PLANT USE 2.3: PLANT GROWTH CHARACTERISTICS 2.4: CHARACTERISTICS OF WEEDY SPECIES 2.5: PLANT HARDINESS 2.6: PLANT REQUIREMENTS BACK MATTER INDEX GLOSSARY GLOSSARY 1 9/18/2021 CHAPTER OVERVIEW UNIT 1: PLANT IDENTIFICATION 1.1: INTRODUCTION TO PLANT IDENTIFICATION 1.2: INTRODUCTION TO TAXONOMY 1.3: INTRODUCTION TO TAXONS 1.4: INTRODUCTION TO BINOMIAL NOMENCLATURE 1.5: CONVENTIONS FOR BINOMIAL NOMENCLATURE 1.6: NOMENCLATURE REVIEW 1.7: THE MEANING OF PLANT NAMES 1.8: PLANT GROWTH 1.9: INTRODUCTION TO PLANT CLASSIFICATION 1.10: CLASSIFY PLANTS BY LIFE CYCLE 1.11: INTRODUCTION TO DICHOTOMOUS KEYS 1.12: KEY TO PLANT CLASSIFICATION 1.13: INTRODUCTION TO PLANT MORPHOLOGY 1.14: PLANT MORPHOLOGY - LEAVES 1.15: PLANT MORPHOLOGY - CONIFERS 1.16: PLANT MORPHOLOGY - FLOWERS AND FRUIT 1.17: PLANT FAMILY CHARACTERISTICS 1 9/18/2021 1.1: Introduction to Plant Identification Learning Objective Describe the development of plant identification. All living organisms on earth rely on the process of photosynthesis for food energy and oxygen. Humans depend almost entirely on plants for clean air and a livable climate as well as for food, medicines, materials, and well being. Around the world, groups of people with their own distinct history, culture, and society have learned to identify plants and their properties. For Indigenous peoples, the accumulated traditional knowledge of plants has allowed them to thrive in diverse environments for thousands of years. Traditional knowledge passed among generations through the oral traditions of hunter-gatherers influenced the naming and grouping of plants. With the settlement of agricultural communities and the domestication of plants about 10,000 years ago, written records documented their use. Early systems of plant classification emerged in Eastern and Ancient Egyptian cultures and botany, the scientific study of plants developed in Ancient Greece. Taxonomy, a branch of botany, is defined as the systematic classification, naming, and identification of plants. This orderly system arranges related plants with similar characteristics into groups called taxa and uses a convention called bionomial nomenclature to give a unique name to one group of plants. In addition to classification by morphology (external form) and anatomy (internal structures), botanists now use genetic sequencing and biochemistry to decode the evolutionary history of relationships among plants. As a discipline, taxonomy has continued to develop over centuries of botanical study and this knowledge is available to students of plant identification. The ability to identify plants and their requirements has always been an essential skill for horticulturists who manage plant growth and health. However, with more than 300,000 known species in the world, the plant kingdom – Plantae, is both diverse and complex. No two species of plants will be exactly alike, and while some common characteristics may be easily seen, others are so different that few if any relationships can be observed. Furthermore, the progression of evolution never stops and relationships among plant groups continue to change over time. To address this challenge, this book introduces students of plant identification to a systematic approach to classifying, naming, and identifying unknown species. Review An interactive or media element has been excluded from this version of the text. You can view it online here: https://kpu.pressbooks.pub/plant-identification/?p=158 Michelle Nakano 1.1.1 9/4/2021 https://bio.libretexts.org/@go/page/40062 1.2: Introduction to Taxonomy Learning Objectives Describe the scientific system of plant classification and naming. A working knowledge of taxonomy is useful for classifying, naming, and identifying unknown plants. Theophrastus (370-285 BC), a Greek philosopher, first used taxonomy to describe and group plants according to their morphology (shape), growth, and reproductive traits. In the 18th century, a scientist named Carl Linnaeus applied binomials (two-term names) and classified known plants into a hierarchical system of classification. Classification and Naming The most effective classification systems are hierarchical and comprised of a nested series of categories or ranks. A good analogy is a computer filing system. Certain kinds of information reside at each level (drive, library, directory or folder, sub- directory, document, etc.), with file names (or labels) that signify the sort of information found there. Every level in the hierarchy is more inclusive than the one below it and the more of the filing system that is investigated, the more related information is uncovered. Similarly, the categories used in plant classification provide an organizational framework into which the names of naturally occurring plants are slotted. In this framework, species of plants that are most similar to each other are grouped together. Groups or taxa (plural) are arranged in a hierarchical sequence of taxons (singular), from least inclusive rank at the bottom to most inclusive rank at the top as shown below in the plant classification hierarchy. In other words, the taxa “family” may include numerous plant genera, and within a genus (singular of genera) there may be any number of species, whereas within a given species, a subspecies may describe only a few populations or individuals. Within taxa – family, genus, species, etc., there are identifiable characteristics common to each group. For example, plants in the cypress family typically have broad, flattened, scale leaves, while plants in the pine family exhibit needle-like leaves. Once organized into a sensible system that recognizes similarities or relatedness, the grouping becomes easier to
Recommended publications
  • Hydrangea Anomala Ssp. Petiolaris
    Woody Plants Database [http://woodyplants.cals.cornell.edu] Species: Hydrangea anomala ssp. petiolaris (hye-dran'jee-ah ah-nom'ah-lah ssp. pet-ti-oh-lay'ris) Climbing Hydrangea Cultivar Information * See specific cultivar notes on next page. Ornamental Characteristics Size: Vine Height: 60' - 80' Leaves: Deciduous Shape: clinging vine Ornamental Other: full sun or shade Environmental Characteristics Light: Part shade, Shade Hardy To Zone: 5a Soil Ph: Can tolerate acid to alkaline soil (pH 5.0 to 8.0) Environmental Other: large, fragrant white flowers in June/July; glossy dark green leaves may turn yellow in fall; flaky tan bark Insect Disease none serious Bare Root Transplanting Any Other native to Japan and China; best transplanted from container; plant parts are poisonous but with little appeal and are not troublesome. Slow growing. 1 Woody Plants Database [http://woodyplants.cals.cornell.edu] Moisture Tolerance Occasionally saturated Consistently moist, Occasional periods of Prolonged periods of or very wet soil well-drained soil dry soil dry soil 1 2 3 4 5 6 7 8 9 10 11 12 2 Woody Plants Database [http://woodyplants.cals.cornell.edu] Cultivars for Hydrangea anomala ssp. petiolaris Showing 1-4 of 4 items. Cultivar Name Notes Firefly 'Firefly' -variegated foliage, broadly margined with creamy yellow Miranda ‘Miranda’ - variegated form, dark green leaves with yellow margins, leaf margins may fade to creamy white as the summer progresses Skylands Giant 'Skylands Giant' - extremely large 12" inflorescences; blooms at a young age var. tiliifolia var. tiliifolia - smaller leaves than species 3 Woody Plants Database [http://woodyplants.cals.cornell.edu] Photos Flower closeup Hydrangea on shed wall 4 Woody Plants Database [http://woodyplants.cals.cornell.edu] Hydrangea anomala ssp.
    [Show full text]
  • Research Reports Response of Five Hydrangea Species to Foliar Salt Spray1
    Research Reports Response of Five Hydrangea Species to Foliar Salt Spray1 N. Barbara Conolly2, Nina L. Bassuk3, and Patrick F. MacRae Jr.4 Urban Horticulture Institute, Department of Horticulture Cornell University, Ithaca, NY 14853 Abstract Hydrangeas are popular seaside plants; however, other than in anecdotal reports, there are no studies measuring their relative tolerance to salt spray. We examined response of ten cultivars and one subspecies of Hydrangea representing fi ve species to foliar-applied salt solutions to recommend selections for seaside landscapes. Objectives were to determine whether there are differences in responses to salt spray among cultivars and species, and to determine whether varying concentrations of sodium chloride differentially damaged the plants. Plants were treated with a full-strength (ion concentration approximate to seawater) salt solution, a half-strength salt solution, or a control of tap water. Plants were rated after seven once-weekly applications based on percentage necrotic leaf area, an aesthetically and physiologically important symptom of damage. Cultivars of Hydrangea macrophylla and Hydrangea serrata were more tolerant of full-strength salt spray than cultivars of H. paniculata, H. anomala and H. arborescens. At half strength but not full strength, H. anomala ssp. petiolaris was most tolerant. Hydrangea macrophylla and H. serrata were the second most tolerant of half-strength applications. Hydrangea macrophylla or Hydrangea serrata should be planted where maritime salt spray will occur. Index words: seawater aerosol, NaCl, Hydrangeaceae. Species used in this study: Smooth hydrangea (Hydrangea arborescens L.) cultivars ‘Annabelle’, ‘Dardom’ White Dome®, ‘Hayes Starburst’; bigleaf hydrangea (Hydrangea macrophylla (Thunb.) Ser.) cultivars ‘Paris’ (Cityline™ series), ‘Nikko Blue’, ‘All Summer Beauty’; panicle hydrangea (Hydrangea paniculata Sieb.) cultivars ‘Limelight’, ‘Tardiva’; Hydrangea serrata (Thunb.) Ser.
    [Show full text]
  • Morphological and Physiological Responses of Cornus Alba to Salt
    HORTSCIENCE 55(2):224–230. 2020. https://doi.org/10.21273/HORTSCI14460-19 and Saha, 2014). Plants under drought stress tend to reduce leaf size, stimulate leaf abscis- sion, enhance root growth, and limit photo- Morphological and Physiological synthesis (Taiz et al., 2015). Some plants can maintain water balance under drought condi- Responses of Cornus alba to Salt tions through osmotic adjustment (Farooq et al., 2008). The fact that drought resistance and Drought Stresses under varies among plant species warrants further investigation to evaluate plant responses to drought conditions and select drought-tolerant Greenhouse Conditions plants for landscape use. Qiang Liu Soil salinity is also a global issue and is College of Life Sciences and Technology, Central South University of caused partially by human activities such as irrigation with poor quality water and poor Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan soil drainage, which result in excess soluble 410004, China; and Hunan Academy of Forestry, 658 South Shaoshan Road, salts in the soil. It is estimated that 20% of Changsha, Hunan 410004, China the irrigated lands in the world are currently affected by salinity stress (Taiz et al., 2015). Youping Sun Salinity induces a series of metabolic dys- Department of Plants, Soils and Climate, Utah State University, 4820 Old functions in plants, including specific ion Main Hill, Logan, UT 84322 toxicity, nutrient imbalance, decreased pho- tosynthesis, and enzyme dysfunction (Munns James Altland and Tester, 2008). The extent of adverse U.S. Department of Agriculture, Agricultural Research Service, Application impact of salinity on plant physiological Technology Research Unit, 1680 Madison Avenue, Wooster, OH 44691 processes depends on the rate and duration of salinity stress.
    [Show full text]
  • Landscape Plants Rated by Deer Resistance
    E271 Bulletin For a comprehensive list of our publications visit www.rce.rutgers.edu Landscape Plants Rated by Deer Resistance Pedro Perdomo, Morris County Agricultural Agent Peter Nitzsche, Morris County Agricultural Agent David Drake, Ph.D., Extension Specialist in Wildlife Management The following is a list of landscape plants rated according to their resistance to deer damage. The list was compiled with input from nursery and landscape professionals, Cooperative Extension personnel, and Master Gardeners in Northern N.J. Realizing that no plant is deer proof, plants in the Rarely Damaged, and Seldom Rarely Damaged categories would be best for landscapes prone to deer damage. Plants Occasionally Severely Damaged and Frequently Severely Damaged are often preferred by deer and should only be planted with additional protection such as the use of fencing, repellents, etc. Success of any of these plants in the landscape will depend on local deer populations and weather conditions. Latin Name Common Name Latin Name Common Name ANNUALS Petroselinum crispum Parsley Salvia Salvia Rarely Damaged Tagetes patula French Marigold Ageratum houstonianum Ageratum Tropaeolum majus Nasturtium Antirrhinum majus Snapdragon Verbena x hybrida Verbena Brugmansia sp. (Datura) Angel’s Trumpet Zinnia sp. Zinnia Calendula sp. Pot Marigold Catharanthus rosea Annual Vinca Occasionally Severely Damaged Centaurea cineraria Dusty Miller Begonia semperflorens Wax Begonia Cleome sp. Spider Flower Coleus sp. Coleus Consolida ambigua Larkspur Cosmos sp. Cosmos Euphorbia marginata Snow-on-the-Mountain Dahlia sp. Dahlia Helichrysum Strawflower Gerbera jamesonii Gerbera Daisy Heliotropium arborescens Heliotrope Helianthus sp. Sunflower Lobularia maritima Sweet Alyssum Impatiens balsamina Balsam, Touch-Me-Not Matricaria sp. False Camomile Impatiens walleriana Impatiens Myosotis sylvatica Forget-Me-Not Ipomea sp.
    [Show full text]
  • A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis
    University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 1-2020 A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis Emily Conn Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Recommended Citation Conn, Emily, "A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis" (2020). Internship Program Reports. 68. https://repository.upenn.edu/morrisarboretum_internreports/68 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/68 For more information, please contact [email protected]. A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis This report is available at ScholarlyCommons: https://repository.upenn.edu/morrisarboretum_internreports/68 Title: A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis Author: Emily Conn The Martha J. Wallace Endowed Plant Propagation Intern Date: January 2020 Abstract: In this gap analysis of the Morris Arboretum’s Hydrangea collection, I will assess the hydrangea collection with a focus on the “fuzzy leaf” varieties that fall under two classifications: Section Asperae and Section Chinenses. Within these fuzzy leaf groupings, this project will include an analysis of the collection at the species and cultivar level and will outline which hydrangeas are missing from or underrepresented in our collection, as well as recommendations for suitable additions. These recommendations favor wild collected species and species available from the collections at regional arboreta. Discussion of the controversy over nomenclature verification methods, phylogenic treatments, and theories of biological classification systems are explored in the body of this paper. This project also entails seed propagation of target species growing at the Arboretum, and cutting propagation of desired species from local institutions to diversify this growing collection.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • Wa Shan – Emei Shan, a Further Comparison
    photograph © Zhang Lin A rare view of Wa Shan almost minus its shroud of mist, viewed from the Abies fabri forested slopes of Emei Shan. At its far left the mist-filled Dadu River gorge drops to 500-600m. To its right the 3048m high peak of Mao Kou Shan climbed by Ernest Wilson on 3 July 1903. “As seen from the top of Mount Omei, it resembles a huge Noah’s Ark, broadside on, perched high up amongst the clouds” (Wilson 1913, describing Wa Shan floating in the proverbial ‘sea of clouds’). Wa Shan – Emei Shan, a further comparison CHRIS CALLAGHAN of the Australian Bicentennial Arboretum 72 updates his woody plants comparison of Wa Shan and its sister mountain, World Heritage-listed Emei Shan, finding Wa Shan to be deserving of recognition as one of the planet’s top hotspots for biological diversity. The founding fathers of modern day botany in China all trained at western institutions in Europe and America during the early decades of last century. In particular, a number of these eminent Chinese botanists, Qian Songshu (Prof. S. S. Chien), Hu Xiansu (Dr H. H. Hu of Metasequoia fame), Chen Huanyong (Prof. W. Y. Chun, lead author of Cathaya argyrophylla), Zhong Xinxuan (Prof. H. H. Chung) and Prof. Yung Chen, undertook their training at various institutions at Harvard University between 1916 and 1926 before returning home to estab- lish the initial Chinese botanical research institutions, initiate botanical exploration and create the earliest botanical gardens of China (Li 1944). It is not too much to expect that at least some of them would have had personal encounters with Ernest ‘Chinese’ Wilson who was stationed at the Arnold Arboretum of Harvard between 1910 and 1930 for the final 20 years of his life.
    [Show full text]
  • Red Twig Dogwoods Tatarian Dogwood (Cornus Alba) and Redosier Dogwood (Cornus Sericea)
    Red Twig Dogwoods Tatarian Dogwood (Cornus alba) and Redosier Dogwood (Cornus sericea) Alex X. Niemiera, Associate Professor, Department of Horticulture There are two species of dogwoods that have showy red stems in the winter, Tatarian dogwood (Cornus alba) and redosier dogwood (C. sericea). Both are deciduous medium to large shrubs and have similar flowering and fruit characteristics, as well as cultural aspects. Thus, the general information (Summary, Plant Needs, Functions, and Care) will be presented for both species). Each species has several cultivars that vary in stem color and foliage variegation; cultivar information will be presented for each species in the Additional Information section. Red Twig Dogwoods Cornus abla and Cornus sericea Summary: Foliage: About 3 inch long leaves; deciduous Height: About 8 feet Spread: About 8 feet Shape: Loose, wide-spreading upright shrub; will sucker to form a large colony of stems Main features: The red stem dogwood species, tatarian and redosier dogwoods, are large multi-stem fast-growing suckering deciduous shrubs (tatatarian dogwood may or may not sucker). Their claim-to-fame is their stems that turn bright red to dark red in the winter (stems are greenish during the growing season). These dogwoods certainly add a WOW! factor to a winter landscape. They are best used in mass in the landscape to emphasize and accentuate the cold season red stem color. There are cultivars of both species that have showy white variegated leaves, and there are cultivars of redoiser dogwood that have showy bright yellow stems in winter. Both species are tolerant of poor growing conditions (dry or wet soil).
    [Show full text]
  • 2021 Wholesale Catalog Pinewood Perennial Gardens Table of Contents
    2021 Wholesale Catalog Pinewood Perennial Gardens Table of Contents In Our Catalog ........................................................................................................................................2 Quart Program ........................................................................................................................................3 Directions ..............................................................................................................................................3 New Plants for 2021 ...............................................................................................................................4 Native Plants Offered for Sale ..................................................................................................................4 L.I. Gold Medal Plant Program .................................................................................................................5 Characteristics Table ..........................................................................................................................6-10 Descriptions of Plants Achillea to Astilboides .........................................................................................................11-14 Baptisia to Crocosmia ..........................................................................................................14-16 Delosperma to Eupatorium ...................................................................................................16-18 Gaillardia to Helleborus
    [Show full text]
  • Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
    Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.
    [Show full text]
  • Other Plant Lists
    NBB Habitat-friendly Plants for Residential Landscapes The plants on this list have been selected because they are kind to the envi- Of course, there are many more native plants available, but many aren’t all ronment, generally well-behaved in smaller urban or suburban gardens, and that friendly to small residential landscapes for a variety of reasons. Similarly, pretty enough for ornamental value. Critical selection criteria was drought there are more ornamental plants available. Feel free to add other plants to tolerance, erosion control, and providing good habitat for birds, pollinators, your garden after using this list to create a good environmentally-friendly beneficial insects and wildlife in general. These things have been deemed base. Just be careful that what you choose is water-wise, non-invasive, and helpful in achieving and maintaining good watershed health as well. the right plant for the right place. SMALLER TREES Flower Color / Bloom Time / Foliage Color / Deciduous/ Sun Mature Drought- Erosion Fall Foliage Color / Fruit, Nuts, Seeds, Cones / Botanical Name Common Name Evergreen Exposure Height / Width Native Tolerant Control* Host For ** Comments White / Spr / Green / Orange–Red / Y / Acer circinatum Vine Maple D PtSh – Sh 10–20’ x 20’ Y Y/N Y dp,sh B,Bf,H,I,P,W taller, more spread out in shade; shorter, more dense in full sun; cultivars vary in size and coloration / / Green / Green / Y / could be much larger in wild; Calocedrus decurrens Incense Cedar E Su 50–75’ x 15’ Y Y Y dp B,Bf though very tall, it’s not very wide,
    [Show full text]
  • Hydrangea Collection with Hints of Purple
    Hydrangea quercifolia (oakleaf hydrangea) Panicles of white blooms appear from late June into July. Flowers fade to papery mauve and then brown, persisting into the first months of winter. Bold, coarse foliage is a rich, deep green and resembles large oak leaves. Fall color ranges from red to orange, Hydrangea Collection with hints of purple. Good for sun or shade, though in heavy shade it will not flower or show fall colors as well; grows 8’ tall. This stoloniferous hydrangea spreads by underground shoots that send up small stems. These stems can be pruned out if not wanted. ‘Amethyst’- Conical inflorescence emerges white, then transitions to a deep wine-red. Leaves have burgundy- red fall color. Hydrangea Collection ‘Pee Wee’- Compact form growing 2’-3’ tall and wide. North side of Hicks Hall ‘Semmes Beauty’- Vigorous and H. quercifolia heat-tolerant selection with large About the Scott Arboretum ‘Amethyst’ showy blooms. Scott Entrance Garden The Scott Arboretum is a green oasis uniquely situated on the ‘Snow Flake’- Long panicles of Swarthmore College campus. Over 300 acres create the College creamy white, double florets that weigh down the branches, landscape and provide a display of the best ornamental plants creating an arching habit. Hydrangea Collection recommended for Delaware Valley gardens. Established in 1929 as a living memorial to Arthur Hoyt Scott, Class of 1895, through gift from his family, the Arboretum Hydrangea serrata (serrated or mountain hydrangea) continues to thrive today. There are over 4,000 different kinds The flat-topped corymb is 2”-4” across, with pink or blue fertile of plants grown on the campus, selected for their outstanding flowers.
    [Show full text]