Flashlight Ebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. Department of Transportation
234144· REPORT NO. FRA-OR&D-75-54 PB244532 1111111111111111111111111111 FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY LIGHTS D.8. Devoe C.N. Abernethy . :~ . • REPRODUCED BY U.S. DEPARTMENT OF .COMMERCE NATIONAL TECHNICAL INFORMATiON SERVICE SPRINGFIELD, VA 22161 MAY 1975 FINAL REPORT DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION Office of Research and Development Washington DC 20590 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern ment assumes no liability for its contents or use thereof. \ \ NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are con sidered essential to the object of this report. Technical keport Documentation Page 1. Report No. 2. Governmenl Accession No. FRA-OR&D-75-54 t--:~;-,--....,...,.....,......--:-------_..L.-_--------------f'-,~'.:---:--:::---':"'-':"'-'---""~-""--'-'----'---1 4. T,ll_ and Subtitle 5. Report Date FIELD EVALUATION OF LOCOMOTIVE CONSPICUITY May 1975 LIGHTS 6. Performing Organization C"de h~:--:""""'"7-;---'-----------------------j8. Performing Organi zation Report No. 7. Author l s) D.B. Devoe CN AbernethY DOT-TSC-FRA-74-11 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation RR402/R 5331 Transportation Systems Center 11. Contract or Grant No. Kendall Square Cambridge MA 02142 12. Sponsoring A.gency Name and Address Final Report U.S. Depar~ment of Transportation March - June 1974 Federal Railroad Administration Office of Research and Development 14. -
16 CFR Ch. I (1–1–20 Edition) § 305.22
Federal Trade Commission Pt. 305 PART 305—ENERGY AND WATER 305.27 Paper catalogs and websites. USE LABELING FOR CONSUMER ADDITIONAL REQUIREMENTS PRODUCTS UNDER THE ENERGY 305.28 Test data records. POLICY AND CONSERVATION 305.29 Required testing by designated lab- ACT (‘‘ENERGY LABELING oratory. RULE’’) EFFECT OF THIS PART SCOPE 305.30 Effect on other law. 305.31 Stayed or invalid parts. Sec. 305.32 [Reserved] 305.1 Scope of the regulations in this part. APPENDIX A1 TO PART 305—REFRIGERATORS DEFINITIONS WITH AUTOMATIC DEFROST APPENDIX A2 TO PART 305—REFRIGERATORS 305.2 Definitions. AND REFRIGERATOR-FREEZERS WITH MAN- 305.3 Description of appliances and con- UAL DEFROST sumer electronics. APPENDIX A3 TO PART 305—REFRIGERATOR- 305.4 Description of furnaces and central air FREEZERS WITH PARTIAL AUTOMATIC DE- conditioners. FROST 305.5 Description of lighting products. APPENDIX A4 TO PART 305—REFRIGERATOR- 305.6 Description of plumbing products. FREEZERS WITH AUTOMATIC DEFROST GENERAL WITH TOP-MOUNTED FREEZER NO THROUGH-THE-DOOR ICE 305.7 Prohibited acts. APPENDIX A5 TO PART 305—REFRIGERATOR- FREEZERS WITH AUTOMATED DEFROST TESTING WITH SIDE-MOUNTED FREEZER NO 305.8 Determinations of estimated annual THROUGH-THE-DOOR ICE energy consumption, estimated annual APPENDIX A6 TO PART 305—REFRIGERATOR- operating cost, and energy efficiency rat- FREEZERS WITH AUTOMATED DEFROST ing, water use rate, and other required WITH BOTTOM-MOUNTED FREEZER NO disclosure content. THROUGH-THE-DOOR ICE 305.9 Duty to provide labels on websites. APPENDIX A7 TO PART 305—REFRIGERATOR- 305.10 Determinations of capacity. FREEZERS WITH AUTOMATIC DEFROST 305.11 Submission of data. -
Your Fluorescence Microscope Transmitted-Light
Your Fluorescence Microscope Transmitted-light. Bright-field Bright-field microscopy = Transmitted-light INVERTED UPRIGHT Fluorescence microscopy = Reflected-light Mercury Lamp Heat Filter Emission Filter Mirror Excitation Filter Collimating Lens Dichromatic Mirror (From:http://micro.magnet.fsu.edu) You need to know … Your light source Your filters Your objective Your detector Spectrum of a Mercury Lamp Your Light Source • Mercury lamp Wavelength (nm) • Xenon lamp Spectrum of a Xenon Lamp • Metal halide lamp • Halogen lamp • LED • Laser Wavelength (nm) (Modified from: h6p://www.cairn-research.co.uk) Your Light Source 1) Halogen lamp 2) Mercury lamp 3) Xenon lamp 4) Metal halide lamp 5) LED 6) Laser Tungsten – Halogen lamp • White light source • Inexpensive long lasNng bulbs • Used mainly for brighQield illuminaNon • CAN be used for fluorescence excitaNon above 400nm • Ideal for live cell imaging (low power, no UV) • “Colour” changes with temperature Mercury (HBO) lamp PROS • white light source • 10-100x brighter then halogen • focused intensity light-source • very bright intensity peaks at specific wavelengths for many standard fluoreophores CONS • short bulb life (≈200-400h) • generates a lot of heat • requires bulb alignment • no uniform intensity (peaks) • bulb are hazardous waste • long warm-up time • excitation wavelength cannot be • Intensity decay over Nme, intensity controlled independently flickering Xenon lamp PROS • white light source • relaNvely even intensity across visible spectrum • focused intense light source CONS • requires bulb alignment • bulbs are hazardous waste • Intensity decay over Nme • weaker intensity in UV • generates a lot of heat in the IR region • relaNvely low power in visible range • excitaNon wavelength cannot be controlled independently Metal Halide lamp PROS • white light source • brighter intensity between peaks than mercury lamp • no bulb alignment, more uniform field of illum. -
Indoor Lighting Design Guide
CSU Office of the Chancellor Indoor Lighting Design Guide Indoor Lighting Design Guide Rev: 12/12/18 CSU Office of the Chancellor Indoor Lighting Design Guide ACKNOWLEDGEMENT The California State University (CSU) gratefully acknowledges the effort and work of Jai Agaram, John Andary, Douglas Effenberger, Kent Peterson, Steven Strauss, and Steve Taylor. Comments or inquiries may be directed to: The California State University Office of the Chancellor Capital Planning Design and Construction Long Beach, California Attention: Thomas Kennedy, Chief Architecture and Engineering Telephone: (562) 951-4129 E-mail: [email protected] CSU Office of the Chancellor Indoor Lighting Design Guide TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................................... 1 SECTION 1: INTRODUCTION ............................................................................................................................................ 2 CSU POLICY .................................................................................................................................................................................. 2 DEFINITIONS .................................................................................................................................................................................. 2 UTILITY INCENTIVES ....................................................................................................................................................................... -
Is the Boy Scouts of America Really Founded Upon a Myth? W.D
INTERNATIONAL SCOUTING COLLECTORS ASSOCIATION JOURNALVol. 16, No. 3 September 2016 Is the Boy Scouts of America Really Founded upon a Myth? W.D. Boyce and the Unknown Scout ISCA JOURNAL - SEPTEMBER 2016 1 INTERNATIONAL SCOUTING COLLECTORS ASSOCIATION, INC PRESIDENT CRAIG LEIGHTY, 724 Kineo Ct., Oakley, CA 94561 (925) 548-9966, [email protected] Term Expires: 2018 VICE PRESIDENTS AREAS SERVED: TERM EXPIRES RICK BEDSWORTH, 1087 Tropical Star Ln #101, Henderson, NV 89002, (702) 561-2598, Activities 2018 [email protected] AL SILVA, 195 S. Kathleen Lane, Orange, CA 92869, (714) 771-0588, Administration 2017 [email protected] JAMES ELLIS, 405 Dublin Drive, Niles, MI 49120, (269) 683-1114, Communications 2016 [email protected] TERRY GROVE, 532 Seven Oaks Blvd., Winter Park, FL 32708 (321) 214-0056, Finance 2018 [email protected] J JOHN PLEASANTS,1478 Old Coleridge Rd., Siler City, NC 27344, (919) 742-5199, Marketing / 2017 [email protected] Promotions DAVE THOMAS, 5335 Spring Valley Rd., Dallas, TX 75254, (972) 991-2121, Legal 2017 [email protected] BOARD MEMBERS AT LARGE AREAS SERVED: TERM EXPIRES JAMES ARRIOLA, 4308 Fox Point Dr., Las Vegas, NV, 89108, (702) 275-4110 Website 2018 [email protected] Content GENE COBB, 4097 HWY 1153 Oakdale, LA, 71463, (318) 491-0909, ISCA Store 2017 [email protected] KIRK DOAN, 1201 Walnut St., #2500, Kansas City, MO 64100, (816) 691-2600, OA Insignia 2016 [email protected] Committee BRIAN IVES, 2520 Bexford View, Cumming, GA 30041, (805) 750-0109, Promotional 2016 [email protected] Activities TOD JOHNSON, PO Box 10008, South Lake Tahoe, CA 96158, (530) 541-1190, Membership 2016 [email protected] DAVE MINNIHAN, 2300 Fairview Rd., #M-106 Costa Mesa, CA 92626, (714) 641-4845, OA Insignia 2018 [email protected] Column DAVE PEDE. -
Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy
Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy Kazuo Yamagata1,2, Daisaku Iwamoto3, Yukari Terashita1,4, Chong Li1, Sayaka Wakayama1,Yoko Hayashi-Takanaka5, Hiroshi Kimura5, Kazuhiro Saeki3, Teruhiko Wakayama1* 1 RIKEN Center for Developmental Biology, Kobe, Japan, 2 Research Institute for Microbial Research, Osaka University, Suita, Japan, 3 Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan, 4 Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan, 5 Graduate School of Frontier Biosciences, Osaka University, Suita, Japan Abstract Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries. Citation: Yamagata K, Iwamoto D, Terashita Y, Li C, Wakayama S, et al. (2012) Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy. PLoS ONE 7(2): e31638. doi:10.1371/journal.pone.0031638 Editor: Sue Cotterill, St. Georges University of London, United Kingdom Received September 12, 2011; Accepted January 10, 2012; Published February 8, 2012 Copyright: ß 2012 Yamagata et al. -
Produktkatalog Product Catalogue
Produktkatalog Product catalogue Über Petromax About Petromax Vor über 100 Jahren entwickelte der Berliner 100 years ago, Max Graetz, the technical Technikpionier Max Graetz die weltbekannte pioneer from Berlin, developed the world- Starklichtlampe! Die Marke Petromax, nach famous high-pressure lamp. The Petromax Graetzs Spitznamen „Petroleum Maxe“ be- brand, thus named after Graetz's nickname nannt, war geboren und mit ihr der Antrieb, "Petroleum Maxe", was born and with her mit innovativer Technik und Leidenschaft für the drive to bring independence into every- die Flamme Unabhängigkeit in den Alltag zu day life by means of innovative technology bringen. Auch heute steht dieser Gedanke and passion for the flame. Today this is still im Zentrum der Traditionsmarke. Die Faszi- the core concept of the traditional brand. nation Feuer inspiriert uns bei Petromax seit At Petromax the fascination for fire always jeher und der Funke ist auch auf die Themen inspires us, and the spark also flashed upon Draußen-Kochen und Draußen-Erlebnis über- the topics of outdoor cooking and outdoor gesprungen. experience. Feuerstellen unter freiem Himmel, nachhaltige Fireplaces under the open sky, sustainable Bekleidung für Draußen-Abenteuer, langlebi- clothing for the outdoor adventure, durable ge und belastbare Ausrüstung zum Kochen and resilient equipment for cooking and und Kühlen: Die Produktpalette von Petromax cooling: The Petromax product portfolio of- bietet dir eine große Auswahl, die dich dem fers you a large selection bringing you once ursprünglichen Erlebnis in der Natur wieder more closer to the original experience in na- näherbringt. Dabei steht die Qualität, Funk- ture. For that purpose, quality, functionality tionalität sowie die Kombinierbarkeit unserer as well as combinability of our products are Produkte im Vordergrund. -
Electric Light Pdf, Epub, Ebook
ELECTRIC LIGHT PDF, EPUB, EBOOK Seamus Heaney | 96 pages | 19 Mar 2001 | FABER & FABER | 9780571207985 | English | London, United Kingdom Electric Light PDF Book Tour EL: 5 min videos on each light type, followed by a 5 question quiz for each lamp type. Wednesday 17 June In , Thomas Edison began serious research into developing a practical incandescent lamp and on October 14, , Edison filed his first patent application for "Improvement In Electric Lights". Sunday 27 September Wednesday 29 July Wednesday 16 September View all albums. Saturday 10 October View all similar artists. In colder climates where heating and lighting is required during the cold and dark winter months, the heat byproduct has some value. Saturday 15 August Similar To Jeff Lynne. Tuesday 18 August Monday 25 May Wednesday 22 April Play album Buy Loading. Friday 24 April Wednesday 15 July Main article: Incandescent light bulb. Wednesday 14 October Help Learn to edit Community portal Recent changes Upload file. Features Exploring the local sounds and scenes at Noise Pop Fest. Due to the importance of this area of engineering we offer a full course of web pages, videos, and educational tools to communicate to you the world of of the electric light and the engineers and inventors who made it possible. Friday 31 July Monday 8 June Friday 21 August Sunday 18 October Friday 26 June The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. Friday 4 September Connect to Spotify Dismiss. Thursday 7 May Sunday 31 May Wednesday 1 July Tuesday 20 October The electric arc is struck by touching the rod tips then separating them. -
Torch Cutting
Torch Cutting Definition: Process for cutting metal using an apparatus that produces a very hot flame through the combustion of gases. Potential Hazards: Aerosolized particles Back strain Burns Explosive atmosphere Falling heavy objects Fire Flammable gases or vapors Hazardous fumes Hot environment Oil and hydraulic fluids Repetitive motion injuries Sharp objects/edges Guarding/Shielding: Approved protective equipment must be installed into the fuel gas piping to prevent • Backflow of oxygen into the fuel gas supply system • Passage of a flash back into the fuel gas supply system • Excessive back pressure of oxygen in the fuel gas supply system. Protective Equipment: Hard hats* Safety glasses* Steel toe/steel shank work boots with metatarsal guards* Oil resistant clothing or covering* Fire retardant gloves* Fire retardant coveralls or other form of full body work clothing* Fire retardant long sleeved shirt* Eye/face shielding that provides protection from ultraviolet light (shade ratings of 4 to 6, depending on the thickness of the material being cut)* Respirator (unless the absence of a respiratory hazard can be proven)* Hearing protection as needed *minimum requirements Safety Procedures: Portable fire extinguisher must be plainly marked and readily available in close proximity to torch cutting operations. Managers and operators must analyze torch cutting operations to determine the level of potential exposure to hazardous materials. These materials include, but are not necessarily limited to: • Lead • Cadmium • Beryllium • Carbon monoxide • Chromium • Iron oxide • Magnesium oxide • Mercury vapor • Nickel • Nitrogen dioxide • Zinc oxide Where hazardous levels exist, workers must be protected and monitored in accordance with the corresponding regulation(s). Compressed gas cylinders must never be moved via magnet. -
Edison Facts 2021.Indd
Edison Facts Did You Know? ■ Thomas Edison was born on February 11, 1847, in Milan, Ohio. ■ Edison was partially deaf. ■ At age 10, Edison built his first science laboratory in the basement of his family's home. ■ Edison acquired 1,093 U.S. patents for his inventions. He held the record for the most patents until 2015, when he was surpassed by inventor Lowell Wood, who today holds 1,969 U.S. patents. ■ The first invention that Edison tried to sell was an electric vote recorder. ■ The phonograph was Edison's favorite invention. ■ In 1879, Edison invented the first incandescent light bulb. ■ Edison tested over 6,000 vegetable growths (baywood, boxwood, hickory, cedar, flax, bamboo) as filament material in his light bulbs. ■ Edison set up the Pearl Street Central Power Station, the world's first “electric light-power station” in lower Manhattan. ■ Edison's Pearl Street plant powered one square mile of Lower Manhattan, providing service to 59 customers for approximately 24 cents per kilowatt-hour. ■ Edison founded the Edison General Electric Company in 1878 to market his inventions, including the incandescent lamp. In 1892, the company merged with the Thomson-Houston Company to form the General Electric Company. ■ Edison began operation of the first passenger electric railway in the country in Menlo Park, New Jersey. ■ Edison was nicknamed the “Wizard of Menlo Park”. ■ In 1913, Edison introduced the first talking motion pictures. ■ Edison coined the phrase, “Genius is one percent inspiration, 99 percent perspiration.” ■ Edison passed away when he was 84 years old, on Sunday, Learn more about October 18, 1931. -
Holy Trinity Episcopal Church Acolyte Manual
Holy Trinity Episcopal Church Acolyte Manual 2018 Table of Contents Introduction. 3 Overall Responsibilities for All Acolytes. 4 Scheduling. 4 Vestments . 4 Before Worship. 5 Procession. 5 Candle Lighting Procedures. 5 Lighting Candles. 6 Extinguishing Candles. .. 7 Responsibilities of Individual Acolyte Positions . 7 Crucifer/Server Responsibilities. .7 Before the Service. 7 The Procession . 7 The Gospel Procession . 8 Preparation for Holy Communion. 8 The Recession. 9 Torch Bearer Responsibilities. 9 Before the Service. 9 The Procession . 9 The Gospel Procession . 10 At the Offering . 10 The Recession. .10 Gospel Bearer Responsibilities. 11 Before the Service. .11 The Procession.. .11 The Gospel Procession.. .11 The Recession. .11 Flag or Banner Bearer Responsibilities. 12 Glossary. 12-13 2 Introduction “In the meantime, the boy Samuel continued to serve the Lord, wearing a sacred linen apron. Each year his mother would make a little robe and take it to him when she accompanied her husband to offer the yearly sacrifice...The boy Samuel grew up in the service of the Lord.” 1 Samuel 2:18-21 Acolyte means an attendant or follower and Samuel is one of the first examples of an assistant to a priest. Your job as an acolyte is to assist the celebrant (the priest in charge of a worship service) and enhance the worship service to help glorify God. You are a minister of the church who is called to serve God. Therefore, every action you take should be done respectfully and in a dignified manner; the goal is for the attention of the congregation to be on the liturgy and not on the ministers. -
Basic Physics of the Incandescent Lamp (Lightbulb) Dan Macisaac, Gary Kanner,Andgraydon Anderson
Basic Physics of the Incandescent Lamp (Lightbulb) Dan MacIsaac, Gary Kanner,andGraydon Anderson ntil a little over a century ago, artifi- transferred to electronic excitations within the Ucial lighting was based on the emis- solid. The excited states are relieved by pho- sion of radiation brought about by burning tonic emission. When enough of the radiation fossil fuels—vegetable and animal oils, emitted is in the visible spectrum so that we waxes, and fats, with a wick to control the rate can see an object by its own visible light, we of burning. Light from coal gas and natural say it is incandescing. In a solid, there is a gas was a major development, along with the near-continuum of electron energy levels, realization that the higher the temperature of resulting in a continuous non-discrete spec- the material being burned, the whiter the color trum of radiation. and the greater the light output. But the inven- To emit visible light, a solid must be heat- tion of the incandescent electric lamp in the ed red hot to over 850 K. Compare this with Dan MacIsaac is an 1870s was quite unlike anything that had hap- the 6600 K average temperature of the Sun’s Assistant Professor of pened before. Modern lighting comes almost photosphere, which defines the color mixture Physics and Astronomy at entirely from electric light sources. In the of sunlight and the visible spectrum for our Northern Arizona University. United States, about a quarter of electrical eyes. It is currently impossible to match the He received B.Sc.