'Partners in Light:' How Plastics Enabled Fluorescent Lighting And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Soot Photometer Using Supervised Machine Learning
Atmos. Meas. Tech., 12, 3885–3906, 2019 https://doi.org/10.5194/amt-12-3885-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning Kara D. Lamb1,2 1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 2NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USA Correspondence: Kara D. Lamb ([email protected]) Received: 15 March 2019 – Discussion started: 22 March 2019 Revised: 20 June 2019 – Accepted: 21 June 2019 – Published: 15 July 2019 Abstract. Single particle soot photometers (SP2) use laser- each class are compared with the true class for those particles induced incandescence to detect aerosols on a single particle to estimate generalization performance. While the specific basis. SP2s that have been modified to provide greater spec- class approach performed well for rBC and Fe3O4 (≥ 99 % tral contrast between their narrow and broad-band incandes- of these aerosols are correctly identified), its classification of cent detectors have previously been used to characterize both other aerosol types is significantly worse (only 47 %–66 % refractory black carbon (rBC) and light-absorbing metallic of other particles are correctly identified). Using the broader aerosols, including iron oxides (FeOx). However, single par- class approach, we find a classification accuracy of 99 % for ticles cannot be unambiguously identified from their incan- FeOx samples measured in the laboratory. The method al- descent peak height (a function of particle mass) and color lows for classification of FeOx as anthropogenic or dust-like ratio (a measure of blackbody temperature) alone. -
Introduction 1
1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl. -
Indoor Lighting Design Guide
CSU Office of the Chancellor Indoor Lighting Design Guide Indoor Lighting Design Guide Rev: 12/12/18 CSU Office of the Chancellor Indoor Lighting Design Guide ACKNOWLEDGEMENT The California State University (CSU) gratefully acknowledges the effort and work of Jai Agaram, John Andary, Douglas Effenberger, Kent Peterson, Steven Strauss, and Steve Taylor. Comments or inquiries may be directed to: The California State University Office of the Chancellor Capital Planning Design and Construction Long Beach, California Attention: Thomas Kennedy, Chief Architecture and Engineering Telephone: (562) 951-4129 E-mail: [email protected] CSU Office of the Chancellor Indoor Lighting Design Guide TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................................... 1 SECTION 1: INTRODUCTION ............................................................................................................................................ 2 CSU POLICY .................................................................................................................................................................................. 2 DEFINITIONS .................................................................................................................................................................................. 2 UTILITY INCENTIVES ....................................................................................................................................................................... -
2. Making Fires Burn Or Go out 1: Introduction to the Fire Triangle
2. Making Fires Burn or Go Out 1: Introduction to the Fire Triangle Lesson Overview: In this activity, students describe and organize what they already know Subjects: Science, Mathematics, Writing, about fire so it fits into the conceptual model of Speaking and Listening, Health and the Fire Triangle. They examine the geometric Safety stability of a triangle and how that property Duration: one half-hour session applies to fire. Group size: Whole class. Students work in groups of 2-3. Lesson Goal: Increase students’ understanding of Setting: Indoors how fires burn and why they go out. Vocabulary: Fire Triangle, fuel, heat, ignition, oxygen, model Objectives: • Students can construct a triangle out of toothpicks and gumdrops, and can label its legs with the three components of the Fire Triangle. • Students can demonstrate that removing one side of the triangle makes it collapse. • Students can identify the component(s) of the Fire Triangle that are removed in various scenarios, and explain how this makes the fire go out. Standards: 1st 2nd 3rd 4th 5th CCSS Writing 2, 7, 8 2, 7, 8 2, 7, 10 2,7, 9, 10 2,7, 9, 10 Speaking/Listening 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 4, 6 1, 2, 3, 4, Language 1, 2, 4, 6 1, 2, 4, 6 6 1, 2, 3, 4, 6 1, 2, 3, 4, 6 MP.4, MP.4, MP.4, MP.4, Math MP.5 MP.5, MP.5 MP.5 MP.4, MP.5 Matter and Its PS1.A, NGSS Interactions PS1.B PS1.B From Molecules to Organisms: Structure/Processes LS1.C Engineering Design ETS1.B ETS1.B EEEGL Strand 1 A, B, C, E, F, G A, B, C, E, F, G Teacher Background: This activity explores the chemistry of combustion as described by a conceptual model called the Fire Triangle. -
Energy Efficiency Lighting Hearing Committee On
S. HRG. 110–195 ENERGY EFFICIENCY LIGHTING HEARING BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES UNITED STATES SENATE ONE HUNDRED TENTH CONGRESS FIRST SESSION TO RECEIVE TESTIMONY ON THE STATUS OF ENERGY EFFICIENT LIGHT- ING TECHNOLOGIES AND ON S. 2017, THE ENERGY EFFICIENT LIGHT- ING FOR A BRIGHTER TOMORROW ACT SEPTEMBER 12, 2007 ( Printed for the use of the Committee on Energy and Natural Resources U.S. GOVERNMENT PRINTING OFFICE 39–385 PDF WASHINGTON : 2007 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate 0ct 09 2002 11:58 Feb 20, 2008 Jkt 040443 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 G:\DOCS\39385.XXX SENERGY2 PsN: MONICA COMMITTEE ON ENERGY AND NATURAL RESOURCES JEFF BINGAMAN, New Mexico, Chairman DANIEL K. AKAKA, Hawaii PETE V. DOMENICI, New Mexico BYRON L. DORGAN, North Dakota LARRY E. CRAIG, Idaho RON WYDEN, Oregon LISA MURKOWSKI, Alaska TIM JOHNSON, South Dakota RICHARD BURR, North Carolina MARY L. LANDRIEU, Louisiana JIM DEMINT, South Carolina MARIA CANTWELL, Washington BOB CORKER, Tennessee KEN SALAZAR, Colorado JOHN BARRASSO, Wyoming ROBERT MENENDEZ, New Jersey JEFF SESSIONS, Alabama BLANCHE L. LINCOLN, Arkansas GORDON H. SMITH, Oregon BERNARD SANDERS, Vermont JIM BUNNING, Kentucky JON TESTER, Montana MEL MARTINEZ, Florida ROBERT M. SIMON, Staff Director SAM E. FOWLER, Chief Counsel FRANK MACCHIAROLA, Republican Staff Director JUDITH K. PENSABENE, Republican Chief Counsel (II) VerDate 0ct 09 2002 11:58 Feb 20, 2008 Jkt 040443 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 G:\DOCS\39385.XXX SENERGY2 PsN: MONICA C O N T E N T S STATEMENTS Page Bingaman, Hon. -
!History of Lightingv2.Qxd
CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting. -
Flashlight Ebook
FLASHLIGHT PDF, EPUB, EBOOK Lizi Boyd | 40 pages | 12 Aug 2014 | CHRONICLE BOOKS | 9781452118949 | English | California, United States Flashlight PDF Book App Store Preview. The source of the light often used to be an incandescent light bulb lamp but has been gradually replaced by light-emitting diodes LEDs since the mids. Some models of flashlight include an acceleration sensor to allow them to respond to shaking, or to select modes based on what direction the light is held when switched on. LED flashlights were made in the early s. Perf Power. This was the first battery suitable for portable electrical devices, as it did not spill or break easily and worked in any orientation. CS1 maint: archived copy as title link U. Water resistance, if specified, is evaluated after impact testing; no water is to be visible inside the unit and it must remain functional. The standard described only incandescent lamp flashlights and was withdrawn in Colored light is occasionally useful for hunters tracking wounded game after dusk, or for forensic examination of an area. Solar powered flashlights use energy from a solar cell to charge an on-board battery for later use. Remove All. Don't feel overwhelmed with our surplus of options. Retailer Walmart. Anodized Aluminum. A flashlight may have a red LED intended to preserve dark adaptation of vision. Price Free. And it even goes with a compass, giving you the direction in the darkness. Lanterns Lanterns. The working distance is from the point of view of the user of the flashlight. An IP X8 rating by FL1 does not imply that the lamp is suitable for use as a diver's light since the test protocol examines function of the light only after immersion, not during immersion. -
Electric Light Pdf, Epub, Ebook
ELECTRIC LIGHT PDF, EPUB, EBOOK Seamus Heaney | 96 pages | 19 Mar 2001 | FABER & FABER | 9780571207985 | English | London, United Kingdom Electric Light PDF Book Tour EL: 5 min videos on each light type, followed by a 5 question quiz for each lamp type. Wednesday 17 June In , Thomas Edison began serious research into developing a practical incandescent lamp and on October 14, , Edison filed his first patent application for "Improvement In Electric Lights". Sunday 27 September Wednesday 29 July Wednesday 16 September View all albums. Saturday 10 October View all similar artists. In colder climates where heating and lighting is required during the cold and dark winter months, the heat byproduct has some value. Saturday 15 August Similar To Jeff Lynne. Tuesday 18 August Monday 25 May Wednesday 22 April Play album Buy Loading. Friday 24 April Wednesday 15 July Main article: Incandescent light bulb. Wednesday 14 October Help Learn to edit Community portal Recent changes Upload file. Features Exploring the local sounds and scenes at Noise Pop Fest. Due to the importance of this area of engineering we offer a full course of web pages, videos, and educational tools to communicate to you the world of of the electric light and the engineers and inventors who made it possible. Friday 31 July Monday 8 June Friday 21 August Sunday 18 October Friday 26 June The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. Friday 4 September Connect to Spotify Dismiss. Thursday 7 May Sunday 31 May Wednesday 1 July Tuesday 20 October The electric arc is struck by touching the rod tips then separating them. -
Biofluorescence
Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence Linda Shore [email protected] “Hot Topics: Research Revelations from the Biotech Revolution” Saturday, April 19, 2008 Caltech-Exploratorium Learning Lab (CELL) Workshop Special Guest: Dr. Rusty Lansford, Senior Scientist and Instructor, Caltech Contents Exploring Spectra – Using a spectrascope to examine many different kinds of common continuous, emission, and absorption spectra. Luminescence – A complete description of many different examples of luminescence in the natural and engineered world. Exploratorium Teacher Institute Page 1 © 2008 Exploratorium, all rights reserved Exploring Spectra (by Paul Doherty and Linda Shore) Using a spectrometer The project Star spectrometer can be used to look at the spectra of many different sources. It is available from Learning Technologies, for under $20. Learning Technologies, Inc., 59 Walden St., Cambridge, MA 02140 You can also build your own spectroscope. http://www.exo.net/~pauld/activities/CDspectrometer/cdspectrometer.html Incandescent light An incandescent light has a continuous spectrum with all visible colors present. There are no bright lines and no dark lines in the spectrum. This is one of the most important spectra, a blackbody spectrum emitted by a hot object. The blackbody spectrum is a function of temperature, cooler objects emit redder light, hotter objects white or even bluish light. Fluorescent light The spectrum of a fluorescent light has bright lines and a continuous spectrum. The bright lines come from mercury gas inside the tube while the continuous spectrum comes from the phosphor coating lining the interior of the tube. Exploratorium Teacher Institute Page 2 © 2008 Exploratorium, all rights reserved CLF Light There is a new kind of fluorescent called a CFL (compact fluorescent lamp). -
Edison Facts 2021.Indd
Edison Facts Did You Know? ■ Thomas Edison was born on February 11, 1847, in Milan, Ohio. ■ Edison was partially deaf. ■ At age 10, Edison built his first science laboratory in the basement of his family's home. ■ Edison acquired 1,093 U.S. patents for his inventions. He held the record for the most patents until 2015, when he was surpassed by inventor Lowell Wood, who today holds 1,969 U.S. patents. ■ The first invention that Edison tried to sell was an electric vote recorder. ■ The phonograph was Edison's favorite invention. ■ In 1879, Edison invented the first incandescent light bulb. ■ Edison tested over 6,000 vegetable growths (baywood, boxwood, hickory, cedar, flax, bamboo) as filament material in his light bulbs. ■ Edison set up the Pearl Street Central Power Station, the world's first “electric light-power station” in lower Manhattan. ■ Edison's Pearl Street plant powered one square mile of Lower Manhattan, providing service to 59 customers for approximately 24 cents per kilowatt-hour. ■ Edison founded the Edison General Electric Company in 1878 to market his inventions, including the incandescent lamp. In 1892, the company merged with the Thomson-Houston Company to form the General Electric Company. ■ Edison began operation of the first passenger electric railway in the country in Menlo Park, New Jersey. ■ Edison was nicknamed the “Wizard of Menlo Park”. ■ In 1913, Edison introduced the first talking motion pictures. ■ Edison coined the phrase, “Genius is one percent inspiration, 99 percent perspiration.” ■ Edison passed away when he was 84 years old, on Sunday, Learn more about October 18, 1931. -
History of Electric Light
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal -
Exterior Lighting Guide for Federal Agencies
EXTERIOR LIGHTING GUIDE FOR FederAL AgenCieS SPONSORS TABLE OF CONTENTS The U.S. Department of Energy, the Federal Energy Management Program, page 02 INTRODUctiON page 44 EMERGING TECHNOLOGIES Lawrence Berkeley National Laboratory (LBNL), and the California Lighting Plasma Lighting page 04 REASONS FOR OUTDOOR Technology Center (CLTC) at the University of California, Davis helped fund and Networked Lighting LiGHtiNG RETROFitS create the Exterior Lighting Guide for Federal Agencies. Photovoltaic (PV) Lighting & Systems Energy Savings LBNL conducts extensive scientific research that impacts the national economy at Lowered Maintenance Costs page 48 EXTERIOR LiGHtiNG RETROFit & $1.6 billion a year. The Lab has created 12,000 jobs nationally and saved billions of Improved Visual Environment DESIGN BEST PRActicES dollars with its energy-efficient technologies. Appropriate Safety Measures New Lighting System Design Reduced Lighting Pollution & Light Trespass Lighting System Retrofit CLTC is a research, development, and demonstration facility whose mission is Lighting Design & Retrofit Elements page 14 EVALUAtiNG THE CURRENT to stimulate, facilitate, and accelerate the development and commercialization of Structure Lighting LIGHtiNG SYSTEM energy-efficient lighting and daylighting technologies. This is accomplished through Softscape Lighting Lighting Evaluation Basics technology development and demonstrations, as well as offering outreach and Hardscape Lighting Conducting a Lighting Audit education activities in partnership with utilities, lighting