(Gramineae) in Malesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crabgrass for Forage FSA3138
Agriculture and Natural Resources FSA3138 Crabgrass for Forage John Jennings Even though it has a reputation high-yielding growth type. Common Professor - Animal Science as a lawn weed, crabgrass is a high- crabgrass is also available. Crabgrass quality, very palatable grass that is has a wide range of growth types, so excellent forage for grazing livestock. a particular lot of common crabgrass Dirk Philipp It is a summer annual grass that seed may or may not have the desired Associate Professor - germinates in spring, grows through growth characteristics for forage pro- Animal Science summer and dies at frost in fall. Daily duction. weight gains or milk production of Kenny Simon livestock grazing crabgrass can easily Program Associate - exceed that from bermudagrass. It is Establishment Animal Science very productive under good manage- Crabgrass germination begins ment. Crabgrass works well to provide when soil temperature is around 58°F, summer forage when grown in mix- so planting can usually begin by mid- tures with cool-season grasses such as April. Planting after mid-June is risky tall fescue or with small grains used due to the lack of dependability of late for forage. summer rainfall. Seeding rate should be a minimum of 2 to 4 pounds of seed per acre, but planting 4 to 6 pounds Description per acre helps ensure better stands. Several species of crabgrass exist, Two-year-old seed has been noted to but the most common one grown for have a higher establishment rate than forage is large or hairy crabgrass one-year-old seed. The period from (Digitaria sanguinalis). -
Systematics and Evolution of Eleusine Coracana (Gramineae)1
Amer. J. Bot. 71(4): 550-557. 1984. SYSTEMATICS AND EVOLUTION OF ELEUSINE CORACANA (GRAMINEAE)1 J. M. J. de W et,2 K. E. Prasada Rao,3 D. E. Brink,2 and M. H. Mengesha3 departm ent of Agronomy, University of Illinois, 1102 So. Goodwin, Urbana, Illinois 61801, and international Crops Research Institute for the Semi-arid Tropics, Patancheru, India ABSTRACT Finger millet (Eleusine coracana (L.) Gaertn. subsp. coracana) is cultivated in eastern and southern Africa and in southern Asia. The closest wild relative of finger millet is E. coracana subsp. africana (Kennedy-O’Byme) H ilu & de Wet. W ild finger m illet (subsp. africana) is native to Africa but was introduced as a weed to the warmer parts of Asia and America. Derivatives of hybrids between subsp. coracana and subsp. africana are companion weeds of the crop in Africa. Cultivated finger millets are divided into five races on the basis of inflorescence mor phology. Race coracana is widely distributed across the range of finger millet cultivation. It is present in the archaeological record o f early African agriculture that m ay date back 5,000 years. Racial evolution took place in Africa. Races vulgaris, elongata., plana, and compacta evolved from race coracana, and were introduced into India some 3,000 years ago. Little independent racial evolution took place in India. E l e u s i n e Gaertn. is predominantly an African tancheru in India, and studied morphologi genus. Six of its nine species are confined to cally. These include 698 accessions from the tropical and subtropical Africa (Phillips, 1972). -
Survey of Roadside Alien Plants in Hawai`I Volcanoes National Park and Adjacent Residential Areas 2001–2005
Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANts IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 Linda W. Pratt1 Keali`i F. Bio2 James D. Jacobi1 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawaii National Park, HI 96718 2 Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, P.O. Box 44, Hawai‘i National Park, HI 96718 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This product was prepared under Cooperative Agreement CA03WRAG0036 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-032 SURVEY OF ROADSIDE ALIEN PLANTS IN HAWAI`I VOLCANOES NATIONAL PARK AND ADJACENT RESIDENTIAL AREAS 2001–2005 1 2 1 LINDA W. PRATT , KEALI`I F. BIO , AND JAMES D. JACOBI 1 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i Volcanoes National Park, HI 96718 2 Hawaii Cooperative Studies Unit, University of Hawai`i at Hilo, Hilo, HI 96720 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 September 2012 This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices ( http://pubs.usgs.gov/circ/1367/ ). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. -
24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice. -
The Diversity Distribution Pattern of Ruderal Community Under the Rapid Urbanization in Hangzhou, East China
diversity Article The Diversity Distribution Pattern of Ruderal Community under the Rapid Urbanization in Hangzhou, East China Mingli Zhang 1,2, Kun Song 1,3,4,* and Liangjun Da 1,3,4,* 1 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; [email protected] 2 Hangzhou Vocational & Technical College, Hangzhou 310018, China 3 Shanghai Key Laboratory for Ecology of the Urbanization Process and Eco-restoration, East China Normal University, Shanghai 200241, China 4 Institute of Eco-Chongming, Shanghai 200241, China * Correspondence: [email protected] (K.S.); [email protected] (L.D.) Received: 4 March 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: The process of rapid urbanization has affected the composition and diversity of urban vegetation species. The process of urbanization from 2000 was analyzed in the area of "one major city with three vice cities and six groups", according to the urban master planning of Hangzhou from 2001 to 2020. The results show that dramatic changes have occurred for land use types during the ten years from 2000 to 2010 in Hangzhou, of which urban land has become the main type of land use and the area of arable land has presented serious loss. This study found that the Gramineae and Compositae species were the main groups of ruderals in 1665 quadrats, which reflected the characteristics of a few large families. The number of Monotypic and Oligotypic family/genera accounted for 67.3% of the total number of families and 97.5% of the total number of genera. -
Top 5 Weeds — Headaches in Our Summer Lawns
Top 5 Weeds — Headaches in Our Summer Lawns By Sharon V. Smith, Fairfax Master Gardener Intern Before we fire up the grill and invite guests over for fun, we survey our outdoor space and notice that growing in the gaps of our patio pavers, our lawn areas and garden beds are unwelcomed plants. This time of year, both annual and perennial weeds are popping up and competing with our cultivated and native plants, and giving us headaches. Here are the top 5 unwanted annual/perennial weeds: Crabgrass (Digitaria sanguinalis) Bermudagrass (Cynodon dactylon) Japanese stiltgrass (Microstegium vimineum) Spotted spurge (Euphorbia maculata) Wild violet (Viola papilionacea) They are all tough plants and will require management at various times to prevent them from getting the upper hand. North Carolina State University Japanese Stiltgrass Crabgrass We probably can remember our fathers complaining about this first, pesky summer annual weed when we were growing up. The noteworthy crabgrass is native to Europe and Eurasia and was introduced in 1849 as a forage crop. It thrives in full sunlight and high temperatures. Its seeds germinate in the spring when the soil temperatures reach 55 to 60 F for two or three consecutive days. It grows through the summer and dies with the first frost. It is important to note that crabgrass cannot be controlled in one growing season because of the prolific number of viable seeds it produces. Control will require several seasons of well-timed cultural practices such as increasing mowing height during crabgrass germination periods of spring and early summer, fertilizing to supply adequate, balanced nutrition to your lawn, irrigating to maintain continued turf growth, and reseeding in late summer or early fall to prevent its encroachment. -
Processing, Nutritional Composition and Health Benefits of Finger Millet
a OSSN 0101-2061 (Print) Food Science and Technology OSSN 1678-457X (Dnline) DDO: https://doi.org/10.1590/fst.25017 Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa Shonisani Eugenia RAMASHOA1*, Tonna Ashim ANYASO1, Eastonce Tend GWATA2, Stephen MEDDDWS-TAYLDR3, Afam Osrael Dbiefuna JODEANO1 Abstract Finger millet (Eleusine coracana) also known as tamba, is a staple cereal grain in some parts of the world with low income population. The grain is characterized by variations in colour (brown, white and light brown cultivars); high concentration of carbohydrates, dietary fibre, phytochemicals and essential amino acids; presence of essential minerals; as well as a gluten-free status. Finger millet (FM) in terms of nutritional composition, ranks higher than other cereal grains, though the grain is extremely neglected and widely underutilized. Nutritional configuration of FM contributes to reduced risk of diabetes mellitus, high blood pressure and gastro-intestinal tract disorder when absorbed in the body. Utilization of the grain therefore involves traditional and other processing methods such as soaking, malting, cooking, fermentation, popping and radiation. These processes are utilised to improve the dietetic and sensory properties of FM and equally assist in the reduction of anti-nutritional and inhibitory activities of phenols, phytic acids and tannins. However, with little research and innovation on FM as compared to conventional cereals, there is the need for further studies on processing methods, nutritional composition, health benefits and valorization with a view to commercialization of FM grains. Keywords: finger millet; nutritional composition; gluten-free; antioxidant properties; traditional processing; value-added products. Practical Application: Effects of processing on nutritional composition, health benefits and valorization of finger millet grains. -
A Preliminary Checklist of the Plants of Nylsvley
Sheet2 A PRELIMINARY CHECKLIST OF THE PLANTS OF NYLSVLEY NATURE RESERVE Compiled in September 1983 as part of the Savanna Biome Project note that the taxonomy has not Been updated merely typed into Excel format in June 2014 Family Species Common name SELAGINELLACEAE Selaginella dregei (C.Presl) Hieron NONE POLYPODIACEAE Ceterach cordatum (Thumb.) Desv. NONE Pellaea viridis (Forsk.) Prantl. NONE Pellaea colomelanos. NONE POACEAE Urelytrum squarrosum Hack. Centipede grass Trachypogon spicatus (L.f.) Kuntze Giant spear grass Elionurus argenteus Nees. Sour grass Elionurus muticus Sour grass Andropogon schinzii Hack. NONE Andropogon schirensis Hochst. Ex A. Rich. Var. angustifolia Stapf. StaB grass Sorghum versicolor Anderss. Black-seed Wild Sorghum Bothriochloa insculpta (Hochst.) A.Camus var. insculpta. Pinhole grass Schizachyrium jeffreysii (Hack.) Stapf. Silky Autumn Grass Schizachyrium sanguineum (Retz) Alst. Red Autumn Grass Schizachyrium ursulus Stapf. NONE Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy. Broad-Leaved Turpentine Grass Cymbopogon marginatus (Steud.) Stapf ex Burtt Davy. NONE Hyparrhenia cf. Dregeana (Nees) Stapf ex Stent. NONE Hyparrhenia hirta (L.) Stapf. Common thatchgrass Hyperthelia dissoluta (nees ex Steud.) Clayton. NONE Heteropogon contortus (L.) ex Roem. & Schult. Spear Grass Diheteropogon amplectens (Nees) Clayton. Broadleaved Bluestem Diheteropogon filifolius (Nees) Clayton. Wire Bluestem Themeda triandra Forssk. Red Oat Grass Cenchrus ciliaris L. Blue Bufallograss Tragus Berteronianus Schult. Carrotseed grass Mosdenia leptostachys (Fical.& Hiern) W.D.Clayton NONE Perotis patens Gand. Bottle-brush grass Paspalum orbiculare Forst. NONE Panicum deustum ThunB. Broadleaved panic Panicum dregeanum Nees. Plum panicum Panicum cf.laevifolium Hack. Blue panic Panicum maximum Jacq. Guinea grass Panicum natalense Hochst. Natal Buffalo Grass Alloteropsis semialata (R.Br.) Hitchc. -
Monitoramento Aéreo E Diagnóstico De Plantas Daninhas De
MONITORAMENTO AÉREO E DIAGNÓSTICO DE PLANTAS DANINHAS DE DIFÍCIL CONTROLE NO SUDOESTE GOIANO por CLAITON GOMES DOS SANTOS Dissertação apresentada ao Programa de Pós-Graduação em Bioenergia e Grãos do Instituto Federal de Educação, Ciência e Tecnologia Goiano – Campus Rio Verde, como parte dos requisitos para obtenção do grau de Mestre em Bioenergia e Grãos. Rio Verde - GO Agosto - 2019 MONITORAMENTO AÉREO E DIAGNÓSTICO DE PLANTAS DANINHAS DE DIFÍCIL CONTROLE NO SUDOESTE GOIANO por CLAITON GOMES DOS SANTOS Comitê de Orientação: Orientadora: Profa. Dra. Agna Rita dos Santos Rodrigues - IF Goiano Coorientadora: Profa. Dra. Renata Pereira Marques - IF Goiano Coorientadora: Ana Paula Lopes Dias - BASF ii iii iv v MONITORAMENTO AÉREO E DIAGNÓSTICO DE PLANTAS DANINHAS DE DIFÍCIL CONTROLE NO SUDOESTE GOIANO por CLAITON GOMES DOS SANTOS Orientadora:_____________________________________________ Profa. Dra. Agna Rita dos Santos Rodrigues - IF Goiano Examinadores:_____________________________________________ Profa. Dra. Agna Rita dos Santos Rodrigues - IF Goiano _____________________________________________ Prof. Dr. Adriano Jakelaitis - IF Goiano _____________________________________________ Dr. Lucas Marcolin- Basf S.A. ____________________________________________ Profa. Dra. Renata Pereira Marques - IF Goiano vi DEDICATÓRIA A Deus, em forma de agradecimento, por Ele ter permitido esta conquista em minha vida. vii AGRADECIMENTOS Ao Instituto Federal de Educação, Ciência e Tecnologia Goiano, pela vaga no programa de Mestrado Profissional em Bioenergia e Grãos. À Fundação de Amparo à Pesquisa do Estado de Goiás (Fapeg), pela bolsa concedida, que foi fundamental para realização dos trabalhos. À BASF, por investir muito no crescimento profissional dos seus colaboradores e por ter permitido que cursasse este mestrado. A todos que, de alguma forma, passaram pela minha vida e puderam contribuir, pouco ou muito, para o que eu sou hoje. -
Stalmans Banhine.Qxd
Plant communities, wetlands and landscapes of the Parque Nacional de Banhine, Moçambique M. STALMANS and M. WISHART Stalmans, M. and M. Wishart. 2005. Plant communities, wetlands and landscapes of the Parque Nacional de Banhine, Moçambique. Koedoe 48(2): 43–58. Pretoria. ISSN 0075- 6458. The Parque Nacional de Banhine (Banhine National Park) was proclaimed during 1972. It covers 600 000 ha in Moçambique to the east of the Limpopo River. Until recently, this park, originally and popularly known as the ‘Serengeti of Moçambique’, was char- acterised by neglect and illegal hunting that caused the demise of most of its large wildlife. New initiatives aimed at rehabilitating the park have been launched within the scope of the Greater Limpopo Transfrontier Park. A vegetation map was required as input to its management plan. The major objectives of the study were firstly to under- stand the environmental determinants of the vegetation, secondly to identify and describe individual plant communities in terms of species composition and structure and thirdly to delineate landscapes in terms of their plant community and wetland make-up, environmental determinants and distribution. A combination of fieldwork and analysis of LANDSAT satellite imagery was used. A total of 115 sample plots were surveyed. Another 222 sample points were briefly assessed from the air to establish the extent of the different landscapes. The ordination results clearly indicate the overriding impor- tance of moisture availability in determining vegetation composition in the Parque Nacional de Banhine. Eleven distinct plant communities were recognised. They are described in terms of their structure, composition and distribution. These plant commu- nities have strong affinities to a number of communities found in the Limpopo Nation- al Park to the west. -
Common Carpetgrass (Axonopus Fissifolius)
Weed Technology Common carpetgrass (Axonopus fissifolius) www.cambridge.org/wet control with POST herbicides Gerald Henry1, Christopher Johnston2, Jared Hoyle3, Chase Straw4 and Kevin Tucker5 Research Article 1Professor, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA; 2Graduate student, Cite this article: Henry G, Johnston C, Hoyle J, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA; 3Assistant Professor, Department Straw C, Tucker K (2019) Common carpetgrass of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, USA; 4Postdoctoral Research (Axonopus fissifolius) control with POST 5 herbicides. Weed Technol. doi: 10.1017/ Associate, Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA and Research wet.2019.17 Associate, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA Received: 18 August 2018 Abstract Revised: 22 February 2019 Accepted: 25 February 2019 Reductions in MSMA use for weed control in turfgrass systems may have led to increased common carpetgrass infestations. The objective of our research was to identify alternative Associate Editor: POST herbicides for control of common carpetgrass using field and controlled-environment Scott McElroy, Auburn experiments. Field applications of MSMA (2.2 kg ai ha−1) and thiencarbazone þ iodosulfuron þ −1 Keywords: dicamba (TID) (0.171 kg ai ha ) resulted in the greatest common carpetgrass control 8 wk Golf course; weed management after initial treatment (WAIT): 94% and 91%, respectively. Thiencarbazone þ foramsulfuron þ halosulfuron (TFH) (0.127 kg ai ha−1) applied in the field resulted in 77% control 8 WAIT, Nomenclature ≤ Dicamba; foramsulfuron; halosulfuron; whereas all other treatments were 19% effective at 8 WAIT. -
Meteor® Pre-Emergent Herbicide
Meteor® Pre-Emergent Herbicide A New Molecule A New Mode of Action A Fresh Approach %JTUSJCVUFECZ/VUVSG"VTUSBMJBt1IPOF I New Mode of Action Metolachlor, the active ingredient in Meteor OCH3 Herbicide is categorised as a Group K mode of N action. Following plant uptake, metolachlor acts CI as a growth inhibitor by blocking the synthesis of O very long chained fatty acids (VLCFA’s). This occurs through the inhibition of elongase enzymes which initiated the formation of VLCFA’s from shorter chain fatty acids. This results in the cessation of cell ABOUT METEOR HERBICIDE division and elongation, and ultimately plant death. Currently no reported Meteor Herbicide from Amgrow is a new resistance issues exist with Group K herbicides making it an excellent rotational tool for resistance management. generation pre-emergent herbicide containing 960g/L of the active ingredient metolachlor. After application the metolachlor forms an herbicidal layer in the topsoil where it predominantly enters the susceptible plant by the young shoot (the Meteor Herbicide provides up to four months coleoptile) as it emerges from the seed casing. pre-emergent control of wintergrass, crowsfoot grass and summergrass in a range of warm Root uptake of metolachlor does occur to some extent; however this is much season turf varieties including soft leaf varieties lower than the level of shoot uptake. Herbicide uptake and subsequent weed kill occurs during or shortly after seedling germination as the weed seeds of Buffalo, Common & Hybrid Couches, Kikuyu, emerge within the