<<

Supplementary method

Leaf hydraulic conductance Leaf hydraulic conductance (Kleaf) was measured using the evaporative flux method (Sack and Scoffoni, 2012), with some adjustments to maintain stability of the evaporative environment to which the leaf was exposed. the evening before measurements, potted were brought to the laboratory, well-watered and, then covered by black plastic bags filled with wet paper towels to rehydrate overnight. The most-recent fully expanded leaves from each were used for Kleaf measurements. For the leaf gasket, a 1 cm diameter, ~ 1 cm long solid silicone rubber cylinder was cut nearly in two, leaving a hinge on one end. The cylinder was placed around the leaf blade near the ligule and glued shut with superglue (gasket method from Troy Ocheltree, personal communication): The leaf was cut from the plant with a razor blade while submerged in a 15 mmol L-1 KCl solution; the rubber gasket was then attached to tubing filled with the same KCl solution. The other end of the tubing was inside a graduated cylinder that sat on a digital balance (Mettler-Toledo). The leaf was then placed inside a custom, environmentally controlled cuvette that allowed for the measurement of entire grass blades. The cylindrical glass cuvette is 50 cm long with a 6 cm diameter. It is surrounded by a second glass cylinder that is sealed off with the exception of two nozzles that allow for the circulation of temperature-controlled water. This water jacket controls cuvette temperature. Within the cuvette, the leaf rests on a 48 cm long, removable threaded-rod insert that has attached to it: 11 air-stirring fans, a leaf thermocouple, a shielded temperature/relative humidity sensor (Sensirion SHT75), and tubing for incoming/outgoing air supply. Chamber air is first pulled from tubing attached to a rooftop sample port and then passes to two 20 l carboys in series, and then into the pump intake. Air then is pushed from the diaphragm pump (Brailsford, Antrim, NH) to a heated water bubbler to saturate the air and onto a water-jacketed glass coil that is temperature controlled at the desired dew-point temperature. Air then passes to a mass flow controller (MKS) set at 2 l m-1 and to a second mass flow meter (Sierra Instruments) and into the cuvette. A sodium-halide lamp is position directly above the chamber. Photosynthetically active radiation in the system is 1000 µmol m-2 s-1. Throughout measurements, cuvette temperature was controlled at 25 o C and the humidity was 55-65% (VPD range of 1.1-1.4 kPa) across measurements, but remained constant during a particular measurement. Flow from the balance was monitored for 45 m to 1h until the flow rates reach steady state (Sack and Scoffoni, 2012). After the measurements, the leaf was detached and was put into a plastic bag to equilibrate for 20 minutes. After equilibration, leaf water potential was measured using a pressure chamber (Model 1000, PMS Instrument, USA). Leaf area was determined by using a digital photo and ImagJ. Kleaf values were further o standardized to 25 C to make the Kleaf comparable among studies and across species. Data indicating a sudden change of flow and whose leaf water potential was an obvious outlier were deleted.

Supplementary Figures and Tables

Fig. S1 The phylogeny of cultivated closely-related C3 and C4 species in PACMAD clade. Red indicates C3 species, blue indicates C4 species, and Steinchisma decipiens is a C3- C4 intermediate species. The phylogeny was pruned from a grass phylogeny of Edwards et al. (2012). The seeds resources are as follows: (1) USDA, USA; (2) Nidethana Seed Service, Australia; (3) Millennium seed bank at KEW, England; (3) Louisiana, Pastorek Habitats, USA; (4) Renu-karoo Nursey and veld restoration, South . NADP-ME subtype: Otachyrinae, Arthropogoninae, Tristachyideae, Cenchrinae, Aristidoideae, Boivinellinae; NAD-ME subtype: Panicinae, Eragrostideae, Eriachneae; PEP-CK subtype: Melinidinae. Pinto et al. (2014) considered P. bisulcatum is more closely related to subfamily Panicinae and Bräutigam et al. (2014) considered D. clandestinum is more closely related to Melinidinae, which left H. proluta to be considered more closely related to Cenchrinae. For Aristidoideae, we didn’t successfully cultivate closely related C3 species. Error bars indicate standard errors.

!

7 "

1 1.0 ! ! " 1 Mpa ! 6 ! 2

! 0.8 m Mpa ! 1

! 5 s 2 mmol ! 0.6 ! m 4

mmol 0.4 ! 3 leaf K 2 0.2 Leaf capacitance

C3 C4 C3 C4

!

!1.0

0.20 " " 1 ! s MPa ! 2 !1.2 ! m 0.15 !1.4 mmol Μ ! s g

Leaf tugor loss !1.6 0.10

! !1.8 C3 C4 C3 C4

! 25 " 20 MPa !

15

Leaf elasticity 10

5 ! C3 C4

Fig. S2 BoxWhisker plot for the differences of hydraulic conductance (Kleaf), leaf capacitance, maximal stomatal conductance (gs) and leaf turgor loss point between closely related C3 and C4 species. 200 ppm 200 ppm

16 "0.8 " 1 " s " "1.0 2

" 14 m MPa

! "1.2

mol 12 Μ ! "1.4 10 "1.6

8 "1.8

Leaf water potential " 6 2.0 stomatal resistance "2.2 4 10 20 30 40 10 20 30 40 T oC T oC

400 ppm 400 ppm ! " ! " 25 "0.8 " 1 " s " "1.0 2 "

m 20 MPa

! "1.2 mol Μ ! "1.4 15 "1.6

"1.8 10

Leaf water potential "2.0 stomatal resistance "2.2 5 10 20 30 40 10 20 30 40 T oC T oC

600 ppm 600 ppm ! " ! " 35 "0.8 " 1 " s 30 " "1.0 2 " m MPa

! "1.2

mol 25 Μ ! "1.4

20 "1.6

"1.8 15

Leaf water potential "2.0 stomatal resistance 10 "2.2 10 20 30 40 10 20 30 40 T oC T oC

! " ! " Fig. S3 The effect of changing Kleaf on stomatal resistance (the inverse of stomatal conductance) and leaf water potential under VPD=1.25 kPa, ys =-1 MPa and different CO2 concentration. Solid black line: regular Kleaf; dashed black line: half regular Kleaf; dashed grey line: twice regular Kleaf. simplex superba dinteri Thysanolaena latifolia Chasmanthium latifolium Coleataenia anceps Hymenachne pernambucense Steinchisma laxa Steinchisma decipiens villosa Anthaenantia rufa Echinochloa frumentacea Panicum bisulcatum Dichanthelium clandestinum Zuloagaea bulbosa Setaria italica Whiteochloa capillipes Setaria sphacelata Setaria adhaerens punctata Urochloa ruziziensis Eriochloa meyeriana Megathyrsus maximus Tricholaena monachne Panicum miliaceum Panicum whitei Panicum coloratum Panicum queenslandicum Homopholis proluta Eragrostis obstusa Fingerhuthia africana Sporobolus fimbriatus Cortaderia sp obtusa Molinia caerulea Stipagrostis obtusa Stipagrostis ciliata Aristida purpurea VarLong Aristida purpurea VarFend

1.49 trait value 7.125 length=19.956

Fig. S4 Map the leaf hydraulic conductance (Kleaf) to the dated phylogenetic tree. Dark dot indicates C3 species, white dot indicates C4 species and grey dot indicate C3-C4 intermediate species.

Loudetia simplex Tristachya superba Danthoniopsis dinteri Thysanolaena latifolia Chasmanthium latifolium Hymenachne pernambucense Steinchisma laxa Steinchisma decipiens Anthaenantia villosa Anthaenantia rufa Echinochloa frumentacea Panicum bisulcatum Zuloagaea bulbosa Setaria italica Whiteochloa capillipes Setaria sphacelata Eriochloa punctata Urochloa ruziziensis Eriochloa meyeriana Megathyrsus maximus Tricholaena monachne Panicum miliaceum Panicum whitei Panicum coloratum Panicum queenslandicum Homopholis proluta Eragrostis obstusa Fingerhuthia africana Sporobolus fimbriatus Cortaderia sp Eriachne obtusa Molinia caerulea Stipagrostis obtusa Stipagrostis ciliata Aristida purpurea VarLong Aristida purpurea VarFend

0.129 trait value 1.034 length=19.956

Fig. S5 Map the leaf capacitance to the dated phylogenetic tree. Dark dot indicates C3 species, white dot indicates C4 species and grey dot indicate C3-C4 intermediate species.

Loudetia simplex Tristachya superba Danthoniopsis dinteri Thysanolaena latifolia Chasmanthium latifolium Hymenachne pernambucense Steinchisma laxa Steinchisma decipiens Anthaenantia villosa Anthaenantia rufa Echinochloa frumentacea Panicum bisulcatum Dichanthelium clandestinum Zuloagaea bulbosa Setaria italica Whiteochloa capillipes Setaria sphacelata Eriochloa punctata Urochloa ruziziensis Eriochloa meyeriana Megathyrsus maximus Tricholaena monachne Panicum miliaceum Panicum whitei Panicum coloratum Panicum queenslandicum Homopholis proluta Eragrostis obstusa Fingerhuthia africana Sporobolus fimbriatus Cortaderia sp Eriachne obtusa Molinia caerulea Stipagrostis obtusa Stipagrostis ciliata Aristida purpurea VarLong Aristida purpurea VarFend

-1.822 trait value -0.828 length=19.956

Fig. S6 Map the leaf turgor loss point to the dated phylogenetic tree. Dark dot indicates C3 species, white dot indicates C4 species and grey dot indicate C3-C4 intermediate species.

Loudetia simplex Tristachya superba Danthoniopsis dinteri Thysanolaena latifolia Chasmanthium latifolium Hymenachne pernambucense Steinchisma laxa Steinchisma decipiens Anthaenantia villosa Anthaenantia rufa Echinochloa frumentacea Panicum bisulcatum Dichanthelium clandestinum Zuloagaea bulbosa Setaria italica Whiteochloa capillipes Setaria sphacelata Eriochloa punctata Urochloa ruziziensis Eriochloa meyeriana Megathyrsus maximus Tricholaena monachne Panicum miliaceum Panicum whitei Panicum coloratum Panicum queenslandicum Homopholis proluta Eragrostis obstusa Fingerhuthia africana Sporobolus fimbriatus Cortaderia sp Eriachne obtusa Molinia caerulea Stipagrostis obtusa Stipagrostis ciliata Aristida purpurea VarLong

0.071 trait value 0.233 length=19.956

Fig. S7 Map the stomatal conductance (gs) to the dated phylogenetic tree. Dark dot indicates C3 species, white dot indicates C4 species and grey dot indicate C3-C4 intermediate species.

Loudetia simplex Tristachya superba Danthoniopsis dinteri Thysanolaena latifolia Chasmanthium latifolium Hymenachne pernambucense Steinchisma laxa Steinchisma decipiens Anthaenantia villosa Anthaenantia rufa Echinochloa frumentacea Panicum bisulcatum Dichanthelium clandestinum Zuloagaea bulbosa Setaria italica Whiteochloa capillipes Setaria sphacelata Eriochloa punctata Urochloa ruziziensis Eriochloa meyeriana Megathyrsus maximus Tricholaena monachne Panicum miliaceum Panicum whitei Panicum coloratum Panicum queenslandicum Homopholis proluta Eragrostis obstusa Fingerhuthia africana Sporobolus fimbriatus Cortaderia sp Eriachne obtusa Molinia caerulea Stipagrostis obtusa Stipagrostis ciliata Aristida purpurea VarLong Aristida purpurea VarFend

4.912 trait value 27.176 length=19.956

Fig. S8 Map the leaf elasticity to the dated phylogenetic tree. Dark dot indicates C3 species, white dot indicates C4 species and grey dot indicate C3-C4 intermediate species.

Phylogenetic analysis results without intermediate species

Table S1 (put it into supplementary) The evolutionary models used for the phylogenetic analysis for hydraulic conductance (Kleaf), leaf capacitance, stomatal conductance (gs) and leaf turgor loss point to test evolutionary trends and evolutionary differences between C3 and C4 species.

Fluctuation Model Evolution Root rate Model 1 BM One One Model 2 BM Two One Model 3 BM One Two Model 4 BM Two Two Model 5 OU One One Model 6 OU One Two SubtypeModel 1 BM Four One SubtypeModel 2 BM One Four SubtypeModel 3 BM Four Four SubtypeModel 4 OU One Four

Phylogenetic analysis for C3 and C4 using dated tree

Table S2 Phylogenetic analysis results for hydraulic conductance (Kleaf) for C3 and C4 species.

Variance Mean Model AICw AIC AICc C3 C4 C3 C4 Model 1 0.000 149.2 149.6 0.098 3.694 Model 2 0.004 141.8 142.5 0.006 0.236 2.839 Model 3 0.000 150.6 151.3 0.095 3.988 3.572 Model 4 0.001 143.6 144.8 0.006 0.235 2.897 2.786 Model 5 0.011 139.5 140.2 7.277 3.892 Model 6 0.984 130.5 131.7 7.830 2.682 4.295

Table S3 Phylogenetic analysis results for leaf capacitance for C3 and C4 species.

Variance Mean Model AICw AIC AICc C3 C4 C3 C4 Model 1 0.263 -17.5 -17.1 0.001 0.513 Model 2 0.323 -17.9 -17.1 0.002 0.0005 0.523 Model 3 0.109 -15.7 -15.0 0.001 0.532 0.506 Model 4 0.169 -16.6 -15.3 0.002 0.0004 0.552 0.514 Model 5 0.035 -13.5 -12.7 0.014 0.482 Model 6 0.102 -15.6 -14.3 0.032 0.371 0.520

Table S4 Phylogenetic analysis results for stomatal conductance (gs) for C3 and C4 species.

Model AICw AIC AICc Variance Mean C3 C4 C3 C4 Model 1 0.007 -116.1 -115.8 8.03e-5 0.150 Model 2 0.005 -115.4 -114.6 1e-4 5.48e-5 0.147 Model 3 0.003 -114.4 -113.6 8.02e-5 0.155 0.149 Model 4 0.002 -113.4 -112.1 1e-4 5.48e-5 0.147 0.147 Model 5 0.003 -114.2 -113.4 1.68e-4 0.145 Model 6 0.980 -125.9 -124.6 1.21 e-4 0.183 0.102

Table S5 Phylogenetic analysis results for leaf turgor loss point (Turgor loss) for C3 and C4 species.

Variance Mean Model AICw AIC AICc C3 C4 C3 C4 Model 1 0.000 14.3 14.7 0.003 -1.307 Model 2 0.000 14.6 15.3 0.002 0.005 -1.383 Model 3 0.000 15.9 16.6 0.003 -1.349 -1.292 Model 4 0.000 16.0 17.3 0.002 0.005 -1.425 -1.361 Model 5 0.003 9.6 10.3 0.606 -1.275 Model 6 0.996 -2.2 -0.859 0.216 -1.522 -1.192

Table S6 Phylogenetic analysis results for leaf elasticity for C3 and C4 species.

Variance Mean Model AICw AIC AICc C3 C4 C3 C4 Model 1 0.207 202.3 202.7 0.575 13.372 Model 2 0.079 204.3 205.0 0.637 0.543 13.302 Model 3 0.090 204.0 204.8 0.569 12.852 13.557 Model 4 0.034 206.0 207.3 0.606 0.550 12.841 13.500 Model 5 0.329 201.4 202.2 58.433 13.224 Model 6 0.261 201.9 203.2 37.214 14.493 12.794

Phylogenetic analysis results for C3 and C4 Subtypes

Table S7 Phylogenetic analysis results of evolutionary model fitting for hydraulic conductance (Kleaf) for C3 and three C4 subtypes.

Model Rank AIC AICc diff wi AICw SubtypeModel 1 3 144.3 146.1 10.84 0.004 0.004 SubtypeModel 2 2 137.6 142.6 4.21 0.122 0.108 SubtypeModel 3 4 151.6 153.5 18.2 0.000 0.000 SubtypeModel 4 1 133.4 136.1 0 1.000 0.888

Table S8 Phylogenetic analysis results of evolutionary model fitting for leaf capacitance for C3 and three C4 subtypes.

Model Rank AIC AICc diff wi AICw SubtypeModel 1 2 -14.1 -12.1 1.29 0.526 0.305 SubtypeModel 2 4 -8.9 -3.4 6.52 0.038 0.022 SubtypeModel 3 3 -11.8 -9.7 3.64 0.162 0.094 SubtypeModel 4 1 -15.4 -12.4 0 1.000 0.579

Table S9 Phylogenetic analysis results of evolutionary model fitting for stomatal conductance (gs) for C3 and three C4 subtypes.

Model Rank AIC AICc diff wi AICw SubtypeModel 1 2 -112.0 -110.0 12.8 0.002 0.002 SubtypeModel 2 4 -108.8 -103.3 15.9 0.000 0.000 SubtypeModel 3 3 -111.8 -109.7 13 0.002 0.002 SubtypeModel 4 1 -124.8 -121.8 0 1.000 0.996

Table S10 Phylogenetic analysis results of evolutionary model fitting for leaf turgor loss point for C3 and C4, C3 and three C4 subtypes and C3 and seven C4 clusters.

Model Rank AIC AICc diff wi AICw SubtypeModel 1 2 15.3 17.3 17.6 0.000 0.000 SubtypeModel 2 4 20.1 25.4 22.4 0.000 0.000 SubtypeModel 3 3 18.0 20.0 20.4 0.000 0.000 SubtypeModel 4 1 -2.4 0.5 0 1.000 1.000

Table S11 Phylogenetic analysis results of evolutionary model fitting for leaf elasticity for C3 and C4, C3 and three C4 subtypes and C3 and seven C4 clusters.

Model Rank AIC AICc diff wi AICw SubtypeModel 1 1 201.8 203.8 0 1 0.734 SubtypeModel 2 2 205.6 210.9 3.74 0.154 0.113 SubtypeModel 3 4 207.3 209.3 5.43 0.066 0.049 SubtypeModel 4 3 205.7 208.6 3.9 0.142 0.104

Table S12 Description of the models for correlation between maximal assimilation rate (Amax) and another physiological trait. General Model Shared Model description CorModel 0 No corrlelation Null model: no correlation between traits in C3 and C4. CorModel 1 Variance & Covariance C3 and C4 shared variance and covariance for two traits. CorModel 2 Proportional C3 and C4 have proportional variance and covariance matrix. CorModel 3 Eigenvector C3 and C4 shared eigenvector for variance and covariance matrix. CorModel 4 Correlation C3 and C4 shared correlation for two traits CorModel 5 Variance C3 and C4 shared variance for two traits CorModel 6 C3 C4 independent C3 and C4 have independent variance and covariance matrix

Correlations among different physiological traits using dated tree

Table S13 Estimated correlation between Amax and Kleaf for C3 and C4.

Correlation General Model Shared Rank AIC AICc AICw C3 C4 CorModel 0 No corrlelation 4 345.3 347.6 0.070 NA CorModel 1 Variance & Covariance 6 361.5 362.4 0.000 0.125 CorModel 2 Proportional 5 354.8 357.1 0.001 0.203 0.203 CorModel 3 Eigenvector 1 341.0 344.0 0.599 0.695 0.129 CorModel 4 Correlation 3 344.4 347.4 0.106 0.301 0.301 CorModel 5 Variance 7 362.6 365.0 0.000 0.842 0.036 CorModel 6 C3 C4 independent 2 342.9 346.7 0.224 0.702 0.091

Table S14 Estimated correlation between Amax and leaf capacitance for C3 and C4.

Correlation General Model Shared Rank AIC AICc AICw C3 C4 CorModel 0 No corrlelation 6 210.4 211.8 0.113 NA CorModel 1 Variance & Covariance 7 213.6 214.6 0.023 0.154 CorModel 2 Proportional 1 208.8 210.2 0.259 0.259 0.259 CorModel 3 Eigenvector 2 209.3 211.1 0.202 0.426 0.261 CorModel 4 Correlation 4 210.1 212.0 0.133 0.26 0.266 CorModel 5 Variance 5 210.0 211.6 0.128 0.822 0.038 CorModel 6 C3 C4 independent 3 210 212.4 0.143 0.624 0.089

Table S15 Estimated correlation between Amax and gs for C3 and C4.

Correlation General Model Shared Rank AIC AICc AICw C3 C4 CorModel 0 No corrlelation 7 103.4 105.7 0.002 NA CorModel 1 Variance & Covariance 2 92.3 93.3 0.369 0.533 CorModel 2 Proportional 4 96.3 98.7 0.051 0.495 0.495 CorModel 3 Eigenvector 1 92.2 95.2 0.402 0.264 0.670 CorModel 4 Correlation 6 101.7 104.7 0.003 0.448 0.448 CorModel 5 Variance 5 97.7 100.0 0.026 0.632 0.593 CorModel 6 C3 C4 independent 3 94.2 97.9 0.148 0.290 0.672

Table S16 Estimated correlation between Amax and leaf turgor loss for C3 and C4.

Correlation General Model Shared Rank AIC AICc AICw C3 C4 CorModel 0 No corrlelation 3 233.0 235.4 0.130 NA CorModel 1 Variance & Covariance 1 231.1 232.0 0.346 -0.223 CorModel 2 Proportional 2 232.6 234.9 0.164 -0.151 -0.151 CorModel 3 Eigenvector 7 234.5 237.5 0.062 -0.145 -0.131 CorModel 4 Correlation 6 234.4 237.4 0.068 -0.147 -0.147 CorModel 5 Variance 4 233.3 235.6 0.116 0.550 -0.339 CorModel 6 C3 C4 independent 5 233.3 237.0 0.115 0.342 -0.368

Table S17 Estimated correlation between Amax and leaf elasticity for C3 and C4.

Correlation General Model Shared Rank AIC AICc AICw C3 C4 CorModel 0 No corrlelation 3 409.8 411.2 0.176 NA CorModel 1 Variance & Covariance 2 409.6 410.6 0.196 -0.131 CorModel 2 Proportional 6 411.4 412.8 0.080 -0.151 -0.151 CorModel 3 Eigenvector 7 411.5 413.3 0.078 -0.118 0.175 CorModel 4 Correlation 5 410.9 412.7 0.104 -0.169 -0.169 CorModel 5 Variance 1 409.3 410.6 0.233 -0.476 0.028 CorModel 6 C3 C4 independent 4 410.4 412.8 0.134 -0.495 0.029

Phylogenetic analysis for C3 and C4 using molecular tree

Table S18 The evolutionary models used for the phylogenetic analysis for hydraulic conductance (Kleaf), leaf capacitance, stomatal conductance (gs), leaf turgor loss point and leaf elasticity to test evolutionary trends and evolutionary differences between C3 and C4 species using tree with molecular branch.

Fluctuation Model Evolution Root Trend rate Model 1 BM One One None Model 2 BM Two One None Model 3 BM One Two None Model 4 BM Two Two None Model 5 OU One One None Model 6 OU One Two None Model 7 BMT One One One Model 8 BMT Two One One Model 9 BMT One Two One Model 10 BMT Two Two One Model 11 BMT One Two Two Model 12 BMT Two Two Two

Table S19 Phylogenetic analysis results for hydraulic conductance (Kleaf) for C3 and C4 species.

Variance Trend Mean Model AICw AIC AICc C3 C4 C3 C4 C3 C4 Model 1 0.000 150.53 150.87 6.54 NA 3.42 Model 2 0.000 141.52 142.23 0.49 14.56 NA 2.69 Model 3 0.000 141.59 142.29 29.19 NA 2.51 4.43 Model 4 0.068 127.33 128.54 0.41 7.20 NA 2.56 4.69 Model 5 0.000 138.28 138.99 83.39 NA 3.80 Model 6 0.015 130.36 131.57 121.70 NA 2.67 4.19 Model 7 0.000 151.63 152.33 6.21 1.96 2.26 Model 8 0.000 137.67 138.88 0.27 13.18 1.95 1.73 Model 9 0.000 141.84 143.05 4.03 -2.79 3.89 6.35 Model 10 0.066 127.39 129.26 0.25 7.71 1.24 1.98 3.87 Model 11 0.001 135.83 137.71 3.15 1.30 -11.37 2.06 12.84 Model 12 0.849 122.28 124.99 0.24 5.70 1.53 -10.51 1.85 12.34

Table S20 Phylogenetic analysis results for leaf capacitance for C3 and C4 species.

Variance Trend Mean Model AICw AIC AICc C3 C4 C3 C4 C3 C4 Model 1 0.000 -19.82 -19.45 0.068 NA 0.45 Model 2 0.000 -20.00 -19.23 0.14 0.033 NA 0.48 Model 3 0.081 -30.19 -29.42 0.29 NA 0.34 0.57 Model 4 0.036 -28.55 -27.22 0.057 0.033 NA 0.34 0.56 Model 5 0.001 -21.04 -20.26 0.16 NA 0.50 Model 6 0.001 -21.88 -20.54 0.48 NA 0.37 0.0014 Model 7 0.003 -23.59 -22.82 0.05 0.50 0.15 Model 8 0.006 -24.90 -23.56 0.012 0.087 0.67 0.041 Model 9 0.033 -28.38 -27.04 0.04 0.10 0.29 0.50 Model 10 0.023 -27.70 -25.62 0.11 0.017 -0.46 0.56 0.88 Model 11 0.589 -34.16 -32.10 0.030 0.53 -0.81 0.097 1.18 Model 12 0.227 -32.26 -29.26 0.016 0.041 0.59 -0.73 0.063 1.13

Table S21 Phylogenetic analysis results for stomatal conductance (gs) for C3 and C4 species.

Variance Trend Mean Model AICw AIC AICc C3 C4 C3 C4 C3 C4 Model 1 0.001 -113.55 -113.18 0.0056 NA 0.15 Model 2 0.001 -112.92 -112.14 0.010 0.0036 NA 0.15 Model 3 0.337 -125.63 -124.85 0.0257 NA 0.19 0.12 Model 4 0.216 -124.74 -123.41 0.0052 0.0029 NA 0.19 0.12 Model 5 0.001 -113.84 -113.06 0.011 NA 0.13 Model 6 0.053 -121.93 -120.60 0.0084 NA 0.19 0.10 Model 7 0.001 -114.74 -113.97 0.0051 -0.11 0.22 Model 8 0.002 -115.78 -114.45 0.010 0.0028 -0.15 0.25 Model 9 0.156 -124.08 -122.75 0.0036 0.05 0.16 0.09 Model 10 0.084 -122.84 -120.77 0.0050 0.0029 0.024 0.18 0.10 Model 11 0.090 -122.99 -120.92 0.0035 0.094 -0.050 0.14 0.16 Model 12 0.058 -122.12 -119.12 0.0051 0.0027 0.095 -0.081 0.15 0.19

Table S22 Phylogenetic analysis results for leaf turgor loss point (Turgor loss) for C3 and C4 species.

Variance Trend Mean Model AICw AIC AICc C3 C4 C3 C4 C3 C4 Model 1 0.000 14.39 14.75 0.24 NA -1.40 Model 2 0.000 14.99 15.74 0.13 0.31 NA 1.46 Model 3 0.003 7.07 7.82 1.23 NA -1.57 -1.21 Model 4 0.007 5.68 6.97 0.081 0.23 NA -1.58 -1.20 Model 5 0.005 6.48 7.23 1.16 NA -1.30 Model 6 0.975 -4.21 -2.92 2.12 NA -1.52 -1.20 Model 7 0.001 10.64 11.40 0.20 0.92 -1.94 Model 8 0.001 10.24 11.53 0.099 0.26 0.84 -1.92 Model 9 0.002 8.47 9.76 0.17 0.34 -1.74 -1.44 Model 10 0.004 6.55 8.55 0.073 0.23 0.36 -1.75 -1.45 Model 11 0.001 10.45 12.45 0.17 0.38 0.24 -1.76 -1.37 Model 12 0.002 8.49 11.38 0.073 0.23 0.40 0.15 -1.77 -1.30

Table S23 Phylogenetic analysis results for leaf elasticity for C3 and C4 species.

Variance Trend Mean Model AICw AIC AICc C3 C4 C3 C4 C3 C4 Model 1 0.000 228.28 228.65 43.63 NA 14.44 Model 2 0.000 229.31 230.06 60.69 33.09 NA 14.20 Model 3 0.000 229.25 230.00 299.00 NA 15.34 13.54 Model 4 0.000 230.29 231.58 58.91 32.51 NA 15.27 13.44 Model 5 0.629 199.08 199.83 18575.12 NA 13.06 Model 6 0.371 200.13 201.42 28904.04 NA 14.05 12.76 Model 7 0.000 227.17 227.92 39.95 -9.96 20.50 Model 8 0.000 229.11 230.40 44.13 37.26 -9.41 20.17 Model 9 0.000 229.17 230.46 39.92 -10.19 20.58 20.70 Model 10 0.000 231.11 233.11 44.32 37.16 -9.26 20.11 20.04 Model 11 0.000 225.91 227.91 33.02 -21.09 13.55 25.54 2.78 Model 12 0.000 227.65 230.54 39.94 28.92 -21.47 13.98 25.66 2.35

Table S24 Input parameters used for modeling. Many parameters are assumed the same for C3 and C4 species because we considered the initial dominance and expansion of C4, when C4 may have shared common traits with their C3 and C3-C4 intermediate predecessors.

Value Parameter unit Definition C3 C4 1 o -2 -1 Vcmax(25) 69 39 μmol m s maximal velocity of Rubisco carboxylation at 25°C 1 1 -2 -1 Jmax(25) 145 176 μmol m s maximum rate of electron transport at 25°C p abcdfijkm -2 -1 Kc(25) 302 75.06 μmol m s Michaelis-Menten constant of Rubisco activity for CO2 at 25°C

p abcmdf -1 Ko(25) 256 35.82 mmol mol Michaelis-Menten constants of Rubisco activity for O2

γ* (25) 0.000171q 0.000244 specificity of Rubisco abdfijkm b -2 -1 Vpmax(25) 120 μmol m s maximal PEP carboxylation rate at 25°C r r -2 -1 gm(25) 0.3 0.3 mol m s mesophyll conductance at 25°C

abcn -1 Kp(25) 85.5 μmol mol Michaelis-Menten constants of PEP carboxylation for CO2

an ΔHa for Kp 52.2 Temperature sensitivity parameter for Kp ρ 18.3q 18.3q g m-2 leaf mass density

Θ 0.7s 0.7s empirical curvature of light response curve t akn -1 ΔHa for Vcmax 65.33 51.89 kJ mol energy of activation for temperature dependence for Vcmax v cg -1 ΔHa for Jmax 43.9 69.25 kJ mol energy of activation for temperature dependence for Jmax

acgn -1 ΔHa for Vpmax 65.69 kJ mol energy of activation for temperature dependence for Vpmax

t an -1 ΔHa for Ko 36.38 12.8 kJ mol energy of activation for temperature dependence for Ko

t aik -1 ΔHa for Kc 79.43 36.5 kJ mol energy of activation for temperature dependence for Kc

t t -1 ΔHa for γ* 37.83 37.83 kJ mol energy of activation for temperature dependence for γ*

u m -1 ΔHa for gm 49.6 46.533 kJ mol energy of activation for temperature dependence for gm n -1 ΔHa for gbs 116.77 kJ mol energy of activation for temperature dependence for gbs

v cg -1 ΔHd for Jmax 200 188.502 kJ mol energy of activation for temperature dependence for Jmax

acgn -1 ΔHd for Vpmax 147.694 kJ mol energy of activation for temperature dependence for Vpmax

u m -1 ΔHd for gm 437.4 366.8 kJ mol energy of activation for temperature dependence for gm

n -1 ΔHd for gbs 264.6 kJ mol energy of activation for temperature dependence for gbs

v cg -1 -1 ΔS for Jmax 0.65 0.609 kJ K mol entropy for temperature dependence for Jmax

acgn -1 -1 ΔS for Vpmax 0.47 kJ K mol entropy for temperature dependence for Vpmax u m -1 -1 ΔS for gm 1.4 1.2 kJ K mol entropy for temperature dependence for gm n -1 -1 ΔS for gbs 0.86 kJ K mol entropy for temperature dependence for gbs

w w bv 3.8 3.8 Weibull-type vulnerability curve for Vcmax

w w dv 2 2 MPa Weibull-type vulnerability curve for Vcmax

w w bj 3 3 Weibull-type vulnerability curve for Jmax

w w dj 2.5 2.5 MPa Weibull-type vulnerability curve for Jmax

q q -1 -1 Kplant 0.001044 0.001044 gH2O g MPa hydraulic conductivity s-1 x 0.4b the maximal ratio of total electron transport could be used for PEP carboxylation bcln -2 -1 -1 gbs 0.02946 μmol m s Pa bundle sheath conductance for CO2 b a 0.15 the fraction of O2 evolution occurring in the bundle sheath 1 Superscripts denote the literatures which parameters are from. Rescaling according to C4 photosynthesis parameter of Collatz et al. (1992) and Wullschleger (1993). aBoyd et al. (2015), bvon Caemmerer (2000), cChen et al. (1994), dCousins et al. (2010), eJenkins et al. (1989), fKubien et al. (2008), gMassad et al. (2007), hSanyal & Maren (1981), iPerdomo et al. (2015) jSharwood et al. (2016a), kSharwood et al. (2016b), lUbierna et al (2013), mUbierna et al. (2017), nYin et al. (2016), oCollatz et al. (1992), pLeuning (1995), qGivnish (1986), rSharkey et al. (2007), sÖgren and Evans (1993), tBernacchi et al. (2001), uBernacchi et al. (2002), vBernacchi et al. (2003), wVico and Porporato (2008), The multiple characters indicate the values are averages.

Table S25 The relative percentage (%) change of half hydraulic conductance (Hk) and twice hydraulic conductance (Tk) on the assimilation rate under different CO2 and water-limited conditions. C3_Hk/C3_Tk and C4_Hk/C4_Tk shared the physiological parameters other than a carbon concentration mechanism. C4_Hk_D/C4_Tk_D also had different photosynthetic parameters shown in Table S21. The percentage is calculated by (the assimilation rate of Hk or Tk - the assimilation rate of original hydraulic conductance)/the assimilation rate of original hydraulic conductance. The values indicate average changes from 10oC to 35oC and standard errors.

VPD0.625ϕs05 VPD1.25ϕs1 Type 200 ppm 400 ppm 600 ppm 200 ppm 400 ppm 600 ppm C3_Hk -7.45(0.056) -6.26(0.055) -4.28(0.039) -10.71(0.070) -9.40(0.077) -7.71(0.049) C3_Tk 6.30(0.053) 5.14(0.048) 3.38(0.036) 9.70(0.074) 8.26(0.077) 5.97(0.021) C4_Hk -2.17(0.002) -2.06(0.004) -1.94(0.007) -3.64(0.003) -3.48(0.006) -3.32(0.010) C4_Tk 1.70(0.001) -1.60(0.004) 1.51(0.006) 2.95(0.002) 2.80(0.006) 2.66(0.009) C4_Hk_D -2.47(0.116) -2.12(0.060) -2.08(0.060) -4.08(0.162) -3.58(0.091) -3.52(0.091) C4_Tk_D 1.91(0.089) 1.67(0.049) 1.63(0.049) 3.26(0.129) 2.93(0.079) 2.88(0.079) VPD1.875ϕs15 VPD2.5ϕs2 Type 200 ppm 400 ppm 600 ppm 200 ppm 400 ppm 600 ppm C3_Hk -13.09(0.073) -11.98(0.092) -10.72(0.100) -14.08(0.072) -13.01(0.096) -12.16(0.110) C3_Tk 12.50(0.085) 11.12(0.103) 9.64(0.106) 13.76(0.087) 12.47(0.113) 11.47(0.127) C4_Hk -5.23(0.026) -4.85(0.009) -4.63(0.014) -6.99(0.035) -6.68(0.037) -6.26(0.034) C4_Tk 4.21(0.004) 4.00(0.008) 3.80(0.012) 5.93(0.035) 5.55(0.034) 5.09(0.028) C4_Hk_D -5.76(0.158) -5.05(0.113) -4.99(0.113) -6.34(0.114) -6.28(0.112) -6.21(0.109) C4_Tk_D 4.50(0.136) 4.27(0.103) 4.21(0.104) 5.51(0.108) 5.44(0.105) 5.38(0.103)

References Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26(9):1419- 1430. Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130(4):1992-1998. Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24(2):253-259.

Boyd RA, Gandin A, Cousins AB (2015) Temperature responses of C4 photosynthesis: biochemical analysis of Rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase in Setaria viridis. Plant Physiol 169:1850–1861 Von Caemmerer S (2000) Biochemical models of photosynthesis. In Techniques in Plant Sciences p. 196. CSIRO Publishing, Colingwood, Australia.

Chen DX, Coughenour MB, Knapp AK, Owensby CE (1994) Mathematical simulation of C4

grass photosynthesis in ambient and elevated CO2. Ecol Model 73:63–80. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance

model for leaves of C4 plants. Aust J Plant Physiol 19(5):519-538. Cousins AB, Ghannoum O, von Caemmerer S, Badger MR (2010) Simultaneous determination of Rubisco carboxylase and oxygenase kinetic parameters in Triticum aestivum and Zea mays using membrane inlet mass spectrometry. Plant Cell Environ 33:444–452 Givnish TJ (1986) Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: On the Economy of Plant Form and Function (ed. Givnish TJ), pp. 171-213. Cambridge University Press, Cambridge. Grass Phylogeny Working Group II. (2012). New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193: 304-312.

Jenkins CLD, Furbank RT, Hatch MD (1989) Mechanism of C4 photosynthesis. A model describing the inorganic carbon pool in bundle-sheath cells. Plant Physiol 91:1372–1381 Kubien DS, Whitney SM, Moore PV, Jesson LK (2008) The biochemistry of Rubisco in Flaveria. J Exp Bot 59:1767–1777

Massad RS, Tuzet A, Bethenod O (2007) The effect of temperature on C4-type leaf photosynthesis parameters. Plant Cell Environ 30:109-122 Leuning R (1995) A critical-appraisal of a combined stomatal photosynthesis model for C3 plants. Plant Cell Environ 18(4):339-355.

Ögren E and Evans JR (1993) Photosynthetic light response curves.1.The influence of CO2 partial pressure and leaf inversion. Planta 189(2):182-190. Pedomo JA, Cavanagh AP, Kubien DS, Galmes J (2015) Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms. Photosynth Res 124:67–75 Sanyal G, Maren TH (1981) Thermodynamics of carbonic anhydrase catalysis: a comparison between human isoenzymes B and C. J Biol Chem 256:608–612 Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosyn- thetic carbon

dioxide response curves for C3 leaves. Plant Cell Environ 30(9), 1035-1040. Sharwood RE, Ghannoum O, Kapralov MV, Gunn LH, Whitney SM (2016a) Temperature

responses of Rubisco from grasses provide opportunities for improving C3 photosynthesis. Nature plants 2: p.16186

Sharwood RE, Ghannoum O, Whitney SM (2016b) Prospects for improving CO2 fixation in C3-

crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr Opin Plant Biol 31:135-142

Spriggs EL, Christin PA and Edwards EJ (2014) C4 photosynthesis promoted species diversification during the Miocene grassland expansion. Plos one 9(5): p.e97722 Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll 18 conductance in three C4 species calculated with two methods: O discrimination and in vitro

Vpmax. New Phytol 214:66-80

Ubierna N, Sun W, Kramer DM, Cousins AB (2013) The efficiency of C4 photosynthesis under low light conditions in Zea mays, X giganteus and Flaveria bidentis. Plant Cell Environ 36:365-381.

Vico G, Porporato A (2008) Modelling C3 and C4 photosynthesis under water-stressed conditions. Plant and Soil 313(1-2):187-203.

Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants - A

retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44(5):907-920. Yin X, Van Der Putten PE, Driever SM, Struik PC (2016) Temperature response of bundle- sheath conductance in maize leaves. Journal of experimental botany 67, 2699-2714.