Development of the Table of Initial Isolation and Protective Action Distances for the 2012 Emergency Response Guidebook

Total Page:16

File Type:pdf, Size:1020Kb

Development of the Table of Initial Isolation and Protective Action Distances for the 2012 Emergency Response Guidebook CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive Materials .................................................................... 25 2.4.1 Background ................................................................................................. 25 2.4.2 Identification and Evaluation of Candidates ............................................... 26 2.4.3 Experimental Program ................................................................................ 27 2.4.4 Additional Selection Criteria ...................................................................... 27 2.4.5 Summary ..................................................................................................... 29 2.5 Determination of Initial Isolation Distances ........................................................... 29 3 STATISTICAL ACCIDENT SCENARIO ANALYSIS AND CASRAM ...................... 31 3.1 Statistical Scenario Analysis ................................................................................... 32 3.1.1 Overview of Analysis Steps ........................................................................ 32 3.1.2 HMIS Database ........................................................................................... 33 3.1.3 Geographic Incident Distributions .............................................................. 33 3.1.4 Temporal Incident Distributions ................................................................. 34 3.1.5 Discharge Fraction Distributions ................................................................ 37 3.1.5.1 Bulk Containers ........................................................................... 37 3.1.5.2 Package Freight Containers ......................................................... 40 3.2 Meteorological Database Used to Prepare the Guidebook ..................................... 45 3.2.1 Meteorological and Site Data...................................................................... 45 3.2.2 Meteorological Preprocessor ...................................................................... 45 3.2.2.1 Surface Turbulence Parameters ................................................... 46 3.2.2.2 Inversion Height and Boundary Layer Height ............................. 48 3.2.3 Water Temperature for TIHWR Reaction Rates ........................................ 49 iii CONTENTS (Cont.) 3.3 Emission Rate Characterization .............................................................................. 50 3.3.1 Overview of Release Types ........................................................................ 50 3.3.2 CASRAM Emission Model and Its Application to the ERG2012 Analysis....................................................................................................... 52 3.3.2.1 Assumptions Used to Develop Accident Scenarios ..................... 52 3.3.2.2 Physical Considerations ............................................................... 54 3.3.2.3 Water-Reactive Materials ............................................................ 58 3.4 Analysis of Atmospheric Dispersion ...................................................................... 60 3.4.1 Overview of Atmospheric Dispersion ........................................................ 61 3.4.1.1 Diurnal Aspects of Plume Dispersion .......................................... 61 3.4.1.2 Effects of Dense Gas on Plume Dispersion ................................. 63 3.4.2 CASRAM Dispersion Model ...................................................................... 65 3.4.2.1 Passive Dispersion ....................................................................... 65 3.4.2.2 Dense Gas Dispersion .................................................................. 70 4 HEALTH CRITERIA ...................................................................................................... 73 4.1 Review of Health Criteria Development for the ERG Analysis ............................. 74 4.1.1 Acute Exposure Guideline Levels .............................................................. 74 4.1.2 Emergency Response Planning Guidelines ................................................ 75 4.1.3 Comparisons of AEGLs, ERPGs, and other Health Criteria ...................... 76 4.1.3.1 IDLH Values ................................................................................ 76 4.1.3.2 LOC Values ................................................................................. 76 4.1.3.3 TEEL Values................................................................................ 77 4.2 Procedure Used to Select Health Criteria for the ERG ........................................... 78 4.2.1 Use of AEGL and ERPG Data .................................................................... 78 4.2.2 Use of Acute Inhalation Lethality Data in Animals .................................... 78 4.2.2.1 Species Considerations ................................................................ 79 4.2.2.2 Experimental Exposure Duration Considerations ........................ 80 4.2.2.3 Data Source Considerations ......................................................... 81 4.2.2.4 Adjustment Factors ...................................................................... 82 4.2.3 Use of Data for Structurally Similar Substances ........................................ 82 4.3 Summary ................................................................................................................. 82 4.4 Glossary for Chapter 4 ............................................................................................ 84 5 SUMMARY ..................................................................................................................... 87 5.1 Safe Distance Distributions and Protective Action Distances ................................ 87 5.1.1 Generation of Table 1 Protective Action Distances .................................... 87 5.1.2 Generation of Table 3 Protective Action Distances .................................... 93 5.2 Presentation of the Tables in the Guidebook .......................................................... 94 5.3 Extensions of the ERG Analysis ............................................................................. 96 iv CONTENTS (Cont.) 6 REFERENCES ................................................................................................................ 99 APPENDIX A: Table of Initial Isolation and Protective Action Distances in the 2012 Emergency Response Guidebook .................................................................. 105 APPENDIX B: Initial Isolation and Protective Action Distances for Six Common TIH Gases Provided in Table 3 of ERG2012 ................................................ 127 APPENDIX C: Chemicals Analyzed in the ERG2012 Analysis ............................................ 133 APPENDIX D: Additional Details on Water-Reactive Materials .......................................... 143 FIGURES 1.1 Illustration Showing How the ERG2012 Defines the Initial Isolation Zone and Protective Action Zone for Use by a First Responder .................................................. 6 2.1 Schematic of the Methodology Used to Prepare the ERG2012 Table of Initial Isolation and Protective Action Distances .................................................................... 10 3.1 Hourly Distributions of Rail and Highway Transportation-Related Hazardous Material Releases Occurring during Accident-Related and en Route/Nonaccident Incidents from the HMIS Database for 19902002 ...................................................... 36 3.2 Monthly Distributions of Rail and Highway Transportation-Related Hazardous Material Releases Occurring during Accident-Related and en Route/Nonaccident Incidents from the HMIS Database for 19902002 ...................................................... 36 3.3 Discharge Fraction Cumulative Probability for Bulk Nonpressurized and Low- Pressure Containers as Derived from the Analysis of the HMIS Database Used for the ERG2012 Analysis ...........................................................................................
Recommended publications
  • Air Contaminants – Permissible Exposure Limits (Pels)
    SUBPART Z -- TOXIC AND HAZARDOUS SUBSTANCES 1910.1000-AIR CONTAMINANTS An employee’s exposure to any substance listed in Table Z-1-A of this section shall be limited in accordance with the requirements of the following paragraphs of this section. (a) Table Z-1-A. Limits for Air Contaminants (1) & (2) Enforcement of Transitional Limits has expired. See Paragraph (3) for Limits. (3) Limits for Air Contaminants Columns. An employee’s exposure to any substance listed in Table Z-1-A shall not exceed the Time Weighted Average (TWA), Short Term Exposure Limit (STEL) and Ceiling Limit specified for that substance in Table Z-1-A. (4) Skin Designation. To prevent or reduce skin absorption, an employee’s skin exposure to substances listed in Table Z-1-A with an “X” in the Skin Designation column following the substance name shall be prevented or reduced to the extent necessary in the circumstances through the use of gloves, coveralls, goggles, or other appropriate personal protective equipment, engineering controls or work practices. (5) Definitions. The following definitions are applicable to the Limits for Air Contaminants columns of Table Z- 1-A: (i) Time weighted average (TWA) is the employee’s average airborne exposure in any 8-hour work shift of a 40-hour work week which shall not be exceeded. (ii) Short term exposure limit (STEL) is the employee’s 15-minute time weighted average exposure which shall not be exceeded at any time during a work day unless another time limit is specified in a parenthetical notation below the limit.
    [Show full text]
  • Rhode Island Hazardous Substance List
    Rhode Island Hazardous Substance List Source: T - ACGIH F - NFPA49 C - IARC Alphabetical Order C.A.S. ACGIH NFPA IARC CHEMICAL NAME 13010-47-4 C 1,-(2-Chloroethyl)-3-cyclohexyl-1-Nitrosourea 76-11-9 T 1,1,1,2-tetrachloro-2,2-difluoroethane 76-12-0 T 1,1,2,2-tetrachloro-1,2-difluoroethane 79-34-5 T 1,1,2,2-tetrachloroethane - skin 76-13-1 T 1,1,2-trichloro-1,2,2-trifluoroethane 79-00-5 T F C 1,1,2-trichloroethane - skin 594-72-9 T 1,1-Dichloro-1-nitroethane 74-34-3 T 1,1-dichloroethane 57-14-7 T 1,1-dimethylhydrazine (udmh) 96-18-4 T 1,2,3-trichloropropane 120-82-1 T 1,2,4-Trichlorobenzene 106-88-7 F 1,2-Butylene oxide 107-15-3 T F 1,2-Diaminoethane 96-12-8 C 1,2-Dibromo-3-chloropropane 106-93-4 T F C 1,2-Dibromoethane - skin 107-06-2 T F 1,2-Dichlorethane 540-59-0 T F 1,2-Dichloroethene 540-59-0 T F 1,2-Dichloroetylene 1615-80-1 C 1,2-Diethylhydrazine C 1,2-Dimethyl hydrazine - skin 106-99-0 T F 1,3-Butadiene 118-52-5 T 1,3-Dichloro-5,5-dimethylhydantoin 542-75-6 T F 1,3-Dichloropropene (cis and trans) 542-75-6 T F 1,3-Dichloropropylene 110-56-5 F 1,4-Dichlorobutane 123-91-1 T F C 1,4-Dioxane 1120-71-4 1-3-Propane sultone 110-53-2 F 1-Bromopentane 106-89-8 T F C 1-Chloro,2,3-epoxy-propane 600-25-9 T 1-Chloro-1-nitropropane 97-00-7 F 1-chloro-2,4-dinitrobenzene 543-59-9 F 1-Chloropentane 112-30-1 F 1-Decanol 111-27-3 F 1-Hexanol 141-79-7 T F 1-Isobutenyl methyl ketone 108-03-2 T F 1-Nitropropane 71-41-0 F 1-Pentanol 110-58-7 F 1-Pentylamine 111-40-0 T F 2,2'-Diaminodiethylamine 111-44-4 F 2,2'Dichlorodiethyl ether 75-99-0 T 2,2-dichloropropionic acid 556-52-5 T 2,3-Epoxy-1-propanol 93-76-5 T 2,4,5-T 95-95-4 F 2,4,5-trichlorophenol 88-06-2 F C 2,4,6-trichlorophenol 118-96-7 T F 2,4,6-Trinitro Toluene 479-95-8 T 2,4,6-Trinitrophenyl-methylnitramine 94-75-7 T 2,4-d (2,4-dichlorophenoxyacetic acid) 97-02-9 F 2,4-dinitroaniline 584-84-9 T F 2,4-Tolylene diisocyanate 108-83-8 T 2,6-Dimethyl-4-heptanone 108-83-8 T 2,6-Dimethyl-4-heptanone 128-37-0 T 2,6-Ditert.
    [Show full text]
  • Downloads/DL Praevention/Fachwissen/Gefahrstoffe/TOXIKOLOGI SCHE BEWERTUNGEN/Bewertungen/Toxbew072-L.Pdf
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Jedidiah Samuel Snyder Date Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Master of Public Health Global Environmental Health _________________________________________ P. Barry Ryan, Ph.D. Committee Chair _________________________________________ Eugene Demchuk, Ph.D. Committee Member _________________________________________ Paige Tolbert, Ph.D. Committee Member Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Bachelor of Science in Engineering, B.S.E. The University of Iowa 2010 Thesis Committee Chair: P. Barry Ryan, Ph.D. An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Global Environmental Health 2015 Abstract Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S.
    [Show full text]
  • 2018 Annual Survey of Biological and Chemical Agents Regulated by Homeland Security (And Carcinogens Regulated by OSHA)
    Name: Dept: Date: 2018 Annual Survey of Biological and Chemical Agents regulated by Homeland Security (and carcinogens regulated by OSHA) Due (date) All labs that do not have a current chemical inventory in Chematix MUST complete this survey. The University is required to make an annual report of all chemicals on the Chemical Facility Anti-Terrorism Standards (CFATS) lists. Additional information regarding the regulations is available on the EH&S website at http://www.safety.rochester.edu/restricted/occsafe/chemicalagent.html and https://www.selectagents.gov. 1. Please review the lists on the following pages and indicate if any are possessed by your lab. The CAS# has been added to the list for ease of searching databases. The CAS# is a Chemical Abstract Service numbering system which assigns a unique number to every chemical substance based on structure; this helps avoid confusion by use of synonyms or different naming conventions. a. If yes for possession, place an X in the applicable box and if requested, include the quantity held in your lab. b. If no, leave blank. 2. After reviewing the list, please complete the information box below (or on last page for possession), then sign, date and return to EH&S. 3. Please call Donna Douglass at 275-2402 if you have any questions. Thank you for your cooperation in collecting data required by the Department of Homeland Security! Possession: 1) Fill in applicable boxes, 2) have PI sign last page, 3) return all pages to Donna Douglass OR Non-possession: 1) Check only one box on the left, 2) sign, 3) return just this page to Donna Douglass I do not have a lab, do not work in a lab, nor do I possess any of the agents in this survey.
    [Show full text]
  • Synthesis of Isothiocyanates Using DMT/NMM/Tso− As a New Desulfurization Reagent
    molecules Article Synthesis of Isothiocyanates Using DMT/NMM/TsO− as a New Desulfurization Reagent Łukasz Janczewski 1,* , Dorota Kr˛egiel 2 and Beata Kolesi ´nska 1 1 Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; [email protected] 2 Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: Thirty-three alkyl and aryl isothiocyanates, as well as isothiocyanate derivatives from esters of coded amino acids and from esters of unnatural amino acids (6-aminocaproic, 4-(aminomethyl)benzoic, and tranexamic acids), were synthesized with satisfactory or very good yields (25–97%). Synthesis was performed in a “one-pot”, two-step procedure, in the presence of organic base (Et3N, DBU or NMM), and carbon disulfide via dithiocarbamates, with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4- methylmorpholinium toluene-4-sulfonate (DMT/NMM/TsO−) as a desulfurization reagent. For the synthesis of aliphatic and aromatic isothiocyanates, reactions were carried out in a microwave reactor, and selected alkyl isothiocyanates were also synthesized in aqueous medium with high yields (72–96%). Isothiocyanate derivatives of L- and D-amino acid methyl esters were synthesized, under conditions without microwave radiation assistance, with low racemization (er 99 > 1), and their absolute configuration was confirmed by circular dichroism. Isothiocyanate derivatives of natural and unnatural amino acids were evaluated for antibacterial activity on E. coli and S. aureus bacterial strains, where the Citation: Janczewski, Ł.; Kr˛egiel,D.; most active was ITC 9e.
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Gas Conversion Factor for 300 Series
    300GasTable Rec # Gas Symbol GCF Density (g/L) Density (g/L) 25° C / 1 atm 0° C / 1 atm 1 Acetic Acid C2H4F2 0.4155 2.7 2.947 2 Acetic Anhydride C4H6O3 0.258 4.173 4.555 3 Acetone C3H6O 0.3556 2.374 2.591 4 Acetonitryl C2H3N 0.5178 1.678 1.832 5 Acetylene C2H2 0.6255 1.064 1.162 6 Air Air 1.0015 1.185 1.293 7 Allene C3H4 0.4514 1.638 1.787 8 Ammonia NH3 0.7807 0.696 0.76 9 Argon Ar 1.4047 1.633 1.782 10 Arsine AsH3 0.7592 3.186 3.478 11 Benzene C6H6 0.3057 3.193 3.485 12 Boron Trichloride BCl3 0.4421 4.789 5.228 13 Boron Triflouride BF3 0.5431 2.772 3.025 14 Bromine Br2 0.8007 6.532 7.13 15 Bromochlorodifluoromethane CBrClF2 0.3684 6.759 7.378 16 Bromodifluoromethane CHBrF2 0.4644 5.351 5.841 17 Bromotrifluormethane CBrF3 0.3943 6.087 6.644 18 Butane C4H10 0.2622 2.376 2.593 19 Butanol C4H10O 0.2406 3.03 3.307 20 Butene C4H8 0.3056 2.293 2.503 21 Carbon Dioxide CO2 0.7526 1.799 1.964 22 Carbon Disulfide CS2 0.616 3.112 3.397 23 Carbon Monoxide CO 1.0012 1.145 1.25 24 Carbon Tetrachloride CCl4 0.3333 6.287 6.863 25 Carbonyl Sulfide COS 0.668 2.456 2.68 26 Chlorine Cl2 0.8451 2.898 3.163 27 Chlorine Trifluoride ClF3 0.4496 3.779 4.125 28 Chlorobenzene C6H5Cl 0.2614 4.601 5.022 29 Chlorodifluoroethane C2H3ClF2 0.3216 4.108 4.484 30 Chloroform CHCl3 0.4192 4.879 5.326 31 Chloropentafluoroethane C2ClF5 0.2437 6.314 6.892 32 Chloropropane C3H7Cl 0.308 3.21 3.504 33 Cisbutene C4H8 0.3004 2.293 2.503 34 Cyanogen C2N2 0.4924 2.127 2.322 35 Cyanogen Chloride ClCN 0.6486 2.513 2.743 36 Cyclobutane C4H8 0.3562 2.293 2.503 37 Cyclopropane C3H6 0.4562
    [Show full text]
  • NAC/AEGL Committee Meeting Minutes, December 2007
    National Advisory Committee (NAC) for Acute Exposure Guideline Levels (AEGLs) for Hazardous Substances December 5-7, 2007 Meeting-44 Highlights Orlando World Center Marriott 8701 World Center Drive Orlando, FL INTRODUCTION Ernest Falke distributed a CD containing the most recent Technical Support Documents for all AEGL program chemicals that are proposed, interim, or final status. Dr. Falke also stated that the Prepublication Copy of NAS Volume 6 was released in September, 2007, and that the published volume should be available for distribution by the March meeting. Paul Tobin informed the group that the NAC/AEGL committee was recognized by the FACA awards program twice (last year and this year). There are 27 EPA FACAs, and only the NAC/AEGL was recognized twice; a total of only 3 EPA FACAs were recognized. Specifically, the NAC/AEGL was recognized for timeliness of Federal Register notices, transparency of the process, public input (both via the meeting and the Federal Register), and international impact. The draft NAC/AEGL-43 meeting highlights were reviewed. Due to a rounding error, the 30-minute AEGL-3 value for dichlorosilanes should be 110 ppm, not 105 ppm. A motion was made by Bob Benson and seconded by John Hinz to accept the minutes as proposed with the aforementioned correction. The motion passed unanimously by a show of hands (Appendix A). The Final NAC/AEGL-43 meeting highlights are attached (Appendix B). The highlights of the NAC/AEGL-44 meeting are summarized below along with the Meeting Agenda (Attachment 1) and the Attendee List (Attachment 2). The subject categories of the highlights do not necessarily follow the order listed in the NAC/AEGL-44 Agenda.
    [Show full text]
  • The Hydrolysis of Phosphinates and Phosphonates: a Review
    molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840.
    [Show full text]
  • NAC/AEGL Committee Meeting, April 2009
    ATTACHMENT 1 National Advisory Committee for , Acute Exposure Guideline Levels for Hazardous Substances NAC/AEGL-48 April 14-16, 2009 Hilton- Old Town Alexandria 1867 King Street Alexandria, VA AGENDA Tuesday, April 14, 2009 \0:00 a.m. *Development team meetings: Phosgene oxime; Perfluoroisobutylene; Perchloryl fluoride 11 :00 Introductory remarks and approval ofNAC/AEGL-47 Highlights (George Rusch, Ernie Falke, and Paul Tobin) 11: 15 Chemical List Update (Paul Tobin) II :30 Status Update/ Insufficient Data Chemicals: Diacetylmorphine; Fluoroacetate salts; Methyl fluoroacetate; Methoxyethylmercuric acetate; Monofluoroacetic acid; Paraquat; Phencyclidine; Sodium fluoroacetate; Tetraethylpyrophosphate; Tetramethylenedisulfotetramine; Tungsten hexafluoride (Cheryl Bast/ Bob Young) Methyl Iodide- Status Update (Alan Becker/Sylvia Talmage) 11:35 Arsenic pentoxide and Arsenic trichloride- Discussion of potential approach for AEGL Derivation (Bob Young) 12:00 p.m. Lunch 1:00 Discussion on Oral to Inhalation Extrapolation (George Rusch) 1:30 Review of Calcium cyanide, potassium cyanide, and sodium cyanide (Ralph Gingell/Cheryl Bast) 2:15 Review of Phosgene oxime (Jim Holler/BobYoung) 3: 15 Break 3:30 Review ofPerfluoroisobutylene (George Rusch/Cheryl Bast) 4:30 Revisit of Ricin- New data (Jim Holler /Bob Young) 5:30 Adjourn for the day Wednesday, April IS, 2009 8:30 a.m. *Development team meetings: Carbamate Pesticides (Aldicarb, Carbofuran, Methomyl, oxamyl); Tellurium hexafluoride 9:30 Discussion of data for Gasoline AEGLs (Russ White, American Petroleum Institute) 10:30 Phosgene- Discussion of recent data (Juergen Pauluhn, Bayer HealthCare AG) 12:00 p.m. Lunch 1:00 Review of Aldicarb (Paul Tobin/Sylvia Talmage) 2:00 Review of Carbo fur an (Paul Tobin/Bob Young) 3:00 Break 3: 15 Review of Ox amyl (Paul Tobin/Sylvia Talmage) 4:15 Review of Methomyl (Paul Tobin/Sylvia Talmage) 5:30 Adjourn for the day Thursday, April 16, 2009 8:30 a.m.
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]