Cephalopoda, Nautiloidea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Part I. Revision of Buttsoceras. Part II. Notes on the Michelinoceratida
MEMOIR 10 PART I Revision of Buttsoceras PART II Notes on the Michelinoceratida By ROUSSEAU H. FLOWER 1 9 6 2 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS Ex OFFICIO The Honorable Edwin L. Mechem ........................................ Governor of New Mexico Tom Wiley .......................................................... Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott ............................................................................................... Hobbs Holm 0. Bursum, Jr. ......................................................................................... Socorro Thomas M. Cramer ......................................................................................... Carlsbad Frank C. DiLuzio ...................................................................................... Albuquerque Eva M. Larrazolo (Mrs. Paul F.) ............................................................... Albuquerque Published October I2, 1962 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.00 Contents PART I REVISION OF BUTTSOCERAS Page ABSTRACT ....................................................................................................................... INTRODUCTION ............................................................................................................................. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Rendspi 1-Studies
Rendiconti della Società Paleontologica Italiana 3 (I) The Silurian of Sardinia volume in honour of Enrico Serpagli Edited by Carlo Corradini Annalisa Ferretti Petr Storch Società Paleontologica Italiana 2009 I Rendiconti della Società Paleontologica Italiana, 3 (1), 2009: 109-118 Silurian nautiloid cephalopods from Sardinia: the state of the art MAURIZIO GNOLI, PAOLO SERVENTI Maurizio Gnoli - Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, largo S. Eufemia 19, I- 41100 Modena (Italy); [email protected] Paolo Serventi - Dipartimento del Museo di Paleobiologia e dell’Orto Botanico, via Università 4, I-41100 Modena (Italy); [email protected] ABSTRACT - The complete faunal list of nautiloid cephalopods from the Silurian of Sardinia has been compiled herein. A history leading to the present state of knowledge on this fossil group, achieved after forty years of extensive study, is reviewed. A total of 61 species assigned to 38 genera are known from the Wenlock-Pridoli of southern Sardinia. The fauna strongly supports links with coeval associations of Bohemia and, to a lesser extent, with the Carnic Alps. KEY WORDS - Silurian, Sardinia, Cephalopods, Palaeogeography. INTRODUCTION This paper represents the nautiloid cephalopod sum up of more than forty years of scientific activity within the informal International Group on the Palaeozoic Palaeontology headed by Prof. Enrico Serpagli, who devoted most of his research to the Italian Palaeozoic outcrops mainly in two areas, the Carnic Alps and southern Sardinia. During these years, many field trips have been carried out in Sardinia allowing the collection of an enormous amount of samples studied in detail in their palaeontological (either taxonomic or biostratigraphical) content by Italian, German, English, Irish, Spanish, Swedish and Czech members of the research team. -
Lamellorthoceratid Cephalopods in the Cold Waters of Southwestern Gondwana: Evidences from the Lower Devonian of Argentina
Lamellorthoceratid cephalopods in the cold waters of southwestern Gondwana: Evidences from the Lower Devonian of Argentina MARCELA CICHOWOLSKI and JUAN JOSÉ RUSTÁN Cichowolski, M. and Rustán, J.J. 2020. Lamellorthoceratid cephalopods in the cold waters of southwestern Gondwana: Evidences from the Lower Devonian of Argentina. Acta Palaeontologica Polonica 65 (2): 305–312. Based on three specimens assigned to Arthrophyllum sp., the family Lamellorthoceratidae is reported from the Lower Devonian Talacasto Formation in the Precordillera Basin, central western Argentina. These Devonian cephalopods have been known only from low to mid palaeolatitudes and its presence in the cold water settings of southwestern Gondwana is notable. A nektonic mode of life, not strictly demersal but eventually pelagic, with a horizontal orientation of the conch is proposed for adults lamellorthoceratids, whereas a planktonic habit is suggested for juvenile individuals. These features would had allow their arrival to this southern basin, explaining their unusual presence in the Malvinokaffric Realm, and reinforcing the need of re-evaluate the distribution pattern of several groups of cephalopods. Key words: Cephalopoda, Lamellorthoceratidae, Arthrophyllum, Palaeozoic, Talacasto Formation, Malvinokaffric Realm, Precordillera Basin, Argentina. Marcela Cichowolski [[email protected]], Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), CON- ICET, and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina. Juan J. Rustán [[email protected]], Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Centro de Investigaciones Paleobiológicas (CIPAL), CONICET, Universidad Nacional de Córdoba, Av. Vélez Sarsfield Nº 1611, X5016GCA, Córdoba, Argentina and Universidad Nacional de La Rioja, M. de la Fuente s/n, CP 5300, La Rioja, Argentina. -
1540 Evans.Vp
An early Silurian (Aeronian) cephalopod fauna from Kopet-Dagh, north-eastern Iran: including the earliest records of non-orthocerid cephalopods from the Silurian of Northern Gondwana DAVID H. EVANS, MANSOUREH GHOBADI POUR, LEONID E. POPOV & HADI JAHANGIR The cephalopod fauna from the Aeronian Qarebil Limestone of north-eastern Iran comprises the first comprehensive re- cord of early Silurian cephalopods from peri-Gondwana. Although consisting of relatively few taxa, the assemblage in- cludes members of the orders Oncocerida, Discosorida, Barrandeocerida and Orthocerida. Coeval records of several of these taxa are from low palaeolatitude locations that include Laurentia, Siberia, Baltica and Avalonia, and are otherwise unknown from peri-Gondwana until later in the Silurian. The cephalopod assemblage occurs in cephalopod limestones that currently represent the oldest record of such limestones in the Silurian of the peri-Gondwana margin. The appear- ance of these cephalopods, together with the development of cephalopod limestones may be attributed to the relatively low latitudinal position of central Iran and Kopet-Dagh compared with that of the west Mediterranean sector during the Aeronian. This, combined with the continued post-glacial warming after the Hirnantian glaciation, facilitated the initia- tion of carbonate deposition and conditions suitable for the development of the cephalopod limestones whilst permitting the migration of cephalopod taxa, many of which were previously restricted to lower latitudes. • Key words: Llandovery, Aeronian, Cephalopoda, palaebiogeography, peri-Gondwana. EVANS, D.H., GHOBADI POUR, M., POPOV,L.E.&JAHANGIR, H. 2015. An Early Silurian (Aeronian) cephalopod fauna from Kopet-Dagh, north-eastern Iran: including the earliest records of non-orthocerid cephalopods from the Silurian of Northern Gondwana. -
Paleontological Research
Paleontological Research Vol. 6 No.4 December 2002 The Palaeontological Society 0 Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoshi Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D. K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 2001-2002 Honorary President: Tatsuro Matsumoto President: Hiromichi Hirano Councillors: Shuko Adachi, Kazutaka Amano, Hisao Ando, Masatoshi Goto, Hiromichi Hirano, Yasuo Kondo, Noriyuki Ikeya, Tomoki Kase, Hiroshi Kitazato, Itaru Koizumi, Haruyoshi Maeda, Ryuichi Majima, Makoto Manabe, Kei Mori, Hirotsugu Nishi, Hiroshi Noda, Kenshiro Ogasawara, Tatsuo Oji, Hisatake Okada, Tomowo Ozawa, Takeshi Setoguchi, Kazushige Tanabe, Yukimitsu Tomida, Kazuhiko Uemura, Akira Yao Members of Standing Committee: Makoto Manabe (General Affairs), Tatsuo Oji (Liaison Officer), Shuko Adachi (Finance), Kazushige Tanabe (Editor in Chief. -
Ascocerid Cephalopods from the Hirnantian?–Llandovery Stages of the Southern Paraná Basin (Paraguay, South America): first Record from High Paleolatitudes
Journal of Paleontology, page 1 of 11 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2018.59 Ascocerid cephalopods from the Hirnantian?–Llandovery stages of the southern Paraná Basin (Paraguay, South America): first record from high paleolatitudes M. Cichowolski,1,2 N.J. Uriz,3 M.B. Alfaro,3 and J.C. Galeano Inchausti4 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Área de Paleontología, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina 〈[email protected]〉 2CONICET-Universidad de Buenos Aires, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Buenos Aires, Argentina 3División Geología del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. 〈[email protected]〉, 〈[email protected]〉 4Ministerio de Obras Públicas y Comunicaciones de Paraguay, Asunción, Paraguay 〈[email protected]〉 Abstract.—Ascocerid cephalopods are described for the first time from high paleolatitudes of Gondwana. Studied material was collected from the Hirnantian?–Llandovery strata of the Eusebio Ayala and Vargas Peña formations, Paraná Basin, southeastern Paraguay. The specimens are poorly preserved and were questionably assigned to the sub- family Probillingsitinae Flower, 1941, being undetermined at genus and species rank because diagnostic characters are not visible. A particular feature seen in our material is the presence of both parts of the ascocerid conch (the juve- nile or cyrtocone and the mature or brevicone) joined together, which is a very rare condition in the known paleonto- logical record. The specimens are interpreted as at a subadult stage of development because fully grown ascocerids would have lost the juvenile shell. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
High-Level Classification of the Nautiloid Cephalopods: a Proposal for the Revision of the Treatise Part K
Swiss Journal of Palaeontology (2019) 138:65–85 https://doi.org/10.1007/s13358-019-00186-4 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K 1 2 Andy H. King • David H. Evans Received: 4 November 2018 / Accepted: 13 February 2019 / Published online: 14 March 2019 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2019 Abstract High-level classification of the nautiloid cephalopods has been largely neglected since the publication of the Russian and American treatises in the early 1960s. Although there is broad general agreement amongst specialists regarding the status of nautiloid orders, there is no real consensus or consistent approach regarding higher ranks and an array of superorders utilising various morphological features has been proposed. With work now commencing on the revision of the Treatise Part K, there is an urgent need for a methodical and standardised approach to the high-level classification of the nautiloids. The scheme proposed here utilizes the form of muscle attachment scars as a diagnostic feature at subclass level; other features (including siphuncular structures and cameral deposits) are employed at ordinal level. We recognise five sub- classes of nautiloid cephalopods (Plectronoceratia, Multiceratia, Tarphyceratia nov., Orthoceratia, Nautilia) and 18 orders including the Order Rioceratida nov. which contains the new family Bactroceratidae. This scheme has the advantage of relative simplicity (it avoids the use of superorders) and presents a balanced approach which reflects the considerable morphological diversity and phylogenetic longevity of the nautiloids in comparison with the ammonoid and coleoid cephalopods. -
Nautiloid and Bactritoid Cephalopods from the Carboniferous of the Jebel Qamar South Area, United Arab Emirates
Paleontological Research, vol. 1, no. 3, pp. 157-165,5 Figs., September 30, 1997 © by the Palaeontological Society of Japan Nautiloid and bactritoid cephalopods from the Carboniferous of the Jebel Qamar South area, United Arab Emirates SHWI NIK01, ALAIN PILLEVUIT2 and GERARD STAMPFLP IDepartment of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739 Japan 21nstitute of Geophysics, University of Paris VII, 75251 Paris Cedex 05, France 31nstitute of Geology and Paleontology, University of Lausanne, BFSH 2, 1015 Lausanne-Dorigny, Switzerland Received 1 November 1996; Revised manuscript accepted 5 August 1997 Abstract. Nine species of cephalopods from the Ayim Formation of the Jebel Qamar South area, United Arab Emirates are described. They include orthoceratids: Michelinoceras sp. 1, Michelinoceras? sp. 2, Temperoceras ayimense sp. nov., Mooreoceras? sp. 1, Mooreoceras? sp. 2, Mitorthoceras? sp., Spyroceratinae, genus and species indeterminate; oncocerid: Poterioceratidae, genus and species in determinate; and bactritid: Bactrites cf. quadrilineatus Girty. Based on the fauna, the Early Carbonifer ous age of the formation is first established herein. Key words: Ayim Formation, Bactritida, Early Carboniferous, Oncocerida, Orthocerida, United Arab Emirates Introduction shale located in the lower part of the Ayim Formation (Figure 2). Besides cephalopods, the fossils include serpulids (Spir The cephalopods described herein were collected from orbis sp.), bryozoans, ostracodes, echinoderms, fish remains the Ayim Formation of previously uncertain age, during field (Robertson et al., 1990), and trace fossils (Pillevuit, 1993). An work in the Jebel Qamar South area, United Arab Emirates age between Ordovician and Early Permian for the Ayim (Figure 1). Although preservation of the material is poor, we Formation is not questionable because of its stratigraphic can provide new knowledge concerning age determination setting, viz. -
Connecting Ring Structure and Its Significance for Classification of the Orthoceratid Cephalopods
Connecting ring structure and its significance for classification of the orthoceratid cephalopods HARRY MUTVEI Mutvei, H. 2002. Connecting ring structure and its significance for classification of the orthoceratid cephalopods. Acta Palaeontologica Polonica 47 (1): 157–168. The connecting ring in orthoceratids is composed of two calcified layers: an outer spherulitic−prismatic and an inner cal− cified−perforate. The spherulitic−prismatic layer is a direct continuation of that layer in the septal neck, whereas the calci− fied−perforate layer is a structurally modified continuation of the nacreous layer of the septal neck. The latter layer is tra− versed by numerous pores which are oriented either transversally to the siphuncular surface, or have a somewhat irregu− larly anastomosing course. The connecting ring structure is positively correlated to the dorsal position of the scars of the cephalic retractor muscles. A similar type of connecting ring and a dorsal postion of retractor muscle scars also occur in lituitids, previously assigned to tarphyceratids, and in baltoceratids, previously assigned to ellesmeroceratids. These two taxa are therefore included in the suborder Orthoceratina, which, together with the suborder Actinoceratina, are assigned to the order Orthoceratida Kuhn, 1940. Key words: Orthoceratina, Actinoceratina, siphuncular structure, connecting ring. Harry Mutvei [[email protected]], Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE−10405 Stockholm, Sweden. Introduction (Orthoceratidae); “Michelinoceras” sp. (Michelinoceratidae); Geisonoceras kinnekullense (Foord, 1887) (Geisonoceratidae); Polygrammoceras oelandicum Troedsson, 1932(Troedssonel− Shell structure in most Paleozoic nautiloids is imperfectly lidae); Lituites sp., Rhynhorthoceras sp. (Lituitidae); Cochlio− preserved owing to diagenetic transformation of shell ar− ceras spp. (Baltoceratidae). Silurian: Dawsonoceras sp. -
Mollusca: Cephalopoda (Nautiloidea)
9 MOLLUSCA: CEPHALOPODA (NAUTILOIDEA) A. H. King The term Nautiloidea is used here in a broad sense, incorporating the subclasses Endoceratoidea, Actinoceratoidea, Orthoceratoidea and Nautiloidea as perceived by Teichert (1967). Classification at order level is relatively stable; taxonomic complications arise in recognizing the greater diver sity of nautiloids in comparison with ammonoids and reconciling this within a classification at higher level (Holland, 1979, 1987). The scheme adopted below essentially follows Teichert and Moore (in Teichert et al., 1964) to order level, variations from this are noted in the text; the treatment of Cambrian orders follows Chen and Teichert (1983). The enigmatic genera Salterella (=Volborthella) and Vologdinella have been regarded as taxa 'doubtfully classifiable' within the nautiloids and treated as a separate order Volborthellida (Teichert in Teichert et ai, 1964). The present author follows Yochelson (1977, 1981), and assigns these genera to the extinct phylum Agmata. No detailed cladistic analysis has been carried out on nautiloids; comments concerning the mono- or paraphyletic nature of some orders are mainly the author's own views. Order PLECTRONOCER1DA Flower, 1964 F. ELLESMEROCERATIDAE Kobayashi, 1934 (see Fig. 9.1) C. (DOL)-O. (CRD) Mar. F. PLECTRONOCERATIDAE Kobayashi, 1935 Firsh Eburnoceras pissinum Chen and Qi, 1980, upper € . (DOL) Mar. Quadraticephalus Zone, lower Fengshan Formation, Anhui Province, China (Chen and Teichert, 1983). First: Plectronoceras Cambria (Walcott, 1905), Ptychaspis- Lash Oelandoceras sp. Lai, 1965, Baota (= Pagoda) Lime Tsinania Zone, lower Fengshan Formation, Shandong stone Formation, Ningkiang, Shaanxi (=Shensi) Province, Province, China; P. liaoningense Kobayashi, 1935 from China (Lai, 1965). Liaodong Peninsula and P. huaibeiense Chen and Qi 1979, Intervening: TRE-LLO.