Validation of In-Situ Microwave Moisture Meter
Total Page:16
File Type:pdf, Size:1020Kb
VALIDATION OF IN-SITU MICROWAVE MOISTURE METER FOR SAND AND CONCRETE by Jafar Talal Allahham A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science Department of Civil and Environmental Engineering The University of Utah December 2017 Copyright © Jafar Talal Allahham 2017 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Jafar Talal Allahham has been approved by the following supervisory committee members: Amanda Bordelon , Chair 03/28/2017 Date Approved Chris Pantelides , Member 03/21/2017 Date Approved Pedro Romero , Member 03/21/2017 Date Approved and by Michael Barber , Chair/Dean of the Department/College/School of Civil and Environmental Engineering and by David B. Kieda, Dean of The Graduate School. ABSTRACT The moisture content in civil engineering materials determines many of the structural properties of the material such as strength and durability. In geotechnical engineering, the moisture content of soil deposits determines their susceptibility to landslides and settling. In structural engineering, the moisture content in concrete, typically measured in terms of the water-to-cement (w/cm) weight ratio, determines its compressive strength as well as other hardened properties such as permeability and shrinkage. The moisture contents of sand and concrete composites were measured using a handheld microwave moisture meter developed for the purpose of moisture measurements in concrete. The results in concrete obtained from the meter were compared to the results obtained from the standard method of determining moisture content in concrete. In sand, the meter was able to detect the change in moisture content with a linear fit R^2 of 0.962 and 0.945 for the two types of sands tested. As for concrete, the linear fit R^2 was as low as 0.0034. The p-values obtained on concrete testing were less than the specified confidence level of 0.05, rejecting the hypothesis that the meter’s average output is equal to the average actual w/cm tested. The output w/cm obtained from the meter was compared to moisture content and calculated w/cm from the AASHTO standard method. The linear fit through the data obtained from the test had an R^2 value of 0.62 or higher and a p-value of 0.91, making this method the preferred option when wanting accurate in-situ measurements. TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ACKNOWLEDGMENTS ................................................................................................. ix Chapters 1. INTRODUCTION .......................................................................................................... 1 1.1 Motivation ............................................................................................................ 1 1.2 Determining Water Content ................................................................................. 2 1.3 Methods for In-situ Determination of the Water Content in Concrete ................ 2 1.4 Research Objectives ............................................................................................. 3 2. LITERATURE REVIEW ............................................................................................... 5 2.1 Basic Theory of Microwave Moisture Meters ..................................................... 5 2.1.1 Polarization and Dielectric Permittivity................................................... 5 2.1.2 Dielectric Loss ......................................................................................... 6 2.2 Dielectric Measurements ..................................................................................... 7 2.3 Frequency Effect on Dielectric Measurements .................................................... 8 2.4 Temperature Effect on Dielectric Constant ......................................................... 9 2.5 Pore Property Effects on the Dielectric Constant .............................................. 10 2.6 Concrete Hydration Effects Dielectric Constant................................................ 10 2.7 Dielectric Constant of a Mixture........................................................................ 12 3. METHODOLOGY ....................................................................................................... 18 3.1 Cementometer™ Properties .............................................................................. 18 3.2 Meter Calibration ............................................................................................... 19 3.2.1 Source Material Used in the Study ........................................................ 19 3.2.2 Concrete Calibration Mixing Procedure ................................................ 21 3.2.3 Cement Paste and Mortar Calibration Curves ....................................... 22 3.2.4 Concrete Calibration Curves .................................................................. 23 3.2.5 Calibration Curves Regression Analysis ............................................... 23 3.2.6 Discussion on Calibration Challenges ................................................... 23 3.3 Sensitivity of Direct Readings to Temperature and Mixing Time ..................... 24 4. MEASUREMENTS WITH CEMENTOMETER ON SAND AND CONCRETE MIXTURES ...................................................................................................................... 37 4.1 General Measurements....................................................................................... 37 4.2 Measurements on Sand ...................................................................................... 38 4.3 Measurements on Concrete ................................................................................ 38 4.4 Measurement Results ......................................................................................... 39 4.4.1 Regression Analysis ............................................................................... 40 4.4.2 Relative Dielectric Constant Calculation on Sand and Concrete ........... 41 5. ADDITIONAL STATISTICAL VERIFICATION ...................................................... 50 5.1 Statistical Analyses ............................................................................................ 50 5.1.1 Absolute Difference and Sum of Square Error (SSE) ........................... 51 5.1.2 T-test for Each w/cm Ratio .................................................................... 52 5.1.3 Confidence Interval ................................................................................ 54 5.1.4 T-test for Entire Mode ........................................................................... 54 5.2 Discussion on Statistical Findings ..................................................................... 54 5.3 AASHTO T 318-02 Concrete Microwave Test ................................................. 55 6. CONCLUSION ............................................................................................................. 63 Appendices A: AGGREGATE AND CEMENT PROPERTIES ......................................................... 65 B: PROCEDURE FOR CEMENTOMETER ................................................................... 70 C: AASHTO MICROWAVE TEST SAMPLE CALCULATIONS ................................ 73 D: STATISTICS ............................................................................................................... 77 REFERENCES ................................................................................................................. 80 v LIST OF TABLES Tables 1. Dielectric Constant of Common Materials ................................................................... 14 2. Mixture Properties for Calibrating and Testing ............................................................ 28 3. Calibration Linear Regression Equation and R² Values ............................................... 29 4. P-values from ANOVA Based on Influence of Mixing Time ...................................... 29 5. Actual to Predicted W/CM Ratio Statistics of Each Meter Mode ................................ 43 6. P-values for the Validation Measurement w/cm Ratios ............................................... 57 7. T-test Parameters for Entire Mode Data Set of Concrete Mixtures .............................. 57 8. Statistic for AASHTO Microwave Test to Actual W/CM ............................................ 57 9. Properties of Aggregates Used for Concrete Mixtures ................................................. 66 10. Cement Properties ....................................................................................................... 68 11. FlyAsh Properties........................................................................................................ 69 12. Mixture Proportions in AASHTO Microwave Test.................................................... 75 LIST OF FIGURES Figures 1. Parallel plate capacitor a) Polarization of dielectric materials under an applied electric field b) Capacitor .............................................................................................................. 15 2. Measured dielectric