Different Clades and Traits Yield Similar Grassland Functional Responses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
Arundinelleae; Panicoideae; Poaceae)
Bothalia 19, 1:45-52(1989) Kranz distinctive cells in the culm of ArundineUa (Arundinelleae; Panicoideae; Poaceae) EVANGELINA SANCHEZ*, MIRTA O. ARRIAGA* and ROGER P. ELLIS** Keywords: anatomy, Arundinella, C4, culm, distinctive cells, double bundle sheath, NADP-me ABSTRACT The transectional anatomy of photosynthetic flowering culms of Arundinella berteroniana (Schult.) Hitchc. & Chase and A. hispida (Willd.) Kuntze from South America and A. nepalensis Trin. from Africa is described and illustrated. The vascular bundles are arranged in three distinct rings, the outermost being external to a continuous sclerenchymatous band. Each of these peripheral bundles is surrounded by two bundle sheaths, a complete mestome sheath and an incomplete, outer, parenchymatous Kranz sheath, the cells of which contain large, specialized chloroplasts. Kranz bundle sheath extensions are also present. The chlorenchyma tissue is also located in this narrow peripheral zone and is interrupted by the vascular bundles and their associated sclerenchyma. Dispersed throughout the chlorenchyma are small groups of Kranz distinctive cells, identical in structure to the outer bundle sheath cells. No chlorenchyma cell is. therefore, more than two cells distant from a Kranz cell. The structure of the chlorenchyma and bundle sheaths indicates that the C4 photosynthetic pathway is operative in these culms. This study clearly demonstrates the presence of the peculiar distinctive cells in the culms as well as in the leaves of Arundinella. Also of interest is the presence of an inner bundle sheath in the vascular bundles of the culm whereas the bundles of the leaves possess only a single sheath. It has already been shown that Arundinella is a NADP-me C4 type and the anatomical predictor of a single Kranz sheath for NADP-me species, therefore, either does not hold in the culms of this genus or the culms are not NADP-me. -
Viruses Virus Diseases Poaceae(Gramineae)
Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae . -
Vegetation Survey of Mount Gorongosa
VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions. -
Gramineae) VIII
Studies in the Arundinelleae (Gramineae) VIII. The Phylogeny — A Hypothesis J.B. Phipps Department of Botany, The University of Western Ontario, London, Canada Contents Page Abstract 477 1. Introduction 477 2. The nature and interpretation of phylogenetic evidence 478 (i) Phylogenies hypothetical 478 (ii) The interpretation of phylogenetic evidence 478 (iii) Conservative characters 478 (iv) Selection of advanced and primitive character states 479 The (v) character states used 479 (vi) Number of characters used 480 The 3. representation of a phylogeny 480 (i) Principles for arranging cladograms 481 classifications 4. Phyletic 481 Criteria for this 5. accepted paper 481 6. The phylogeny deduced 482 Individual (i) genera 482 Discussion of within (ii) genera groups 485 (iii) The tribe as a whole 487 7. Phyletic conclusions 488 (i) Geographical considerations 488 (ii) Parallelism 489 (iii) Evolutionary reversals 490 (iv) Postulation of a primitive or proto-Arundinellean 490 A (v) phyletic classification 491 8. Summary 491 Acknowledgements 492 References 492 Abstract This study considers the 163 species accepted as belonging to the tribe Arundinelleae (Gramineae) and into A is arranges them a putative cladogram. discussion ofthe rationale presented, 38 characters are studied for advanced versus primitive states, advancement indices calculated, and trends of variation discussed. The six major groups ofPhipps (1966b) are maintained. The phylogeny conforms excellently with the of the continental drift it for the geographical aspects hypothesis though requires a greater age Angiosperms than is generally held to be the case. I. Introduction The the with the tribe Arundinelleae present paper, eighth in a series dealing variationin amine derive a of a (Gr ae), is an attempt to tentative phylogeny group quite intensively 21 478 BLUMEA VOL. -
Supplementary Tables and Figures the Legacy of C4 Evolution
Supplementary method Leaf hydraulic conductance Leaf hydraulic conductance (Kleaf) was measured using the evaporative flux method (Sack and Scoffoni, 2012), with some adjustments to maintain stability of the evaporative environment to which the leaf was exposed. the evening before measurements, potted plants were brought to the laboratory, well-watered and, then covered by black plastic bags filled with wet paper towels to rehydrate overnight. The most-recent fully expanded leaves from each plant were used for Kleaf measurements. For the leaf gasket, a 1 cm diameter, ~ 1 cm long solid silicone rubber cylinder was cut nearly in two, leaving a hinge on one end. The cylinder was placed around the leaf blade near the ligule and glued shut with superglue (gasket method from Troy Ocheltree, personal communication): The leaf was cut from the plant with a razor blade while submerged in a 15 mmol L-1 KCl solution; the rubber gasket was then attached to tubing filled with the same KCl solution. The other end of the tubing was inside a graduated cylinder that sat on a digital balance (Mettler-Toledo). The leaf was then placed inside a custom, environmentally controlled cuvette that allowed for the measurement of entire grass blades. The cylindrical glass cuvette is 50 cm long with a 6 cm diameter. It is surrounded by a second glass cylinder that is sealed off with the exception of two nozzles that allow for the circulation of temperature-controlled water. This water jacket controls cuvette temperature. Within the cuvette, the leaf rests on a 48 cm long, removable threaded-rod insert that has attached to it: 11 air-stirring fans, a leaf thermocouple, a shielded temperature/relative humidity sensor (Sensirion SHT75), and tubing for incoming/outgoing air supply. -
Wildland Fire Management Handbook for Sub-Sahara Africa
cover final.qxd 2004/03/29 11:57 AM Page 1 Africa is a fire continent. Since the early evolution of humanity, fire has been harnessed as a land-use tool. Wildland Fire Management Many ecosystems of Sub-Sahara Africa that have been WILDLAND FIRE MANAGEMENT HANDBOOK WILDLAND FIRE MANAGEMENT shaped by fire over millennia provide a high carrying HANDBOOK WILDLAND FIRE MANAGEMENT Handbook for Sub-Sahara Africa capacity for human populations, wildlife and domestic livestock. The rich biodiversity of tropical and sub- tropical savannas, grasslands and fynbos ecosystems is attributed to the regular influence of fire. However, as a Edited by Johann G Goldammer & Cornelis de Ronde result of land-use change, increasing population FOR SUB-SAHARA AFRICA pressure and increased vulnerability of agricultural land, FOR SUB-SAHARA AFRICA timber plantations and residential areas, many wildfires have a detrimental impact on ecosystem stability, economy and human security. The Wildland Fire Management Handbook for Sub-Sahara Africa aims to address both sides of wildland fire, the best possible use of prescribed fire for maintaining and stabilising eco- systems, and the state-of-the-art in wildfire fire prevention and control. The book has been prepared by a group of authors with different backgrounds in wildland fire science and fire management. This has resulted in a book that is unique in its style and contents – carefully positioned between a scientific textbook and a guidebook for fire manage- ment practices, this volume will prove invaluable to fire management practitioners and decision-makers alike. The handbook also makes a significant contribution towards facilitating capacity building in fire manage- ment across the entire Sub-Sahara Africa region. -
The C4 Plant Lineages of Planet Earth
Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia. -
Global Relationships Between Plant Functional Traits and Environment in Grasslands
GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub. -
4.13 Protea Welwitchii-Tristachya Leucothrix Low Open Shrubland
4.13 Protea welwitchii-Tristachya leucothrix Low Open Shrubland The size of this plant community is 438 ha and covers 1,5 % of the study area. The grazing capacity is 10,9 ha/LSU (Table 4.9). The ecological index of the veld is at present 739, which shows that it is in a good condition, because of the high percentage Decreaser species and Increaser 1 species. In the past this veld was extensively grazed by cattle and since it has been part of MNP, little or no grazing occurred in this veld, because of the lack of grazing animals. Grazing animals were recently introduced into this part of MNP. During the time that little or no grazing occurred in this veld, MNP bumt every second year because of lightning fires. The accumulation of moribund material did not occur which helped to maintain the present status of this veld. During a year with below average rainfall, the grazing capacity would decrease from 10,9 ha/LSU to 17,9 ha/LSU (Table 4.9). The grasses with the highest frequency are as follows: Species % Frequency Andropogon schirensis 14 % Trachypogon spicatus 12 % Panicum dregeana 10 % Loudetia simplex 9% Themeda triandra 8% Tristachya rehmannii 8% Schizachyrium sanguineum 7% Hyparrhenia hirla 4% Panicum colora tum 4% • .. 98 Table 4.9 Grazing capacity of Protea welwitchii-Tristachya leucothrix Low Open Shrubland SIZE (ha) = 438 AVERAGE RAINFALL BELOW AVERAGE RAINFALL % BUSH COVER TREES: o o SHRUBS: 10 10 1.0 1.0 % DECREASERS 31 31 % INCREASERS 1 57 57 % INCREASERS 2a&b 6 6 % INCREASERS 2c 6 6 TOTAL 100 100 ECOLOGICAL INDEX 739 665 % GRASS COVER 18 14 AVERAGE RAINFALL (mm/year) 551 468 ACCESSIBILITY (.9 =hills I 1 =plains) .9 .9 FIRE (1 =regularl never- .8) 1 1 GRAZING CAPACITY FOR GAME 10.9 (ha/LSU) 17.9 (ha/LSU) 99 4.14 Andropogon schirensis-Dicoma anomala Short Closed Grassland The size of this plant community is 9 635 ha and covers 33,2 % of the study area. -
It Was Felt That a More Careful Character Selection and Character State
CHAPTER 3 Variation in quantitative characters in the morphological and anatomical phylogeny of Loudetia and Loudetiopsis 3.0 Abstract Loudetiopsis was created from parts of Loudetia, Trichopteryx and Tristachya, but Phipps (1967) and Clayton (1972) have noted that there is no boundary with Loudetia. Cladistic analysis was therefore performed to ascertain the circumscriptions of Loudetia and Loudetiopsis and to infer hypotheses of species relationships, classifications and biogeography based on morphological and anatomical data. Discrete character states were determined from quantitative anatomical and morphological data using the box and whisker graph method. The ranges of species were compared to determine if there were gaps on which to base decisions for coding character states into binary and multistate characters. Results showed that quantitative morphological characters yielded few discrete character states in the Arundinelleae, with only one (3%) potential phylogenetic character (the length of the awn of the upper lemma) and no discrete character state in the quantitative anatomical data. The length of the awn of the upper lemma is a uniquely-derived character state which defines the Loudetia togoensis – annua – hordeiformis clade. Thus, although the number of discrete and potentially phylogenetically important character states is small, exclusion of quantitative characters may result in the loss of potential phylogenetic signal. Plotting the range and standard deviation of the length of each character on graphs has also revealed taxa with ranges that otherwise do not overlap, indicating seemingly different evolutionary steps, are connected by intermediates and therefore assigned one ordinal code based on lack of the gaps in ranges. This represents the loss and / or distortion of phylogenetic signals. -
Using the Checklist N W C
Using the checklist • The arrangement of the checklist is alphabetical by family followed by genus, grouped under Pteridophyta, Gymnosperms, Monocotyledons and Dicotyledons. • All species and synonyms are arranged alphabetically under genus. • Accepted names are in bold print while synonyms or previously-used names are in italics. • In the case of synonyms, the currently used name follows the equals sign (=), and only refers to usage in Zimbabwe. • Distribution information is included under the current name. • The letters N, W, C, E, and S, following each listed taxon, indicate the known distribution of species within Zimbabwe as reflected by specimens in SRGH or cited in the literature. Where the distribution is unknown, we have inserted Distr.? after the taxon name. • All species known or suspected to be fully naturalised in Zimbabwe are included in the list. They are preceded by an asterisk (*). Species only known from planted or garden specimens were not included. Mozambique Zambia Kariba Mt. Darwin Lake Kariba N Victoria Falls Harare C Nyanga Mts. W Mutare Gweru E Bulawayo GREAT DYKEMasvingo Plumtree S Chimanimani Mts. Botswana N Beit Bridge South Africa The floristic regions of Zimbabwe: Central, East, North, South, West. A checklist of Zimbabwean vascular plants A checklist of Zimbabwean vascular plants edited by Anthony Mapaura & Jonathan Timberlake Southern African Botanical Diversity Network Report No. 33 • 2004 • Recommended citation format MAPAURA, A. & TIMBERLAKE, J. (eds). 2004. A checklist of Zimbabwean vascular plants.