Expanded Understanding of Eleusine Diversity and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
University of Florida Thesis Or Dissertation Formatting Template
PLANT GROWTH AND SOIL RESPONSES TO SIMULATED NITROGEN DEPOSITION AND DRY SEASON PRECIPITATION IN A NEOTROPICAL SAVANNA By STELLA M. COPELAND A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2009 1 © 2009 Stella M. Copeland 2 To the Cerrado To the hope of a future with wild places and intact ecosystems To my grandparents, who collectively encouraged intellectual curiosity, compassion for my fellow human beings, and a passion for biodiversity 3 ACKNOWLEDGMENTS I am eternally grateful to my committee, Dr. Heraldo Vasconcelos, Dr. Michelle Mack, and my adviser Dr. Emilio Bruna, for their support and advice. A special note of thanks to Dr. John (Jack) Ewel, who graciously agreed to participate in my defense in replacement for an off- campus member. I am indebted to the students of the Laboratório de Insetos Socias, Universidade Federal de Uberlândia, Brazil, for their help and kindness as I navigated Brazilian culture, Portuguese language, and Cerrado ecology in pursuit of my Master’s data. I thank the staff of the Laboratório de Análises de Solos e Calcários, Universidade Federal de Uberlândia, who cheerfully guided me through a litany of soil and foliar analyses. I am grateful to numerous professors, staff, and fellow graduate students of the Department of Wildlife Conservation and Ecology and Department of Botany at University of the Florida who were invaluable throughout the process of thesis development, implementation, and completion. Meghan Brennan and James Colee, of the UF Institute of Food and Agricultural Sciences Statistics Consulting Unit provided crucial research design and statistical analysis support. -
Form 104 School Lunch Meal Pattern Grains Fact Sheet 6.2015.Pub
School Lunch Meal Pattern Grains Fact Sheet Form 104 All grains must be Whole Grain-Rich (WGR) June 2015 Whole GrainGrain----RichRich (WGR) Barley Wheat (Red) Dehulled barley Bulgur (cracked wheat) DehulledDehulled----barleybarley flour Bromated wholewhole----wheatwheat flour Whole barley Cracked wheat or crushed wheat WholeWhole----barleybarley flakes Entire wheat flour WholeWhole----barleybarley flour Graham flour Whole grain barley Sprouted wheat WholeWhole----graingrain barley flour Sprouted wheat berries Stone ground wholewhole----wheatwheat flour Brown Rice Toasted crushed whole wheat Brown rice Wheat berries Brown rice flour Whole bulgur Whole durum flour Corn Whole durum wheat flour Whole corn WholeWhole----graingrain bulgur WholeWhole----corncorn flour WholeWhole----graingrain wheat Whole cornmeal WholeWhole----wheatwheat flour WholeWhole----graingrain corn flour WholeWhole----wheatwheat pastry flour WholeWhole----graingrain grits Whole wheat flakes Oats Wheat(White) Oat groats Whole white wheat Oatmeal or rolled oats Whole white wheat flour Whole oats WholeWhole----oatoat flour Wild Rice Rye Wild rice Whole rye WildWild----ricerice flour Rye berries WholeWhole----ryerye flour WholeWhole----ryerye flakes Less Common Grains To be whole grains “whole” must be listed before the grain name Amaranth Buckwheat Einkorn Emmer (faro) Kamut ® Millet Quinoa Sorghum (milo) Spelt Teff Triticale Grain Facts: To be considered WGR, the product must contain 100% whole grain OR be at least 50 Form 104 percent whole grains, any remaining grains must be enriched and any non-creditable June 2015 grains must be less than 2 percent (¼ ounce equivalent) of the product formula. For more information, see Whole Grain Resource for NSLP and SBP Manual No more than two grain-based desserts can be credited per week. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Gene and Transposable Element Expression
Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud, Oscar Lima, Mathieu Rousseau-Gueutin, Armel Salmon, Malika Ainouche To cite this version: Delphine Giraud, Oscar Lima, Mathieu Rousseau-Gueutin, Armel Salmon, Malika Ainouche. Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae). Frontiers in Genetics, 2021, 12, 10.3389/fgene.2021.589160. hal-03216905 HAL Id: hal-03216905 https://hal.archives-ouvertes.fr/hal-03216905 Submitted on 4 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fgene-12-589160 March 19, 2021 Time: 12:36 # 1 ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fgene.2021.589160 Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud1, Oscar Lima1, Mathieu Rousseau-Gueutin2, Armel Salmon1 and Malika Aïnouche1* 1 UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France, 2 IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae)
fgene-12-589160 March 19, 2021 Time: 12:36 # 1 ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fgene.2021.589160 Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud1, Oscar Lima1, Mathieu Rousseau-Gueutin2, Armel Salmon1 and Malika Aïnouche1* 1 UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France, 2 IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6–10 my, Edited by: at the origin of differential phenotypic and ecological traits. Of particular interest Yves Van de Peer, are the recent (19th century) hybridizations between the two hexaploids Spartina Ghent University, Belgium alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in Reviewed by: Pamela Soltis, two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and University of Florida, United States Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of Clayton J. Visger, S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica California State University, Sacramento, United States (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and *Correspondence: the enrichment of previously published reference transcriptomes for hexaploids and Malika Aïnouche the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing [email protected] 21 transcribed transposable element (TE) lineages across the seven investigated Specialty section: Spartina species. -
Genome Analysis of Finger Millet E. Coracana by Interspecific Hybridization Among Diploid Wild Species of Eleusine (Poaceae)
© 2005 The Japan Mendel Society Cytologia 70(4): 427–434, 2005 Genome Analysis of Finger Millet E. coracana by Interspecific Hybridization among Diploid Wild Species of Eleusine (Poaceae) Rachayya M. Devarumath1, Subhash C. Hiremath2, Satyawada Rama Rao3*, Arun Kumar3 and Sangeeta Bewal3 1 Genetic Engineering and Molecular Biology Laboratory, Vasantadada Sugar Institute, Manjari (BK) Pune –12, India 2 Department of Botany, Karnataka University, Dharwad 580 003, India 3 Cytogenetics and Molecular Biology Laboratory, Department of Botany, J. N. V. University, Jodhpur 342 005, India Received July 25, 2005; accepted October 24, 2005 Summary Four species of Eleusine viz. E. intermedia, E. floccifolia, E. indica and E. tristachya are wild diploid taxa (2nϭ2xϭ18) and are presumed to have contributed to the evolution of finger millet, E. coracana, the amphidiploid with AABB genome (2nϭ2xϭ36) and an important minor millet grown in Africa and South Asia. E. indica is known to have contributed the A genome to E. coracana, while the information regarding the other genome donor species is not forthcoming. The present investigations were undertaken to clearly understand the genome homology of 3 species viz. E. intermedia, E. floccifolia and E. tristachya vis-à-vis the A genome of E. indica and to analyze the interspecific relationship among these diploid species and their possible contribution to the evolution ϫ ϫ of E. coracana. Interspecific F1 hybrids of E. intermedia E. indica, E. intermedia E. floccifolia and E. tristachyaϫE. intermedia were produced and studied for morphological and cytological details. The experimental data revealed a high degree of homology at the interspecific level among all 4 species resulting in high frequency of bivalents and a very low frequency of univalents and mul- tivalents. -
Whole and Enriched Grains CACFP Reference Sheet
OSPI CNS Child and Adult Care Food Program Reference Sheet Whole and Enriched Grains Whole and enriched grains are a part of identifying Whole Grain-Rich (WGR) items. There are several methods to identify WGR items. Please view the Grain Requirements in the CACFP Reference Sheet for more information. Whole Grains: Amaranth Sprouted einkorn Amaranth flour Sprouted spelt Brown rice Sprouted whole rye Buckwheat Sprouted whole wheat Buckwheat flour Steel cut oats Buckwheat groats Teff Bulgur Teff flour Cracked wheat Triticale Graham flour Triticale flour Instant oatmeal Wheat berries Millet Wheat groats Millet flour Whole durum flour Oat groats Whole einkorn berries Old fashioned oats Whole grain corn Quick cooking oats Whole grain corn flour Quinoa Whole grain einkorn flour Rye groats Whole grain oat flour Sorghum Whole grain spelt flour Sorghum flour Whole grain wheat flakes Spelt berries Whole rye flour Sprouted brown rice Whole wheat flour Sprouted buckwheat Wild rice Whole corn Brans and Germs: Corn bran Rye bran Oat bran Wheat bran Rice bran Wheat germ Enriched Grains: Enriched bromated flour Enriched rice Enriched corn flour Enriched rice flour Enriched durum flour Enriched rye flour Enriched durum wheat Enriched wheat flour flour Enriched white flour OSPI CNS November 2018 OSPI CNS Child and Adult Care Food Program Reference Sheet Disregarded Ingredients – May be ignored (typically presented in small amounts) Corn dextrin Tapioca starch Corn starch Wheat dextrin Modified -
Whole Grain Goodness
Nutrition Know-How Child Health Specialty Clinics Whole Grain Goodness What is a whole grain? A whole grain food has all three parts of the grain, and each part has different vitamins and minerals that work together to provide nutrition. Many people only think of wheat and other bread products when they hear the word “grain,” but there are many foods that contain whole grains. Why do whole grains matter? Whole grains are higher in fiber, iron and vitamins than processed grains like white flour. Fiber can help your child pass bowel movements, and iron and vitamins are very important for a child’s growth and development. People who eat more whole grains are less likely to struggle with their weight and other serious health conditions like colon cancer. How much whole grain does my child need? This depends on your child’s age and size. A good guide is to make at least half of your child’s grain servings whole grain. For example, if your child eats 6 servings of grain, at least 3 of those servings should be whole grain. How do I know if a food is whole grain? Look for the words “whole grain” on the package. Foods with at least 51% whole grain will have a special label on them like the one shown at the top of this page. You can also check the ingredients; to be a whole grain product a food should have a whole grain listed as the first ingredient. A whole grain bread will have “whole wheat flour” as the first ingredient. -
Gluten-Free Grains
Gluten-Free Grains Amaranth Updated February 2021 Buckwheat The gluten-free diet requires total avoidance of the grains wheat, barley, rye and all varieties and hybrids of these grains, such as spelt. However, there are many wonderful gluten-free grains* to enjoy. Cornmeal, Amaranth Polenta, Grits, Once the sacred food of the Aztecs, amaranth is high in protein, calcium, iron, and fiber. Toasting this tiny grain before cooking brings out its nutty flavor. Hominy Makes a delicious, creamy hot breakfast cereal. Serve with fruit of choice on top and/or a touch of maple syrup. Millet Rice Rice comes in many varieties: short grain, long grain, jasmine and basmati to name a Oats few. Long grain rice tends to be fluffier while short grain rice is stickier. Rice also comes in various colors: black, purple, brown, and red. These colorful un-refined rices contribute more nutritional benefits than does refined white rice and have subtly unique flavors and Quinoa textures too. Wild rice is another different and delicious option. Versatile rice leftovers can go in many directions. Add to salads or sautéed vegetables; Rice make rice pancakes or rice pudding; season and use as filling for baked green peppers or winter squash. Sorghum Buckwheat Despite the name, buckwheat is a gluten-free member of the rhubarb family. Roasted buckwheat is called kasha. Buckwheat is high in B Vitamins, fiber, iron, magnesium, Teff phosphorous and zinc. Buckwheat has an earthy, nutty, slightly bitter taste. Experiment with using the cooked grain (buckwheat “groats”, or “kasha” which is the toasted version) as you would rice. -
Gramineae) VIII
Studies in the Arundinelleae (Gramineae) VIII. The Phylogeny — A Hypothesis J.B. Phipps Department of Botany, The University of Western Ontario, London, Canada Contents Page Abstract 477 1. Introduction 477 2. The nature and interpretation of phylogenetic evidence 478 (i) Phylogenies hypothetical 478 (ii) The interpretation of phylogenetic evidence 478 (iii) Conservative characters 478 (iv) Selection of advanced and primitive character states 479 The (v) character states used 479 (vi) Number of characters used 480 The 3. representation of a phylogeny 480 (i) Principles for arranging cladograms 481 classifications 4. Phyletic 481 Criteria for this 5. accepted paper 481 6. The phylogeny deduced 482 Individual (i) genera 482 Discussion of within (ii) genera groups 485 (iii) The tribe as a whole 487 7. Phyletic conclusions 488 (i) Geographical considerations 488 (ii) Parallelism 489 (iii) Evolutionary reversals 490 (iv) Postulation of a primitive or proto-Arundinellean 490 A (v) phyletic classification 491 8. Summary 491 Acknowledgements 492 References 492 Abstract This study considers the 163 species accepted as belonging to the tribe Arundinelleae (Gramineae) and into A is arranges them a putative cladogram. discussion ofthe rationale presented, 38 characters are studied for advanced versus primitive states, advancement indices calculated, and trends of variation discussed. The six major groups ofPhipps (1966b) are maintained. The phylogeny conforms excellently with the of the continental drift it for the geographical aspects hypothesis though requires a greater age Angiosperms than is generally held to be the case. I. Introduction The the with the tribe Arundinelleae present paper, eighth in a series dealing variationin amine derive a of a (Gr ae), is an attempt to tentative phylogeny group quite intensively 21 478 BLUMEA VOL.