Geometric Design of Independent Suspension Linkages

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Design of Independent Suspension Linkages Geometric Design of Independent Suspension Linkages by David E. Kline A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2018 Doctoral Committee: Professor Gregory M. Hulbert, Chair Assistant Professor Evgueni Filipov Associate Professor C. David Remy Professor Kazuhiro Saitou David E. Kline [email protected] ORCID iD: 0000-0001-5194-1837 Copyright c 2018 by David E. Kline. Table of Contents List of Tables v List of Figures vi Abstract xii Chapter 1: Introduction 1 1.1 Basic Terms . 4 1.2 History of the Suspension . 7 1.3 Suspension Design . 17 1.4 Research Objectives . 34 1.5 Dissertation Format . 35 Chapter 2: Literature Review 37 2.1 Wheel Motion Specification . 37 2.2 Enumeration of Suspension Architectures . 45 2.3 Linkage Dimensioning . 52 2.4 Filtering Solutions . 56 2.5 Summary . 58 Chapter 3: Wheel Kinematics 59 3.1 Mathematical Preliminaries . 59 3.2 Wheel Motion . 61 3.3 Wheel Trajectory . 67 3.4 Example Trajectory . 71 ii Chapter 4: Number Synthesis 77 Chapter 5: The R Joint 81 5.1 Synthesis . 81 5.2 Synthesis Example . 86 5.3 Analysis . 87 5.4 Analysis Example . 91 Chapter 6: The S-S Link 96 6.1 Design Equations . 96 6.2 Synthesis Example . 98 6.3 Set-Based Design of the Five S-S Link Suspension . 101 6.4 Analysis of the Five S-S Link Suspension . 108 Chapter 7: The C Joint 111 7.1 Synthesis . 111 7.2 Synthesis Example . 113 7.3 An S-S Link for the C Joint . 115 7.4 C(S-S) Example . 118 Chapter 8: The S Joint 123 8.1 Synthesis . 123 8.2 Synthesis Example . 125 8.3 S-S Links for Spherical Linkages . 126 8.4 S(S-S)2 Example . 128 Chapter 9: The R-S Link 133 9.1 Design Equations . 133 9.2 Solving the Design Equations . 136 9.3 Tie Rod Synthesis . 137 9.4 The SLA Suspension . 140 Chapter 10: The S-R Link 146 iii 10.1 Design Equations . 146 10.2 Control Blades . 148 10.3 S-S Links for the Control Blade . 152 10.4 Analysis of the Control Blade Suspension . 154 Chapter 11: The R-R Link 158 11.1 Design Equations . 158 11.2 Synthesis Example . 162 11.3 S-S Links for the Trapezoidal Link Suspension . 164 11.4 Analyzing the Trapezoidal Link Suspension . 165 Chapter 12: The S-C Link 169 12.1 Design Equations . 169 12.2 Synthesis Methods . 172 12.3 Compatible R-S & S-S Links . 175 12.4 Analyzing the MacPherson Strut Suspension . 177 Chapter 13: Discussion 181 13.1 Comparison of Selected Architectures . 181 13.2 Methods Developed . 189 13.3 Logical Extensions . 192 References 199 iv List of Tables 1.1 Market share of the front axles used by vehicles produced in 2010 [18, p. 418]; the twist beam is used in just one vehicle model. 16 1.2 Market share of the rear axles used by vehicles produced in 2010 [18, p. 418]; the De Dion axle is used in one vehicle model. 16 1.3 C5 ride and handling metrics with associated units [43]. 19 2.1 Planar links enumerated by Raghavan [35], together with their mobility. 48 2.2 Spatial links enumerated by Raghavan [35], together with their mobility. 48 4.1 The body-wheel connections. 78 4.2 Potential independent suspension architectures, organized by number of connections. Types identified as impractical are crossed out. 80 6.1 Coordinates of the five S-S link example (three significant figures). 107 9.1 Coordinates of the SLA example (three significant figures). 141 10.1 Coordinates of the three lateral S-S links used for the control blade example (three significant figures). 153 12.1 Example S-C solution (three significant figures). 174 13.1 Average and overall ranking of the example suspensions, including number of independent design variables and if steered. 188 13.2 Synthesis cases developed in this dissertation and the chapter(s) they appear in. 191 v List of Figures 1.1 A double wishbone independent suspension [59]. 2 1.2 Rack and pinion steering mechanism, where (1) steering wheel, (2) steering column, (3) rack and pinion, (4) actuated suspension link (tie rod), (5) wheel carrier [58]. 2 1.3 Cylindrical rubber bushing [56], typically pressed into suspension link and attached to vehicle body in double shear. 3 1.4 Ball joint [60], typically pressed into suspension link, with wheel carrier attached in single shear. 3 1.5 Contact patch with pressure distribution [54]. 5 1.6 Camber angle illustrated in a front view; negative shown [57]. 5 1.7 Toe angle illustrated in a top view; positive (toe-in) shown [61]. 6 1.8 Wheelbase and track illustrated [63]. 6 1.9 Ackermann's steering mechanism [1]. 8 1.10 Gearbox steering system from a Willys CJ-3B [40]. 9 1.11 Sliding pillar IFS of an early Sizaire-Naudin car [2]. 10 1.12 Ballamy swing axle IFS [2]. 11 1.13 Oldsmobile SLA IFS [2]. 11 1.14 Citroen IFS, using a torsion spring and a hydraulic shock absorber [2]. 12 1.15 MacPherson strut IFS [55]. 12 1.16 AM General Humvee featuring robust double wishbone suspensions front and rear with excellent ground clearance [28]. 14 1.17 Twist beam semi-rigid rear axle [14]. 14 1.18 Mercedes C111, circa 1969, using a five link IRS and a double wishbone IFS [62]. 15 vi 1.19 2012 Ford Focus control blade IRS; arrows indicate the control blade and three lateral links [10]. 16 1.20 Schematic of Ford's product development process as of 1998 [18, p. 451]. 18 1.21 ULSAB side view package drawing [46]. 23 1.22 ULSAB front view package drawing [46]. 24 1.23 ULSAB rear view package drawing [46]. 24 1.24 ULSAB plan view package drawing [46]. 25 1.25 Front view instant center definition [12]. 26 1.26 Side view instant center definition [12]. 27 1.27 Definition of the vertical component of the angular velocity [12]. 27 1.28 Layout of a trailing link suspension to achieve one-axis velocity speci- fication [12]. 29 1.29 Layout of a double wishbone suspension to achieve a two-axis velocity specification [12]. 29 1.30 Design evolution of the C5 rear lower control arm [45]. 31 1.31 Summarized suspension design process. 32 2.1 Example of desirable camber angle change [41]. 39 2.2 SLA geometry considered by Raghavan for roll center synthesis [38]. 40 2.3 Roll center height hRC graphical definition. 41 2.4 Joint types, reproduced from [26]. 49 2.5 Practical implementations of the turning joint with two rubber bush- ings (left), and the turning-and-sliding joint as a telescopic damper (right), reproduced from [26]. 50 2.6 Link types important for suspensions, reproduced from [26]. 50 2.7 MacPherson independent suspension, reproduced from [26]. 51 2.8 An independent suspension employing a ball joint and two rod links, reproduced from [26]. 52 2.9 Graphical synthesis of the lower control arm (LCA) and strut of a MacPherson architecture, reproduced from [30]. 53 vii 2.10 Package space considered by Raghavan for the planar suspension [36]. 56 3.1 Identifying a special orthogonal matrix (f; g; h) with the angles φ, γ; δ. 65 3.2 Suspension characteristic definitions in the side view. 71 3.3 Roll center height definition in the front view, with velocity component vc2 drawn negative to result in a positive roll center height h. 72 3.4 Camber angle specification. 73 3.5 Toe angle specification. 73 3.6 Wheel center longitudinal displacement specification. 75 3.7 Spin angle specification. 75 3.8 Wheel center lateral displacement specification. 76 5.1 Depiction of an R joint. 82 5.2 Solution for R joint from design position velocity specification. 88 5.3 Camber curve for the synthesized R joint suspension. 92 5.4 Toe curve for the synthesized R joint suspension. 92 5.5 Wheel-travel angle curve for the synthesized R joint suspension. 93 5.6 Support angle curve for the synthesized R joint suspension. 94 5.7 Roll center height curve for the synthesized R joint suspension. 94 6.1 Depiction of an S-S link. 97 6.2 Package space allotted for the S-S link synthesis example. 100 6.3 Kingpin geometry definition. 102 6.4 Plot of the back links Sb. 104 6.5 Plot of the front links Sf . 105 6.6 Plot of the toe links St. 105 6.7.
Recommended publications
  • Swing-Away Conveyor Assembly Manual
    Swing Away Conveyor Portable Grain Belt Conveyor Assembly Manual This manual applies to the following brands and models: Batco, Westfield WCX, and Hutchinson HCX: 2000 Series: 2065SA, 2075SA, 2085SA, 2095SA, 20105SA, 20110SA, 20120SA 2400 Series: 2465SA, 2475SA, 2485SA, 2495SA, 24105SA, 24110SA, 24120SA Original Instructions Read this manual before using product. Failure to Part Number: P1512114 R6 follow instructions and safety precautions can Revised: November 2018 result in serious injury, death, or property damage. Keep manual for future reference. New in this Manual The following changes have been made in this revision of the manual: Description Section Important note about using a second “Square Section 3.7. – Install the Spout Roller and Hex Roller washer”. on page 22 SWING AWAY CONVEYOR – PORTABLE GRAIN BELT CONVEYOR CONTENTS 1. Safety....................................................................................................................................................... 5 1.1. Safety Alert Symbol and Signal Words..................................................................................... 5 1.2. General Product Safety ............................................................................................................ 5 1.3. Moving Conveyor Belt Safety................................................................................................... 6 1.4. Rotating Parts Safety................................................................................................................ 6 1.5. Drives
    [Show full text]
  • Suspension Geometry and Computation
    Suspension Geometry and Computation By the same author: The Shock Absorber Handbook, 2nd edn (Wiley, PEP, SAE) Tires, Suspension and Handling, 2nd edn (SAE, Arnold). The High-Performance Two-Stroke Engine (Haynes) Suspension Geometry and Computation John C. Dixon, PhD, F.I.Mech.E., F.R.Ae.S. Senior Lecturer in Engineering Mechanics The Open University, Great Britain. This edition first published 2009 Ó 2009 John Wiley & Sons Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • Design and Development of Semi Trailing Arm Suspension System for an Off-Road Vehicle
    International Journal of Research in Engineering, Science and Management 339 Volume-3, Issue-7, July-2020 journals.resaim.com/ijresm | ISSN (Online): 2581-5792 Design and Development of Semi Trailing Arm Suspension System for an Off-Road Vehicle Ishan Hiremath1*, Avanti Nalawade2, Jai Patil3, Swarup Patil4, Riteshkumar Patil5, Swapnil Ugalmugale6 1,2,3,4,6Student, Department of Automobile Engineering, Rajarambapu Institute of Technology, Sangli, India 5Student, Department of Mechanical Engineering, Rajarambapu Institute of Technology, Sangli, India *Corresponding author: [email protected] Abstract: ATV is a basically an off-road vehicle with capability 2. Advantages of Semi-Trailing Arm Suspension to withstand harsh road conditions. Stability, control, performance, and comfort these are the basic requirements for an 1. As semi-trailing arm suspension is a 3-link independent ATV. Suspension system is one of the important systems which is suspension it provides better ride quality and handling. responsible for fulfillment of basic requirements. This paper is 2. In semi-trailing arm suspension during the suspension based on design and development of semi-trailing arm suspension movement the camber angle changes, as a result the tyres for ATV. The report describes the methodology followed to design remain perpendicular to the ground during body roll. a system and analysis of suspension components undergoing major 3. Lower cost, less complexity and more compactness. forces during dynamic conditions. The main objective is to design and develop a suspension system which improves overall 4. It provides better lateral load handling capacity. performance and handling properties of ATV. 5. Better antisquat properties. Keywords: Half shaft geometry, Independent suspension, SAE 3.
    [Show full text]
  • Design and Analysis of Lower Control
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 4, April 2016 Design and Analysis of Lower Control ARM 1 2 M.Sridharan , Dr.S.Balamurugan P.G Student, Department of Mechanical Engineering, Mahendra Engineering College, Namakkal, Tamilnadu, India1 Head of the Department, Department of Mechanical Engineering, Mahendra Engineering College, Namakkal, Tamilnadu, India2 ABSTRACT: The main objective of this paper is to model and to perform structural analysis of a LOWER CONTROL ARM (LCA) used in the front suspension system, which is a sheet metal component. LCA is modeled in Pro-E software for the given specification. To analyze the LCA, CAE software is used. The load acting on the control arm are dynamic in nature, buckling load analysis is essential. First finite element analysis is performed to calculate the buckling strength, of a control arm. The FEA is carried out using Solid works stimulation package. The design modification has been done and FEA results are compared. The influencing parameters which are affecting the response are identified. After getting the final result of finite element analysis optimization has been done using design of experiment method. Taguchi’s design of experiments has been used to optimize the number of experiments. By reducing thickness of the sheet metal and by suggesting the suitable material the production cost of lower control arm is reduced. This leads to cost saving and improved material quality of the product. KEYWORDS: lower control arm, FEA, I. INTRODUCTION The suspension system caries the vehicle body and transmit all forces between the body and the road without transmitting to the driver and passengers.
    [Show full text]
  • Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle Using Adams /C Ar
    ADAPTION AND EVALUATION OF TRANSVERSAL LEAF SPRING SUSPENSION DESIGN FOR A LIGHTWEIGHT VEHICLE USING ADAMS /C AR FLORIAN CHRIST Master Thesis in Vehicle Engineering Vehicle Dynamics Aeronautical and Vehicle Engineering Royal Institute of Technology TRITA-AVE 2015:09 ISSN 1651-7660 Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle using Adams/Car FLORIAN CHRIST © Florian Christ, 2015. Vehicle Dynamics Department of Aeronautical and Vehicle Engineering Kungliga Tekniska Högskolan SE-100 44 Stockholm Sweden ii Abstract This investigation deals with the suspension of a lightweight medium-class vehicle for four passengers with a curb weight of 1000 kg. The suspension layout consists of a transversal leaf spring and is supported by an active air spring which is included in the damper. The lower control arms are replaced by the leaf spring ends. Active ride height control is introduced to compensate for different vehicle load states. Active steering is applied using electric linear actuators with steer-by wire design. Besides intense use of light material the inquiry should investigate whether elimination of suspension parts or a lighter component is concordant with the stability demands of the vehicle. The investigation is based on simulations obtained with MSC Software ADAMS/Car and Matlab. The suspension is modeled in Adams/Car and has to proof it's compliance in normal driving conditions and under extreme forces. Evaluation criteria are suspension kinematics and compliance such as camber, caster and toe change during wheel travel in different load states. Also the leaf spring deflection, anti-dive and anti-squat measures and brake force distribution are investigated.
    [Show full text]
  • Meritor® Independent Front Suspension Drivetrain System
    MERITOR® INDEPENDENT FRONT SUSPENSION DRIVETRAIN SYSTEM Meritor’s state-of-the-art modular drivetrain system for all-wheel drive (AWD) commercial trucks features the Independent Front Suspension (IFS) module equipped with modern steering geometry and air disc brake technology, and a low-profile shift on-the-fly transfer case. The IFS, available in drive or non-drive options, is a part of Meritor’s field-proven and widely acclaimed ProTec™ ISAS® line of independent suspensions. This bolt-on, modular solution does not require modifications to existing frame rails and maintains vehicle ride height. FEATURES AND BENEFITS ■ Proven Independent Suspension Axle System technology – The ISAS product line has been fitted on high-mobility vehicles for over 20 years. The Independent Front Suspension system leverages decades of expertise in designing and manufacturing field-proven systems. ■ Bolt-on system – The Independent Front Suspension does not require modifications to frame rails ■ 5 to 12 inch ride height reduction – Improves vehicle roll stability versus best-in-class beam axle ■ Modular solution – Maintains the same ride height of a rear-wheel drive (RWD) truck ■ Lower center of gravity – Better vehicle maneuverability and stability for safe and confident handling ■ 60 percent reduction in cab and driver-absorbed power – Ride harshness improvements as well as reduction in unwanted steering feedback lead to less physical fatigue for the driver, and higher reliability of the cab ■ 2-times the wheel travel – The Independent Front Suspension provides
    [Show full text]
  • Suspension System Need of Suspension
    Suspension system Need of Suspension • Support the weight of the frame, body, engine, transmission, drive train, passengers, and cargo. • Provide a smooth, comfortable ride by allowing the wheels and tires to move up and down with minimum movement of the vehicle. • Work with the steering system to help keep the wheels in correct alignment. • Keep the tires in firm contact with the road, even after striking bumps or holes in the road. • Allow rapid cornering without extreme body roll (vehicle leans to one side). • Allow the front wheels to turn from side to side for steering. • Prevent excessive body squat (body tilts down in rear) when accelerating or carrying heavy loads. • Prevent excessive body dive (body tilts down in the front) when braking. 08-05-2020 2 Suspension system 08-05-2020 3 Types of suspensions • The type of suspension springs used in automobile are • Metal springs Laminated or leaf Coil Torison bar • Rubber springs • Pneumatic springs Commonly used are leaf springs and coil springs • Leaf springs are mostly used in dependent suspension system. • Coil springs and torsion bar are used in mostly in independent suspension system. • Coil springs can store about twice as much energy per unit volume compared to that of leaf spring. Thus for the same job coil springs need weight only about half that of leaf spring. • Leaf springs both cushion the shock and guide the cushioned motion. • Coil springs can serve the both provided sway bars are used along with. 08-05-2020 4 Suspension system as a two mass system 08-05-2020 5 Leaf Spring suspension • These springs are made by placing several flat strips one over the other.
    [Show full text]
  • Caster Camber Tire-Wear Angles
    BASIC WHEEL ALIGNMENT odern steering and ples. Therefore, let’s review these basic the effort needed to turn the wheel. suspension systems alignment angles with an eye toward Power steering allows the use of more are great examples of typical complaints and troubleshooting. positive caster than would be accept- solid geometry at able with manual steering. work. Wheel align- Caster Too little caster can make steering ment integrates all the factors of steer- Caster is the tilt of the steering axis of unstable and cause wheel shimmy. Ex- Ming and suspension geometry to pro- each front wheel as viewed from the tremely negative caster and the related vide safe handling, good ride quality side of the vehicle. Caster is measured shimmy can contribute to cupped wear and maximum tire life. in degrees of an angle. If the steering of the front tires. If caster is unequal Front wheel alignment is described axis tilts backward—that is, the upper from side to side, the vehicle will pull in terms of angles formed by steering ball joint or strut mounting point is be- toward the side with less positive (or and suspension components. Tradi- hind the lower ball joint—the caster more negative) caster. Remember this tionally, five alignment angles are angle is positive. If the steering axis tilts when troubleshooting a complaint of checked at the front wheels—caster, forward, the caster angle is negative. vehicle pull or wander. camber, toe, steering axis inclination Caster is not measured for rear wheels. (SAI) and toe-out on turns. When we Caster affects straightline stability Camber move from two-wheel to four-wheel and steering wheel return.
    [Show full text]
  • Wheel Alignment Simplified
    The WHAT and WHY of Toe Caster - Camber Kingpin Inclination - Thrust Angle Steering Angle – Wheel setback WHEEL ALIGNMENT SIMPLIFIED Wheel alignment is often considered complicated and hard to understand In the days of the rigid chassis construction with solid axles, when tyres were poor and road speeds were low, wheel alignment was simply a matter of ensuring that the wheels rolled along the road in parallel paths. This was easily accomplished by means of using a toe gauge or simple tape measure. The steering wheel could then also simply be repositioned on the splines of the steering shaft. Camber and Caster was easily adjustable by means of shims. Today wheel alignment is of course more sophisticated as there are several angles to consider when doing wheel alignment on the modern vehicle with Independent suspension systems, good performing tyres and high road speeds. Below are the most common angles and their terminology and for the correction of wheel alignment and the diagnoses thereof, the understanding of the principals of these angles will become necessary. Doing the actual corrections of wheel alignment is a fairly simple task and in many instances it is easily accomplished by some mechanical adjustments. However Wheel Alignment diagnosis is not so straightforward and one will need to understand the interaction between the wheel alignment angles as well as the influence the various angles have on each other. In addition there are also external factors one will need to consider. Wheel Alignment Specifications are normally given in angular values of degrees and minutes A circle consists of 360 segments called DEGREES, symbolized by the indicator ° Each DEGREE again has 60 segments called MINUTES symbolized by the indicator ‘.
    [Show full text]
  • Forklift Steer Axle
    Forklift Steer Axle Forklift Steer Axles - The description of an axle is a central shaft for rotating a gear or a wheel. Where wheeled vehicles are concerned, the axle itself could be fixed to the wheels and revolve together with them. In this instance, bearings or bushings are provided at the mounting points where the axle is supported. Conversely, the axle can be connected to its surroundings and the wheels can in turn revolve around the axle. In this particular instance, a bearing or bushing is situated inside the hole within the wheel in order to enable the wheel or gear to rotate around the axle. With trucks and cars, the word axle in several references is utilized casually. The term generally refers to the shaft itself, a transverse pair of wheels or its housing. The shaft itself rotates together with the wheel. It is frequently bolted in fixed relation to it and referred to as an 'axle shaft' or an 'axle.' It is equally true that the housing around it that is normally known as a casting is likewise called an 'axle' or occasionally an 'axle housing.' An even broader definition of the word means every transverse pair of wheels, whether they are connected to one another or they are not. Hence, even transverse pairs of wheels inside an independent suspension are generally known as 'an axle.' The axles are an important component in a wheeled motor vehicle. The axle serves in order to transmit driving torque to the wheel in a live-axle suspension system. The position of the wheels is maintained by the axles relative to one another and to the motor vehicle body.
    [Show full text]
  • Development and Analysis of a Multi-Link Suspension for Racing Applications
    Development and analysis of a multi-link suspension for racing applications W. Lamers DCT 2008.077 Master’s thesis Coach: dr. ir. I.J.M. Besselink (Tu/e) Supervisor: Prof. dr. H. Nijmeijer (Tu/e) Committee members: dr. ir. R.M. van Druten (Tu/e) ir. H. Vun (PDE Automotive) Technische Universiteit Eindhoven Department Mechanical Engineering Dynamics and Control Group Eindhoven, May, 2008 Abstract University teams from around the world compete in the Formula SAE competition with prototype formula vehicles. The vehicles have to be developed, build and tested by the teams. The University Racing Eindhoven team from the Eindhoven University of Technology in The Netherlands competes with the URE04 vehicle in the 2007-2008 season. A new multi-link suspension has to be developed to improve handling, driver feedback and performance. Tyres play a crucial role in vehicle dynamics and therefore are tyre models fitted onto tyre measure- ment data such that they can be used to chose the tyre with the best characteristics, and to develop the suspension kinematics of the vehicle. These tyre models are also used for an analytic vehicle model to analyse the influence of vehicle pa- rameters such as its mass and centre of gravity height to develop a design strategy. Lowering the centre of gravity height is necessary to improve performance during cornering and braking. The development of the suspension kinematics is done by using numerical optimization techniques. The suspension kinematic objectives have to be approached as close as possible by relocating the sus- pension coordinates. The most important improvements of the suspension kinematics are firstly the harmonization of camber dependant kinematics which result in the optimal camber angles of the tyres during driving.
    [Show full text]
  • Installation Instructions Eibach Springs, Inc
    Installation Instructions Eibach Springs, Inc. • 264 Mariah Circle • Corona, California 92879-1751 • USA • Tech Support 800-222-8811 Ext 114 Anti Roll Kit- #3860.312 Chevrolet, Cavalier / Pontiac Sunfire Kit Contents Description Part Number Qty Rear Bar 3860.320R 1 Instructions 3860.312INST 1 Hardware Kit 3860.312HK 1 Information Kit EPAK 1 NOTES: Read All Instructions Before Beginning Installation • Installation of Anti-Roll Kits should only be performed by a qualified mechanic experienced in the installation and removal of suspension components. • Use of a drive on hoist is highly recommended and will substantially reduce installation time. • Never work on or under a vehicle unless it is properly supported by safety stands and wheels are blocked. • Anti-Roll Bars are marked with the letter F and R (located at the end of the part number) designating front and rear bars. • After installation, it is always important to inspect and adjust the following if necessary: - That the bars are centered left to right - Tire and/or wheel fender clearance - Brake line clearance and attachments - Brake anti-locking and anti-skid system sensors Eibach Anti-Roll Kits are designed to work in conjunction with the Eibach Pro-Kit. The Pro-Kit for your car is 3860.140 and will lower your car about 1.5”. Rear bar installation. Note: If your car has an OE anti-roll bar, it is integrated into the beam axle and cannot be removed. The Eibach Bar is designed to work with or without the OE rear bar. 1. Raise the rear of the vehicle so the tires or off the ground.
    [Show full text]