R Graphics Output

Total Page:16

File Type:pdf, Size:1020Kb

R Graphics Output Top over−represented categories in CC,BP,MF Wallenius method ● ● xenobioticxenobioticzinczincxylosylproteinzygoticzygotic ioneffluxionzinc importtransmembrane transmembranedetermination transmembranezetatransmembrane zonulaspecification ionxenobioticxenobioticxanthinexylulosezonula DNA across4−beta−galactosyltransferxylosyltransferasetransmembranexanthine adherens zincY−formpolymerase xylulokinasexenobioticadherens zymogen zymogenplasmametabolic cataboliczinc of zonulaofiontransporter zinc oxidasetransportingY transporteranterior/posterdorsal/ventraltransporter XPC chromosomemaintenancehomeostasisDNAion ionmembrane assemblyactivationadherenstransport inhibition complexYbprocess bindingactivityZ body activdisc actATac ● X chromosomevitamin−K−epoxidevoltage−gatedwoundvoltage−gatedwaterwater−solublevolume−sensitivevitellinevoltage−gatedvoltage−gatedvolume−sensitiveWntwingvoltage−gatedwingvoltage−gatedvoltage−gatedwingvoltage−gatedvoluntaryvoltage−gated transmembranesignalinghealing,wing voltage−gateddiscwounddisc disc xanthinemembraneWnt−activated voltage−gatedlocated andproximal/distalvitellinedorsal/ventral anterior/posteriorpotassiumvitellogenin wingskeletal xanthinepotassiumhealing,wingspreadingvitamin widewing pathway,calciumwaxsodiumnotum chloride calcium sodiumdehydrogenasereductase waxwingWnt chloridecationdosagediscanionwater Wnt membrane cellporeformationbiosyntheticWWdiscWnt−protein ion watermuscletransporter biosynthetic metabolicsignalingsubfieldspreading disccatabolicwholevitellinepatternchannelfatewalkingprotein planarreceptorWASHmorphogenesisofchanneldomain Xwater patternwound patterncompensationchannel vitellogenesis chromosome epidermaldevelopmenthomeostasisspecification(warfarin−se contractionmembraneinvolvedpattern formation secretionenvelopecelltransport behavior complexpathway process bindinghealingof activityformatiformat proce activipolarcells for cein ● vesicle−mediatedvisceralvesicle−mediatedvitaminvesiclevesicle−mediatedvesiclevesicle−mediatedvesiclevesiclevesicle vesiclemesoderm−endoderm vitamintransmembrane targeting,vesicle vitamintethering vitamintargeting,dockingvesiclevitaminvisceral vitamin fusiontransportfusionvesicle−mediatedvisual vitamin D transportbudding B6viral24−hydroxylase transportviral AK roughcytoskeletal involvedB6viral tointercellular systemmusclewithbiosynthetictransportAKto,vesicle genome vitaminplasmavesiclevitamin entryvesiclemetabolic along vesiclefrom viralvisualtransportervitamin genevesicle GolgifromERbetweenvesicleviralvitaminvisualvesiclevisual vesicleto virionviral indevelopment viralintotranscriptionorganization orto vesiclemicrotubuleinteraction localizationAthe expressioninmembraneB6 perceptionexocytosis translationreplication apparatusuncoatingtrafficking withincis−Golgi transport tetheringtargetingbehaviorlife synapsehostlearning processdocking coatingbindingplasmaactivity endoslumenfusion cycleactivi coat cellGo i ● very−long−chain−acyl−CoAUTP−monosaccharide−1−phosphateUTP:glucose−1−phosphatevacuolarVCP−NPL4−UFD1veryuroporphyrinogenvascularveryvascularuroporphyrinogenveryvascularveryuroporphyrinogen−III long−chain UV−A,long−chain long−chain long−chainproton−transportingURM1vacuoleventral urogenital endothelial endothelialuridine−diphosphataseendothelialuronicuridinevasopressin ventralUV−damagevacuolarbluevalinevalyl−tRNAvaline−tRNA uridylyltransferaseUTPactivatingventral vasculaturevalinespinalfatty valine ventralfusion,UTP uridylatefatty acid light fattyphosphorylasefattydecarboxylaseIIIAAAuridine vacuolarIIIvacuolesystemmidlinebiosynthetic vacuolar acid−CoAbiosyntheticgrowth growth proteingrowthacidmetabolic vacuolar phototransductioncordacidcatabolicdehydrogenaseacid ATPasesynthase UTP−Cfurrownon−autophagic receptor enzyme aminoacylation uridylyltransferexcisionvacuole kinaseUV VCBmetabolicligase vacuolarV−type developmentcatabolicbiosynthetic organization factoracidification factor−activfactorprocessingmembrane protection formationvaricositytransport ligase complexprocessvacuoleuridylylt activityvesicleproces fusion repairrecep ATPabindi part pro ac a ● UDP−N−acetylglucosamine−lysosomal−enzymeUDP−N−acetylgalactosamineUDP−N−acetylglucosamine−dolichyl−phosphaUDP−N−acetylglucosamineUDP−N−acetylglucosamineUDP−galactose:beta−N−acetylglucosamineUDP−N−acetylglucosamineUDP−glucoseUDP−glucose:hexose−1−phosphateUDP−glucuronicUDP−galactoseUDP−xyloseUDP−N−acetylglucosamineUDP−glucose:glycoproteinUDP−galactoseubiquitination−likeUDP−glucuronateunsaturatedUDP−glucoseunsaturateduracilUDP−xyloseubiquitinylUDP−glucoseUDP−galactosyltransferaseUDP−sugaruracil UDP−glucosyltransferaseUDP−glycosyltransferasephosphoribosyltransferaseUDP−glucoseUFM1unconventional UDP−xylosyltransferasetransmembrane transmembrane transmembraneubiquitinylfattyDNAacid unmethylatedfattyunidimensional hydrolaseUMP6−dehydrogenaseactivatingUFM1transmembraneuracilunfoldedUFM1UMP uracilurea acid transmembrane diphosphatasemodification−dependeN−glycosylasedecarboxylaseacid urate4−epimerasebiosynthetic transferase metabolic transmembrane catabolictransferasehydrolase4−epimerasediphosphorylasemetabolic biosynthetic uniportertransmembraneultradian uniplexmyosinactivity,biosynthetic enzyme oxidaseglucosyltransfeproteintransporter transporterUMPuracil CpG transporter cellurea transport complexacting processsalvageuridylylt bindingactivity rhythmprocesgrowth transp activit compcycle proc actiproact ac trob ● ubiquitin−dependentubiquinol−cytochrome−cubiquinoneubiquitin−dependentubiquitin−likeubiquitin−likeubiquitin−likeubiquitin−likeubiquitin−proteinubiquitin−proteinubiquitinubiquitin−likeubiquitin−specificubiquitin−proteinubiquitinubiquitinubiquitin−dependentubiquitin−proteinubiquitin−dependentubiquitin−likeubiquitinubiquinone−6ubiquitin−likeubiquitinubiquitin−specificubiquitin−dependentubiquinone−6ubiquitin−ubiquitinubiquinoneU4/U6ubiquitinubiquitinubiquinoneU4U5U6 biosyntheticconjugating ubiquitin−like conjugatingconjugating protein snRNAactivatingprotein−specific activatingmodifier protein−specificUBC13−UEV1A xprotein−specificproteinubiquitin U5 glycoprotein SMAD transferaseprotein proteintransferasebiosynthetic transferase U3protease tri−snRNPprotein ubiquinoneconjugatingtransferaseU4U5U6U73'−endmetabolicubiquitin enzymeactivatingproteaseprocesstransferase ubiquitinsnoRNAreductase enzyme enzymeERADsnRNAligaseprotein ligaseligase endocytosis catabolic processingU4U5U6U7activity regulatorendopept ERAD activatorrecyclingprotease inhibitorcomplexpathwayvia processisopepti bindingcatabol snRNPactivityenzym U2AFactivit activ3,4− inv papr ● U2−typetumortryptophantryptophantyrosinetumortumortyrosyl−DNAtryptophantumorU2−typeU2−type tryptophanpost−mRNA tubulin−glutamictyrosinetubulinnecrosistryptophanyl−tRNA necrosisnecrosis U12−type phosphorylationtryptophan−tRNAnecrosisU2−typetyrosine U1U2tryptophancataboliccatabolictyrosinetyrosyl−tRNAtryptophan tyrosine−tRNA catalyticpost−spliceosomalN−acetyltransferase tyramine tyrosine5−monooxygenase3−monooxygenasephosphodiesterase snRNAtyrosinefactor−mediatedtubulin tyraminefactorU2−typefactor−activated2,3−dioxygenase typerelease factortypedecarboxylasespliceosomalTSC1−TSC2typetube tube biosynthetic processprocess step receptor U1U2 complex3'−endmetabolicacidIb IIIIssignalingtube IIcatabolic IU11/U12 lumen turningreceptor receptorprespliceosome terminalmorphogenesis ofsnRNAsnRNPaminoacylation spliceosomaltubulin12tube ligase developmentSTATspliceosome U12 totubetoprocessingU1U2 superfami cavitationassemblyformation signalingacetyl−Cbehavior kynurenicomplexpathwayreceptor process bindingsnRNPboutonactivityprotein fusion c ● tRNA−specifictRNAtRNA−specifictRNAtRNA−containingtRNA−specifictRNAtRNAtRNA tRNAtRNA−typewobbletRNAtRNA threonylcarbamoyladenosinetRNAtRNAtRNA tRNA−intronwobble transcriptiontRNA−specificaminoacylationtRNA−intron aminoacylationsplicing, tRNA−guanine tRNA(uracil)tRNAwobble base tRNA2'−O−methyltransferasedihydrouridinetRNA dimethylallyltransferaseadenosine−34exontRNA tRNA−splicingadenosine−34 adenosineadenosineintron wobble methyltransferase5−methoxycarbonylmethyl tRNA tRNA importmethyltransferasewobbleribonucleoproteinligation viapositiontRNAN1−guanineN2−guaninepseudouridinetRNAtRNA tRNA tRNAendonucleaseby tRNAspliceendonucleaseendonucleolytictRNA ribonuclease tropomyosinseleno−modification exportRNAuridinefortrunk tRNA into3'−end5'−endtRNA3'−trailer metabolicfor tRNA transglycosylation5'−leadertRNA basetRNAcatabolic utilizing troponinthio−modificationtotRNAdeaminase synthase uridine mitochondrialdeaminase methylthiolation siteaminoacylation tRNAproteinligase deaminaseinosinemitochondrion polymerasesegmentation tRNA from exon transcription modificationstabilization methylationrecognitionprocessing synthesis 2',3'thiolationcleavagetransport metabolimodifica complex removalprocess nucleus translatbinding compleligationactivityediting cleav activi cyclicom act prIII ● tRNAtRNAtrehalosetricarboxylictrehalosetriphosphorictRNAtRNAtricarboxylictRNA (adenine−N1−)−methyltransferase(adenine−N6−)−methyltransferase(guanine−N1−)−methyltransferase(guanine−N2−)−methyltransferase(guanine−N7−)−methyltransferase (cytosine−3−)−methyltransferase(cytosine−5−)−methyltransferasetriose−phosphatetricarboxylictrimethyllysine (adenine)(guanine) (cytosine)trialkylsulfonium(m1A)tricellular triglyceridetransmembrane trehalose−phosphatasemetabolismtrehalosetriglyceridetransposition, triglyceridetripartiteacidtripeptidyl−peptidasetrehalose transport acidtransporttrehalosemonoestermethyltransferasetricarboxylicTRAPPIIITRAPPIItriglyceride TRAPPI triglyceridemethyltransferase transmembrane methyltransferasetriglyceride
Recommended publications
  • Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database.
    [Show full text]
  • The Genome of Nanoarchaeum Equitans: Insights Into Early Archaeal Evolution and Derived Parasitism
    The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism Elizabeth Waters†‡, Michael J. Hohn§, Ivan Ahel¶, David E. Graham††, Mark D. Adams‡‡, Mary Barnstead‡‡, Karen Y. Beeson‡‡, Lisa Bibbs†, Randall Bolanos‡‡, Martin Keller†, Keith Kretz†, Xiaoying Lin‡‡, Eric Mathur†, Jingwei Ni‡‡, Mircea Podar†, Toby Richardson†, Granger G. Sutton‡‡, Melvin Simon†, Dieter So¨ ll¶§§¶¶, Karl O. Stetter†§¶¶, Jay M. Short†, and Michiel Noordewier†¶¶ †Diversa Corporation, 4955 Directors Place, San Diego, CA 92121; ‡Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182; §Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universita¨tsstrasse 31, D-93053 Regensburg, Germany; ‡‡Celera Genomics Rockville, 45 West Gude Drive, Rockville, MD 20850; Departments of ¶Molecular Biophysics and Biochemistry and §§Chemistry, Yale University, New Haven, CT 06520-8114; and ʈDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, August 21, 2003 (received for review July 22, 2003) The hyperthermophile Nanoarchaeum equitans is an obligate sym- (6–8). Genomic DNA was either digested with restriction en- biont growing in coculture with the crenarchaeon Ignicoccus. zymes or sheared to provide clonable fragments. Two plasmid Ribosomal protein and rRNA-based phylogenies place its branching libraries were made by subcloning randomly sheared fragments point early in the archaeal lineage, representing the new archaeal of this DNA into a high-copy number vector (Ϸ2.8 kbp library) kingdom Nanoarchaeota. The N. equitans genome (490,885 base or low-copy number vector (Ϸ6.3 kbp library). DNA sequence pairs) encodes the machinery for information processing and was obtained from both ends of plasmid inserts to create repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide ‘‘mate-pairs,’’ pairs of reads from single clones that should be biosyntheses.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Novel Missense Mutation in PTPN22 in a Chinese Pedigree With
    Gong et al. BMC Endocrine Disorders (2018) 18:76 https://doi.org/10.1186/s12902-018-0305-8 RESEARCHARTICLE Open Access Novel missense mutation in PTPN22 in a Chinese pedigree with Hashimoto’s thyroiditis Licheng Gong1†, Beihong Liu2,3†, Jing Wang4, Hong Pan3, Anhui Qi2,3, Siyang Zhang2,3, Jinyi Wu1, Ping Yang1* and Binbin Wang3,4,5* Abstract Background: Hashimoto’s thyroiditis is a complex autoimmune thyroid disease, the onset of which is associated with environmental exposures and specific susceptibility genes. Its incidence in females is higher than its incidence in males. Thus far, although some susceptibility loci have been elaborated, including PTPN22, FOXP3, and CD25, the aetiology and pathogenesis of Hashimoto’s thyroiditis remains unclear. Methods: Four affected members from a Chinese family with Hashimoto’s thyroiditis were selected for whole-exome sequencing. Missense, nonsense, frameshift, or splicing-site variants shared by all affected members were identified after frequency filtering against public and internal exome databases. Segregation analysis was performed by Sanger sequencing among all members with available DNA. Results: We identified a missense mutation in PTPN22 (NM_015967.5; c. 77A > G; p.Asn26Ser) using whole-exome sequencing. PTPN22 is a known susceptibility gene associated with increased risks of multiple autoimmune diseases. Cosegregation analysis confirmed that all patients in this family, all of whom were female, carried the mutation. All public and private databases showed that the missense mutation was extremely rare. Conclusions: We found a missense mutation in PTPN22 in a Chinese HT pedigree using whole-exome sequencing. Our study, for the first time, linked a rare variant of PTPN22 to Hashimoto’s thyroiditis, providing further evidence of the disease-causing or susceptibility role of PTPN22 in autoimmune thyroid disease.
    [Show full text]
  • Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals
    Journal of the American Heart Association ORIGINAL RESEARCH Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals Joonatan Palmu , MD; Aaro Salosensaari , MSc; Aki S. Havulinna , DSc (Tech); Susan Cheng , MD, MPH; Michael Inouye, PhD; Mohit Jain, MD, PhD; Rodolfo A. Salido , BSc; Karenina Sanders , BSc; Caitriona Brennan, BSc; Gregory C. Humphrey, BSc; Jon G. Sanders , PhD; Erkki Vartiainen , MD, PhD; Tiina Laatikainen , MD, PhD; Pekka Jousilahti, MD, PhD; Veikko Salomaa , MD, PhD; Rob Knight , PhD; Leo Lahti , DSc (Tech); Teemu J. Niiranen , MD, PhD BACKGROUND: Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted as- sociation between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abun- dance and between Lactobacillus abundance and BP. METHODS AND RESULTS: We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly re- lated to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032).
    [Show full text]
  • Nucleocytoplasmic Shuttling of Soluble Tubulin in Mammalian Cells
    Research Article 1111 Nucleocytoplasmic shuttling of soluble tubulin in mammalian cells Tonia Akoumianaki1, Dimitris Kardassis1,2, Hara Polioudaki1, Spyros D. Georgatos3,4 and Panayiotis A. Theodoropoulos1,* 1Department of Biochemistry, University of Crete, School of Medicine, 71 003 Heraklion, Greece 2Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71 110 Heraklion, Greece 3Stem Cell and Chromatin Group, The Laboratory of Biology, University of Ioannina School of Medicine, 45 110 Ioannina, Greece 4The Biomedical Institute of Ioannina, IBE/ITE, 45 110 Ioannina, Greece *Author for correspondence (e-mail: [email protected]) Accepted 17 December 2008 Journal of Cell Science 122, 1111-1118 Published by The Company of Biologists 2009 doi:10.1242/jcs.043034 Summary We have investigated the subcellular distribution and dynamics to recombinant, normally modified and hyper- of soluble tubulin in unperturbed and transfected HeLa cells. phosphorylated/acetylated histone H3. Tubulin-bound H3 no Under normal culture conditions, endogenous α/β tubulin is longer interacts with heterochromatin protein 1 and lamin B confined to the cytoplasm. However, when the soluble pool of receptor, which are known to form a ternary complex under in subunits is elevated by combined cold-nocodazole treatment and vitro conditions. Based on these observations, we suggest that when constitutive nuclear export is inhibited by leptomycin B, nuclear accumulation of soluble tubulin is part of an intrinsic tubulin accumulates in the cell nucleus. Transfection assays and defense mechanism, which tends to limit cell proliferation FRAP experiments reveal that GFP-tagged β-tubulin shuttles under pathological conditions. This readily explains why nuclear between the cytoplasm and the cell nucleus.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Interplay Between Uridylation and Deadenylation During Mrna Degradation in Arabidopsis Thaliana
    $FNQRZOHGJPHQWV &ŝƌƐƚ͕/ǁŽƵůĚůŝŬĞƚŽƚŚĂŶŬaƚĢƉĄŶŬĂsĂŸĄēŽǀĄ ͕ŶĚƌĞĂƐtĂĐŚƚĞƌĂŶĚ&ĂďŝĞŶŶĞDĂƵdžŝŽŶĨŽƌŚĂǀŝŶŐ ĂĐĐĞƉƚĞĚƚŽĞǀĂůƵĂƚĞŵLJǁŽƌŬ͘DĞƌĐŝĠŐĂůĞŵĞŶƚ ĂƵ>ĂďdžEĞƚZEĚ͛ĂǀŽŝƌĨŝŶĂŶĐĠŵĂƚŚğƐĞ͘ :͛ĂŝŵĞƌĂŝƐƌĞŵĞƌĐŝĞƌŵŽŶĚŝƌĞĐƚĞƵƌĚĞƚŚğƐĞ ͕ŽŵŝŶŝƋƵĞ'ĂŐůŝĂƌĚŝ;ͨ'ĂŐͩͿ͕ ĚĞŵ͛ĂǀŽŝƌĂĐĐƵĞŝůůŝ ĂƵƐĞŝŶĚĞƐŽŶĠƋƵŝƉĞĞƚĚĞŵ͛ĂǀŽŝƌƐŽƵƚĞŶƵ ƚŽƵƚĂƵůŽŶŐĚĞŵĂƚŚğƐĞ͘:ĞƚĞƌĞŵĞƌĐŝĞƉŽƵƌƚŽŶ ĞdžƉĞƌƚŝƐĞ͕ƚ ĞƐƉƌĠĐŝĞƵdžĐŽŶƐĞŝůƐĞƚůĞƐ;ůŽŶŐƵĞƐ͙ ͿĚŝƐĐƵƐƐŝŽŶƐƐĐŝĞŶƚŝĨŝƋƵĞƐƋƵŝŵ͛ŽŶƚďĞĂƵĐŽƵƉ ĂƉƉŽƌƚĠĞƚĂŝĚĠăĚĠǀĞůŽƉƉĞƌŵŽŶĞƐƉƌŝƚĐƌŝƚŝƋƵĞĞƚƐĐŝĞŶƚŝĨŝƋƵĞ͘ hŶŐƌĂŶĚŵĞƌĐŝă,ĠůğŶĞƵďĞƌƉŽƵƌƐĂŐĞŶƚŝůůĞƐƐĞĞƚƐĂƉĂƚŝĞŶĐĞĚƵƌĂŶƚĐĞƐϰĂŶŶĠĞƐ͘DĞƌĐŝƉŽƵƌ ƚŽŶ ƐŽƵƚŝĞŶ ŵŽƌĂů Ğƚ ŝŶƚĞůůĞĐƚƵĞů͕ ƚƵ ĂƐ ƚŽƵũŽƵƌƐ ĠƚĠ ůă ƉŽƵƌ ƌĠƉŽŶĚƌĞ ă ŵĞƐ ŝŶŶŽŵďƌĂďůĞƐ ƋƵĞƐƚŝŽŶƐĞƚƚƵĂƐƚŽƵũŽƵƌƐƐƵŵ͛ĞŶĐŽƵƌĂŐĞƌƋƵĂŶĚĕĂŶ͛ĂůůĂŝƚƉĂƐƚƌŽƉ͘ ƚŵĞƌĐŝĂƵƐƐŝƉŽƵƌƚĂ ƉĂƚŝĞŶĐĞ Ğƚ ƚ ĞƐ ďŽŶƐ ĐŽŶƐĞŝůƐ ůŽƌƐ ĚĞ ů͛ĠĐƌŝƚƵƌĞ ĚĞ ĐĞƚƚĞ ƚŚğƐĞ͘ dƵ ĞƐ ƵŶĞ ƉĞƌƐŽŶŶĞ Ğƚ ƵŶĞ ƐĐŝĞŶƚŝĨŝƋƵĞ ƌĞŵĂƌƋƵĂďůĞ͕ ũĞ ƐƵŝƐ ĐŽŶĨŝĂŶƚĞ ƋƵĞ ƚƵ ŝƌĂƐ ůŽŝŶ ĚĂŶƐ ƚĂ ǀŝĞ ƉĞƌƐŽŶŶĞůůĞ Ğƚ ƉƌŽĨĞƐƐŝŽŶŶĞůůĞ͊ ŝŶ ďĞƐŽŶĚĞƌĞƌ ĂŶŬ Őŝůƚ ,ĞŝŬĞ Ĩƺƌ ŝŚƌĞ ĞƚƌĞƵƵŶŐ ƵŶĚ ŝŚƌĞ ŐƵƚĞŶ ZĂƚƐĐŚůćŐĞ͘ /ĐŚ ĚĂŶŬĞ Ěŝƌ ĂƵĨƌŝĐŚƚŝŐĨƺƌĚĞŝŶĞŶŬŽŶƐƚƌƵŬƚŝǀĞŶĞŝƚƌĂŐƵŶĚĚĞŝŶĞƵŶĞƌŵƺĚůŝĐŚĞhŶƚĞƌƐƚƺƚnjƵŶŐ͕ĚŝĞŵŝƌďĞŝĚĞƌ hŵƐĞƚnjƵŶŐĚŝĞƐĞƐDĂŶƵƐŬƌŝƉƚƐƐĞŚƌŐĞŚŽůĨĞŶŚĂďĞŶ͘,ćƚƚĞƐƚĚƵŵŝĐŚĚĂŵĂůƐŶŝĐŚƚĂůƐWƌĂŬƚŝŬĂŶƚŝŶ ŐĞŶŽŵŵĞŶ͕ǁćƌĞŝĐŚǁŽŚůũĞƚnjƚŶŝĐŚƚŚŝĞƌ͘ƵďŝƐƚĞŝŶĞƐĞŚƌĂƵĨŵĞƌŬƐĂŵĞƵŶĚŚŝůĨƐďĞƌĞŝƚĞWĞƌƐŽŶ͕ ĚŝĞŝĐŚƐĞŚƌƐĐŚćƚnjĞƵŶĚŶŝĐŚƚƐŽƐĐŚŶĞůůǀĞƌŐĞƐƐĞŶǁĞƌĚĞ͘ DĞƌĐŝăDĂƌůğŶĞĞƚ,ĠůğŶĞĚ͛ĂǀŽŝƌĠƚĠ ůă͊sŽƵƐġƚĞƐĚĞƐĂŵŝĞƐƉƌĠĐŝĞƵƐĞƐƋƵĞũĞŶĞƐƵŝƐƉĂƐƉƌġƚĞ ăŽƵďůŝĞƌ͊DĞƌĐŝDĂƌůğŶĞƉŽƵƌƚŽŶŐƌĂŝŶĚĞĨŽůŝĞ͕ƚĂďŽŶŶĞŚƵŵĞƵƌĞƚƚŽŶŚŽŶŶġƚĞƚĠ͕ĞƚƉŽƵƌƚŽƵƐ ĐĞƐ ŵŽŵĞŶƚƐ ƉĂƐƐĠƐ ĂƵ ůĂďŽ Ğƚ ƐƵƌƚŽƵƚ ĞŶ ĚĞŚŽƌƐ ĚƵ ůĂďŽ ĂǀĞĐ ,ĠůğŶĞ ͊ DĞƌĐŝ ,ĠůğŶĞ͕ ũĞ
    [Show full text]
  • Rnase 2 Sirna (H): Sc-92235
    SANTA CRUZ BIOTECHNOLOGY, INC. RNase 2 siRNA (h): sc-92235 BACKGROUND PRODUCT RNase 2 [ribonuclease, RNase A family, 2 (liver, eosinophil-derived neuro- RNase 2 siRNA (h) is a pool of 2 target-specific 19-25 nt siRNAs designed toxin)], also known as non-secretory ribonuclease, EDN (eosinophil-derived to knock down gene expression. Each vial contains 3.3 nmol of lyophilized neurotoxin), RNase UpI-2 or RNS2, is a 161 amino acid protein that belongs siRNA, sufficient for a 10 µM solution once resuspended using protocol to the pancreatic ribonuclease family. Localizing to lysosome and cytoplasmic below. Suitable for 50-100 transfections. Also see RNase 2 shRNA granules, RNase 2 is expressed in leukocytes, liver, spleen, lung and body Plasmid (h): sc-92235-SH and RNase 2 shRNA (h) Lentiviral Particles: fluids. RNase 2 functions as a pyrimidine specific nuclease, and has a slight sc-92235-V as alternate gene silencing products. preference for uracil. RNase 2 is capable of various biological activities, For independent verification of RNase 2 (h) gene silencing results, we including mediation of chemotactic activity and endonucleolytic cleavage of also provide the individual siRNA duplex components. Each is available as nucleoside 3'-phosphates and 3'-phosphooligonucleotides. The gene encoding 3.3 nmol of lyophilized siRNA. These include: sc-92235A and sc-92235B. RNase 2 maps to human chromosome 14q11.2. STORAGE AND RESUSPENSION REFERENCES Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least 1. Yasuda, T., Sato, W., Mizuta, K. and Kishi, K. 1988. Genetic polymorphism one year from the date of shipment.
    [Show full text]
  • Genetic Expression Profile Analysis of the Temporal Inhibition of Quercetin and Naringenin on Lactobacillus Rhamnosus GG
    robioti f P cs o & l a H n e r a u l t o h J Liu, et al., J Prob Health 2016, 4:2 Journal of Probiotics & Health DOI: 10.4172/2329-8901.1000139 ISSN: 2329-8901 Research Article Open Access Genetic Expression Profile Analysis of the Temporal Inhibition of Quercetin and Naringenin on Lactobacillus Rhamnosus GG Linshu Liu1*, Jenni Firrman1, Gustavo Arango Argoty2, Peggy Tomasula1, Masuko Kobori3, Liqing Zhang2 and Weidong Xiao4* 1Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA 2Virginia Tech College of Engineering, Department of Computer Science, 1425 S Main St. Blacksburg, VA 24061, USA 3National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan 4*Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA *Corresponding author: Weidong Xiao, Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA, Tel: 215-707-6392; E-mail: [email protected], LinShu Liu, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA. E-mail: [email protected] Received date: Jan 29, 2015; Accepted date: Feb 15, 2016; Published date: Feb 22, 2016 Copyright: © 2016 Liu LS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Topic 3.1 Interactions of Xenobiotics with the Steroid Hormone Biosynthesis Pathway*
    Pure Appl. Chem., Vol. 75, Nos. 11–12, pp. 1957–1971, 2003. © 2003 IUPAC Topic 3.1 Interactions of xenobiotics with the steroid hormone biosynthesis pathway* Thomas Sanderson‡ and Martin van den Berg Institute for Risk Assessment Science, Utrecht University, P.O. Box 8017, 3508 TD Utrecht, The Netherlands Abstract: Environmental contaminants can potentially disrupt endocrine processes by inter- fering with the function of enzymes involved in steroid synthesis and metabolism. Such in- terferences may result in reproductive problems, cancers, and toxicities related to (sexual) differentiation, growth, and development. Various known or suspected endocrine disruptors interfere with steroidogenic enzymes. Particular attention has been given to aromatase, the enzyme responsible for the conversion of androgens to estrogens. Studies of the potential for xenobiotics to interfere with steroidogenic enzymes have often involved microsomal frac- tions of steroidogenic tissues from animals exposed in vivo, or in vitro exposures of steroid- ogenic cells in primary culture. Increasingly, immortalized cell lines, such as the H295R human adrenocortical carcinoma cell line are used in the screening of effects of chemicals on steroid synthesis and metabolism. Such bioassay systems are expected to play an increasingly important role in the screening of complex environmental mixtures and individual contami- nants for potential interference with steroidogenic enzymes. However, given the complexities in the steroid synthesis pathways and the biological activities of the hormones, together with the unknown biokinetic properties of these complex mixtures, extrapolation of in vitro effects to in vivo toxicities will not be straightforward and will require further, often in vivo, inves- tigations. INTRODUCTION There is increasing evidence that certain environmental contaminants have the potential to disrupt en- docrine processes, which may result in reproductive problems, certain cancers, and other toxicities re- lated to (sexual) differentiation, growth, and development.
    [Show full text]