Functional Biochemistry Clinical Reference Guide

Total Page:16

File Type:pdf, Size:1020Kb

Functional Biochemistry Clinical Reference Guide Functional Biochemistry Clinical Reference Guide Chris Astill-Smith, DO, ND, DIBAK Casey Reardon, DC Credits Contact information Chris Astill-Smith Epigenetics International, Ltd. The Old Coach House 21 Church Street Market Lavington Devizes, Wiltshire SN10 4DU Phone: 01380 800105 Email: [email protected] www.epigenetics-international.com Casey Reardon Email: [email protected] www.reardonchiropractic.com Copyright 2008-2012 Casey Reardon All Rights Reserved This manual cites information from the following sources: Guyton’s Physiology Harper’s Biochemistry Applied Kinesiology Synopsis 2nd Edition by David Walther, DC, DIBAK A New Earth by Eckart Tolle Water Crystal Healing by Massuro Emoto Power Vs Force by David Hawkins The Linus Pauling Institute (lpi.oregonstate.edu) Common Glandular Dysfunction by Walter Schmitt, DC, DIBAK, DABCN Healing Without Medication by Robert Rister Notes from the following seminars make up this manual: Omega System 1-10 Developing a Total Nutritional Profile Ear, Nose, Throat, Mouth Adrenal Exhaustion Male and Female Hormones Parasites Itchy Patient Menstrual Disorders Toxicity pH Acid Base Balance Children Updates 2007 and 2008 Sugar Metabolism Annual Conference 2008 Arthritis Belgium 2009 Preliminary Procedures Sugar and Arthritis Genito-Urinary System Neurobehavioral Disorders Annual Update 2009 Memory Annual Update 2010 Common Respiratory Ailments Disclaimer The material in this book is for educational purposes only. It is always the treating doctor’s responsibility to determine what treatment a patient needs. The methods covered in this book are not meant to diagnose, treat, prevent, or cure any diseases and should always be used in addition to, not instead of, standard examination procedures. No doctor- patient relationship is established by this book. Procedure Outline Preliminary Procedures 1. Identify strong and weak muscles 2. TL to GV 20 weakens a. If no i. Inspiration and expiration open – cranial ii. Inspiration or expiration open – body structure iii. Identify B+E point that opens GV 20 – Rub 30 secs while patient TLs GV 20 b. If yes i. Inspiration and expiration close – cranial ii. Inspiration or expiration close – body structure iii. Identify B+E point that closes GV 20 – Rub 30 secs while patient TLs GV 20 3. TL to eyes weakens a. Deep cranial fault 4. Tapping patellar reflex does not weaken opposite Latissmus Dorsi and Rectus Femoris (check both sides) a. Correct body structure superior to inferior 5. TL to now time Alarm Point does not weaken a. Correct Body Clock 6. Identify primary and secondary eye cone colors a. Red, Green, Blue Hemisphere Dominance 7. Challenge for underfunctioning hemisphere using goggles or hands over eyes a. If neither side weak – adjust occiput, C1, or other structural fault b. If left or right weakens challenge with brain nuclei i. midbrain, hindbrain, cerebellum, cortex (parietal, temporal, occipital, frontal) c. Remove goggles – TL brain nuclei reflex points on head bilaterally (TL weak side first) d. Use EID / BID to identify cause(s) of underfunctioning nuclei e. Correct as indicated and repeat until both hemispheres are corrected Energy 8. Mg-ADP weakens a. If yes – Test Glycolysis, Ctric Acid Cycle, Electron Transport Chain nutrients b. If no – Does Mg-ADP weaken with TL to umbilicus? i. If yes – weakness negated by tissue extracts 1. Adrenal Cortex, Adrenal Medulla, Pineal, Thymus 2. Challenge with Snowdrops a. If weakens – gland is hyper b. If strengthens – gland is hypo 3. Determine key nutrient(s) c. Scale of ATP Energy d. Scale of Vital Energy e. Scale of Metabolism Genomics 9. Nucleotide base (A, C, T, G, U) weakens a. Identify SNIP – Test other bases for strengthening b. Composites: Vitamin, Coenzyme, Mineral, Sat Fat, Unsat Fat, Probiotic, Amino Acid, Saccharide i. Narrow composites to the specific nutrient c. Test Compounds: Multiple Vitamin / Mineral, B Complex, Nutrient Phase 1+2, Homocysteine Formula, Ostecaps d. Test Spices e. Scale of Health f. Scale of Wobble Wellness, Methylation 10. Sodium Lauryl Sulfate weakens a. Scale of Wellness b. Challenge against: Multiple Vitamin / Mineral, Nutrient Phase 1+2, Ostecaps, Homocysteine Formula, B Complex 11. Test Methionine, SAM, SAH, Homocysteine, and Cystathione for weakening and strengthening a. Identify effects of methylation defect on adjacent cycles b. Identify nutrient to restore methylation cycles c. Scale of Biochemistry d. Check nutrients against Prospective Age B+E Point Evaluation, Neurotransmitters 12. Determine Primary Meridian a. Test corresponding Neurotransmitter i. If positive – Determine nutrients needed to make or break down Endocrine b. Test corresponding Hormone i. If positive – Determine nutrients needed to make or break down Diagnostic Entry c. Determine Optimal Diagnostic Entry (EID vs BID) d. Determine cause of meridian imbalance using Diagnostic Entry i. Left and Up – Nutritional Deficiency 1. Composites: Vitamin, Coenzyme, Mineral, Probiotic, Sat Fat, Unsat Fat, Amino Acid, Saccharide 2. Narrow composites to the specific nutrient ii. Straight Left – Toxicity 1. Chemical, Radiation, Toxic Metal 2. Determine remedy 3. Identify Source – Verbal Challenges iii. Left and Down – Structure iv. Right and Up – Dehydration 1. Determine amount of water needed v. Straight Right – Exercise 1. Scale of Fitness 2. Verbal Challenge for optimal exercise, times per week, and length per time 3. Aerobic Challenge 4. Anaerobic Challenge vi. Right and Down – Allergy 1. Identify offending food or drink 2. Rub B+E point that negates weakness with food in mouth or vial on patient 3. Identify chemical mediators (kinin, histamine, PG, LT) and nutrients to metabolize vii. Side to side – Energy 1. Glucose, Glycolysis, CAC, ETC nutrients 2. Kundalini meridian – cortex, medulla, pineal, thymus viii. Circumduction – Infection 1. Bacteria, Virus, Post Virus, Parasite, Fungus 2. Determine remedy ix. Eyes crossed on nose – Sleep 1. Determine optimal length of time to sleep 2. Does patient strengthen to melatonin or weaken to cortisol or adrenaline at nighttime alarm point (TW, GB, LV, LU)? a. If yes – Identify nutrients to correct Emotional 13. Eyes closed weakens a. “The optimal emotional release for me to perform on you is… i. …To release the unconscious emotions” strengthens 1. TL to B+E point strengthens eyes closed 2. Give patient affirmation to release emotion ii. …The Love Challenge” strengthens 1. Patient weakens to “I am loved”, “I am loving”, or “I am lovable” 2. Repeat the weakening statement 20 times every night Preliminary Procedures 14. Is gait pattern is intact when standing? If not: a. Identify and correct structural fault b. Patient jumps on heels 6 times c. Repeat until correct gait pattern is maintained Energy 15. Scale of Vitality was less than 1000 a. Patient looks at light box with color corresponding to primary meridian for 15 minutes b. Patient listens to music corresponding to primary meridian Biochemical Flowchart Key Substrate Mineral Cofactor, Vitamin Coenzyme, or other substance that is needed for the conversion Toxin or other substance that blocks the conversion Product Synthase = enzyme to convert substrate to product Product / Substrate 2 Mineral Cofactor, Vitamin Coenzyme, or other substance that is needed for the conversion Toxin or other substance that blocks the conversion Product 2 Synthase = enzyme to convert substrate 2 to product 2 Product 2 Substrate weakens and product strengthens = underactive enzyme Test substances to enhance conversion of Substrate to Product Substrate strengthens and product weakens = Overactive enzyme Test substances to convert Substrate 2 to Product 2 When substrate is low and product is high, it may be appropriate to test substances to block the conversion of substrate to product, such as herbs in a case of low testosterone. In most cases, these substances are toxins that should not be supplemented and the best remedy is to enhance the conversion of Substrate 2 to Product 2. GV 20 Located at the highest point on the top of the head Related to the Hypothalamus Traditional Chinese Acupuncture calls it “The Cure of 100 Diseases” Governing Vessel 20 can be used to test anything including supplements, flower remedies, homeopathics, or anything else where a weak muscle is needed. Anything that strengthens GV 20 will benefit the person, though it can’t be said, based on the test, whether it will improve their health by 1% or 100%. If something does not strengthen GV 20, it will not benefit the patient. In a well neurologically organized person, GV 20 will weaken unless the person has no stresses on their body. If GV 20 does not weaken, the patient is either perfect, just took their supplements, or is neurologically disorganized. GV 20 Procedure 1. TL to GV 20 weakens a. Inspiration and expiration strengthen Æ Superficial Cranial Fault i. Using B+E points a. TL B+E points until one strengthens GV 20 – indicates primary B+E point b. Rub this point bilaterally for 30 seconds with TL to GV 20 ii. Mechanical Correction a. Respiratory adjust b. TL technique c. All in one technique b. Inspiration or expiration strengthen Æ Ascending Fault (see next section on Biomechanics) 2. TL to GV 20 does not weaken a. Inspiration and expiration weaken Æ Superficial Cranial Fault i. Using B+E points a. TL B+E points until one weakens GV 20 – indicates primary B+E point b. Rub this point bilaterally for 30 seconds with TL to GV 20 ii. Mechanical Correction a. Respiratory adjust b. TL technique c. All in one technique b. Inspiration or expiration weaken Æ Ascending Fault (see next section on Biomechanics) c. RNA or DNA open GV 20 i. 2-3 capsules a day for 2-3 weeks ii. Cut the dose in half if the patient experiences any bloating (supplement is made from yeast) iii. Open GV 20 from DNA or RNA is negated by DNA or RNA Polymerase, If yes: a. Test Zinc d. 2 hand TL anywhere on the trunk weakens i. One hand contralateral TL on trunk opens GV 20 ii.
Recommended publications
  • Insights Into Anaerobic Degradation of Benzene and Naphthalene
    TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Siedlungswasserwirtschaft Insights into anaerobic degradation of benzene and naphthalene Xiyang Dong Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzende(r): Prof. Dr. Wolfgang Liebl Prüfer der Dissertation: 1. Priv.-Doz. Dr. Tillmann Lueders 2. Prof. Dr. Siegfried Scherer 3. Prof. Dr. Rainer Meckenstock Die Dissertation wurde am 03.07.2017 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 18.08.2017 angenommen. 天道酬勤 God rewards those who work hard Abstract Aromatic hydrocarbons, e.g. benzene and naphthalene, have toxic, mutagenic and/or carcinogenic properties. Fortunately, these compounds can be degraded in environmental systems by indigenous microorganisms. Especially under anaerobic conditions, the physiology and ecology of the microbes involved are still poorly understood. In this thesis, important knowledge gaps are addressed in this field using microbiological approaches combined with “omics tools” (metagenomics and metaproteomics). A novel “reverse stable isotope labelling” approach is also introduced to investigate biodegradation activities. Firstly, the enrichment culture BPL was studied, which can degrade benzene coupled with sulfate reduction. It is dominated by an organism of the genus Pelotomaculum. Members of this genus are usually known to be fermenters, undergoing syntrophy with anaerobic respiring microorganisms or methanogens. It remains unclear if Pelotomaculum identified here (namely, Pelotomaculum candidate BPL) could perform both benzene degradation and sulfate reduction. By using a metagenomic approach, a high-quality genome was reconstructed for it.
    [Show full text]
  • Arxiv:Q-Bio.QM/0511042 V2 25 Nov 2005 Nomto Ae Lseig Upeetr Material Supplementary Clustering: Based Information .THE I
    Information based clustering: Supplementary material Noam Slonim, Gurinder Singh Atwal, Gaˇsper Tkaˇcik, and William Bialek Joseph Henry Laboratories of Physics, and Lewis–Sigler Institute for Integrative Genomics Princeton University, Princeton, New Jersey 08544 USA (Dated: December 4, 2005) This technical report provides the supplementary material for a paper entitled “Information based clustering,” to appear shortly in Proceedings of the National Academy of Sciences (USA). In Section I we present in detail the iterative clustering algorithm used in our experiments and in Section II we describe the validation scheme used to determine the statistical significance of our results. Then in subsequent sections we provide all the experimental results for three very different applications: the response of gene expression in yeast to different forms of environmental stress, the dynamics of stock prices in the Standard and Poor’s 500, and viewer ratings of popular movies. In particular, we highlight some of the results that seem to deserve special attention. All the experimental results and relevant code, including a freely available web application, can be found at http://www.genomics.princeton.edu/biophysics-theory . Contents many choices at different levels of the analysis. In recent work we suggest that some generality can be achieved I. The Iclust algorithm 1 through the use of information theory (1). Here we re- view this formulation briefly and then proceed to the II. Evaluating clusters’ coherence 3 technical details of its implementation that were left out III. First application: The yeast ESR data 3 of Ref (1). A. Description of the data 3 We formulate clustering as a tradeoff between maxi- B.
    [Show full text]
  • The Metabolic Building Blocks of a Minimal Cell Supplementary
    The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i.
    [Show full text]
  • Occurrence of the Regulatory Nucleotides Ppgpp and Pppgpp Following Induction of the Stringent Response in Staphylococci
    JOURNAL OF BACTERIOLOGY, Sept. 1995, p. 5161–5165 Vol. 177, No. 17 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology Occurrence of the Regulatory Nucleotides ppGpp and pppGpp following Induction of the Stringent Response in Staphylococci R. CASSELS,* B. OLIVA,† AND D. KNOWLES Department of Microbial Metabolism and Biochemistry, SmithKline Beecham Pharmaceuticals, Brockham Park, Betchworth, Surrey RH3 7AJ, United Kingdom Received 6 February 1995/Accepted 27 June 1995 The stringent response in Escherichia coli and many other organisms is regulated by the nucleotides ppGpp and pppGpp. We show here for the first time that at least six staphylococcal species also synthesize ppGpp and pppGpp upon induction of the stringent response by mupirocin. Spots corresponding to ppGpp and pppGpp on thin-layer chromatograms suggest that pppGpp is the principal regulatory nucleotide synthesized by staphylococci in response to mupirocin, rather than ppGpp as in E. coli. Bacteria adapt to amino acid or carbon source insufficiency and higher organisms after amino acid starvation or induction by a complex series of regulatory events known as the stringent by a variety of antibiotics (7, 18, 26). However, in halobacteria response (reviewed in reference 4). In Escherichia coli, for (25) and streptococci (21), stringency is not necessarily coupled example, amino acid starvation leads to an accumulation of with (p)ppGpp production. Thus, in Streptococcus pyogenes uncharged cognate tRNA. When the ratio of charged to un- and Streptococcus rattus, chloramphenicol reverses the inhibi- charged tRNA falls below a critical threshold (24), occupation tion of RNA synthesis caused by mupirocin, but there is no of the vacant mRNA codon at the ribosomal A site by un- generation of ppGpp in the presence of mupirocin alone.
    [Show full text]
  • Toward the Discovery of Biological Functions Associated with the Mechanosensor Mtl1p of Saccharomyces Cerevisiae Via Integrative
    www.nature.com/scientificreports OPEN Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi‑OMICs analysis Nelson Martínez‑Matías1, Nataliya Chorna1*, Sahily González‑Crespo1, Lilliam Villanueva1, Ingrid Montes‑Rodríguez2, Loyda M. Melendez‑Aponte1, Abiel Roche‑Lima1, Kelvin Carrasquillo‑Carrión1, Ednalise Santiago‑Cartagena1, Brian C. Rymond3, Mohan Babu4, Igor Stagljar5,6 & José R. Rodríguez‑Medina1* Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6‑phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non‑lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT‑labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins. These observations support the idea that Mtl1 protein controls the suppression of a non‑lethal heat stress response under normal conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 signaling that are required to maintain cellular homeostasis and optimal mitochondrial function. Te fungal cell wall is a physical structure that evolved to shield cells from the changing conditions of the ecological niches in which they thrive, acting as a porous barrier that isolates the delicate plasma membrane (PM) and cytoplasm from the external environment 1,2.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0186358 A1 Melville Et Al
    US 200901 86.358A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0186358 A1 Melville et al. (43) Pub. Date: Jul. 23, 2009 (54) PATHWAYANALYSIS OF CELL CULTURE Related U.S. Application Data PHENOTYPES AND USES THEREOF (60) Provisional application No. 61/016,390, filed on Dec. 21, 2007. (75) Inventors: Mark Melville, Melrose, MA (US); Publication Classification Niall Barron, Shankill (IE): Martin Clynes, Clontarf (IE): (51) Int. C. CI2O I/68 (2006.01) Padraig Doolan, Swords (IE): CI2P 2L/00 (2006.01) Patrick Gammell, Naas (IE): C07K I4/00 (2006.01) Paula Meleady, Ratoath (IE) CI2O 1/02 (2006.01) CI2N I/2 (2006.01) Correspondence Address: CI2N 5/06 (2006.01) CHOATE, HALL & STEWART LLP CI2N 5/04 (2006.01) TWO INTERNATIONAL PLACE (52) U.S. Cl. .............. 435/6; 435/69.1:530/300; 435/29: BOSTON, MA 02110 (US) 435/252.3; 435/325; 435/419:435/254.2 (57) ABSTRACT (73) Assignees: Wyeth, Madison, NJ (US); Dublin The present invention provides methods for systematically City University, Glasnevin (IE) identifying genes, proteins and/or related pathways that regu late or indicative of cell phenotypes. The present invention further provides methods for manipulating the identified (21) Appl. No.: 12/340,629 genes, proteins and/or pathways to engineer improved cell lines and/or to evaluate or select cell lines with desirable (22) Filed: Dec. 19, 2008 phenotypes. inhibition of Signalling Signalling Caspases Apoptosis Apoptosis Signalling Caspases ATM Integrin MAPK p38 Signalling Signalling Signalling Signalling Signalling MAPK in ATM p53 Integrin Signalling Signalling Apoptosis Growth and Caspases Signalling Different.
    [Show full text]
  • Transcriptomic Analysis of Field-Droughted Sorghum From
    Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Supplementary Appendix Contents 1 Methods and Materials 2 2 Supplementary Figures and Tables 10 3 Cluster Summaries 26 4 All GO Terms per cluster 99 1 www.pnas.org/cgi/doi/10.1073/pnas.1907500116 1 Methods and Materials 1.1 Experimental protocols . .2 1.2 Computational methods . .4 1.2.1 Processing of Reads . .4 1.2.2 Differential expression analysis . .5 1.2.3 Clustering . .6 1.2.4 Identification of motifs and transcription factors enriched in clusters . .7 1.2.5 Gene set enrichment analysis in clusters . .7 1.2.6 Identifying shared patterns of expressions . .7 1.2.7 Longitudinal analysis of time course water potential . .8 1.1 Experimental protocols Design experiment / Field set-up The field experiments were conducted in Parlier, CA (36.6008°N, 119.5109°W). The fields consist of sandy loam soils with a silky substratum and pH 7.37. We number the weeks according to the dates that plants were sampled. Week 0 was set to be June 1 to coincide with seedling emergence (June 1-3). All plots were pre-watered before planting. Three watering conditions were subsequently used on plots: I) Control, consisting of weekly watering five days before the sampling date, with the first irrigation starting before the sampling of Week 3 (June 18) and continuing until before the sampling of Week 17 (Sept 23) II) Pre-flowering drought, consisting of a complete lack of irrigation up through and including samples from Week 8, at which time regular watering resumed prior to the sampling of Week 9 (July 29), and III) Post-flowering drought, consisting of regular irrigation up through and including irrigation prior to Week 9 sampling (July 29) { at which point over 50% of the plants had reached flowering (anthesis) { and no irrigation after that date (Figure 1a).
    [Show full text]
  • Functional Studies of Escherichia Coli Stringent Response Factor Rela
    Functional Studies of Escherichia coli Stringent Response Factor RelA Ievgen Dzhygyr Department of Molecular Biology, MIMS Umeå 2018 This work is protected by the Swedish Copyright Legislation (Act 1960:729) Dissertation for PhD Copyright © Ievgen Dzhygyr ISBN: 978-91-7601-934-4 ISSN: 0346-6612; New series No: 1970 Front cover design: Ievgen Dzhygyr Electronic version available at: http://umu.diva-portal.org/ Printed by: UmU Print Service, Umeå University Umeå, Sweden 2018 To my parents/Моїм батькам Table of Contents Abstract ........................................................................................... ii Abbreviations ................................................................................. iv Papers included in this thesis .......................................................... vi Introduction .................................................................................... 1 Background ....................................................................................................................... 1 Synthesis of (p)ppGpp ..................................................................................................... 2 Effects of (p)ppGpp on DNA replication ........................................................................ 4 (p)ppGpp mediated regulation of transcription .............................................................. 5 Effects of (p)ppGpp on GTPases ...................................................................................... 7 Effects of (p)ppGpp on Bacillus subtilis
    [Show full text]
  • Biochemistry of Vitamins
    MINISTRY OF HEALTH OF UKRAINE ZAPORIZHZHYA STATE MEDICAL UNIVERSITY Biological Chemistry Department BIOCHEMISTRY OF VITAMINS Textbook for students of international faculty Speciality: 7.120 10001 «General Medicine» Zaporizhzhya - 2016 1 Reviewers: Kaplaushenko A.G. Head of Physical and Colloidal Chemistry Department, doctor of pharmaceutical science, associate professor Voskoboynik O. Yu. Assoc. professor of Organic and Bioorganic Chemistry Department, Ph. D. Authors: Aleksandrova K.V. Rudko N.P. Aleksandrova K.V. Biochemistry of vitamins. Textbook for students of international faculty speciality: 7.120 10001 «General Medicine» / K.V. Aleksandrova, N.P. Rudko. – Zaporizhzhya : ZSMU, 2016.- 73 p. This textbook is recommended to use for students of international faculty (the second year of study) for independent work at home and in class. It is created as additional manual for study of Biochemistry for students of international faculty. Александрова К.В. Біохімія вітамінів. Начально-методичний посібник для студентів міжнародного факультету спеціальності 7.120 10001 «Лікувальна справа»/ К.В. Александрова, Н.П. Рудько,.- Запоріжжя : ЗДМУ, 2016. – 73 с. ©Aleksandrova K.V., Krisanova N.V., Ivanchenko D.G., Rudko N.P., , 2016 ©Zaporizhzhya State Medical University, 2016 2 INTRODUCTION Sometimes it is difficult for students to find out the main important notions for study of biochemistry in basic literature that is recommended. The educational process for students of medical department requires the use not only the basic literature but also that one which is discussed as additional literature sources. This is because each day we have new scientific researches in biochemistry, later which can improve our understanding of theoretical questions this subject. This manual is proposed by authors as additional one for study of water-soluble and fat-soluble vitamins: their structure, properties, functions and metabolism in human organism.
    [Show full text]
  • Elevated Temperatures Cause Loss of Seed Set in Common Bean
    Soltani et al. BMC Genomics (2019) 20:312 https://doi.org/10.1186/s12864-019-5669-2 RESEARCH ARTICLE Open Access Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships Ali Soltani1,2* , Sarathi M. Weraduwage3, Thomas D. Sharkey2,3,4 and David B. Lowry1,2 Abstract Background: Climate change models predict more frequent incidents of heat stress worldwide. This trend will contribute to food insecurity, particularly for some of the most vulnerable regions, by limiting the productivity of crops. Despite its great importance, there is a limited understanding of the underlying mechanisms of variation in heat tolerance within plant species. Common bean, Phaseolus vulgaris, is relatively susceptible to heat stress, which is of concern given its critical role in global food security. Here, we evaluated three genotypes of P. vulgaris belonging to kidney market class under heat and control conditions. The Sacramento and NY-105 genotypes were previously reported to be heat tolerant, while Redhawk is heat susceptible. Results: We quantified several morpho-physiological traits for leaves and found that photosynthetic rate, stomatal conductance, and leaf area all increased under elevated temperatures. Leaf area expansion under heat stress was greatest for the most susceptible genotype, Redhawk. To understand gene regulatory responses among the genotypes, total RNA was extracted from the fourth trifoliate leaves for RNA-sequencing. Several genes involved in the protection of PSII (HSP21, ABA4, and LHCB4.3) exhibited increased expression under heat stress, indicating the importance of photoprotection of PSII. Furthermore, expression of the gene SUT2 was reduced in heat.
    [Show full text]
  • Expressed Sequence Tags: Characterization, Tissue-Specific Expression and Gene Markers
    Marine Genomics 3 (2010) 179–191 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Gilthead sea bream (Sparus auratus) and European sea bass (Dicentrarchus labrax) expressed sequence tags: Characterization, tissue-specific expression and gene markers Bruno Louro a,j, Ana Lúcia S. Passos a, Erika L. Souche b,1, Costas Tsigenopoulos c, Alfred Beck d, Jacques Lagnel c, François Bonhomme e, Leonor Cancela a, Joan Cerdà f, Melody S. Clark g, Esther Lubzens h, Antonis Magoulas c, Josep V. Planas i, Filip A.M. Volckaert b, Richard Reinhardt d, Adelino V.M. Canario a,⁎ a Centre of Marine Sciences, University of Algarve, Building 7, Gambelas, 8000-139 Faro, Portugal b Laboratory of Animal Diversity and Systematics, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium c Hellenic Centre for Marine Research, Institute of Marine Biology and Genetics, Thalassocosmos, Ex-US base at Gournes, P.O. Box 2214, Gournes Pediados, 715 00 Heraklion, Crete, Greece d MPI Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin-Dahlem, Germany e Département Biologie Intégrative, Institut des Sciences de l'Evolution, UMR 5554 Université de Montpellier 2, cc 63 — Pl. E Bataillon, F34095 Montpellier Cedex 5, France f Laboratory of Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar (Consejo Superior de Investigaciones Científicas, CSIC), Passeig Marítim 37-49, 08003-Barcelona, Spain g British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK h National Institute of Oceanography, Israel Oceanographic & Limnological Research, P.O. Box 8030, Haifa 31080, Israel i Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av.
    [Show full text]
  • Ribosome•Rela Structures Reveal the Mechanism of Stringent Response
    Ribosome•RelA structures reveal the mechanism of stringent response activation Anna B. Loveland 1,2, Eugene Bah 1,4, Rohini Madireddy 1,Ying Zhang 1, 2,5 2,3,6 1,6 Axel F. Brilot , Nikolaus Grigorieff *, Andrei A. Korostelev * 1 RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA. 2 Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA 3 Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA 4 Present address: Mayo Medical School, 200 First St. SW, Rochester, MN 55905, USA 5 Present address: Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco, 600 16th Street, San Francisco CA 94158, USA 6 Co-senior author * Correspondence: [email protected] (N.G.), [email protected] (A.A.K.) 1 Summary Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stresses. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl- tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur.
    [Show full text]