List of Contributors

Total Page:16

File Type:pdf, Size:1020Kb

List of Contributors 2018 List of Contributors Lawrence Misa Aboagye CSIR-Plant Genetic Resource Research Institute, Bunso, Ghana Komla Elikplim Abotsi Department of Botany and Plant Ecology, University of Lomé, Togo Thiombiano Adjima University Ouaga1 Pr Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso, E-mail: [email protected] Komla Afiademanyo Department of Zoology, University of Lomé, Togo Wafaa M. Amer Department of Botany and Microbiology, Faculty of Science, Cairo University, Egypt, E-mail: [email protected] Komina Amévoin Department of Zoology, University of Lomé, Togo Diop Sall Aminata National Parks Directorate, Senegal, E-mail: [email protected] Benjamin Annor CSIR-Crops Research Institute, P.O. Box 3785, Kumasi, Ghana Judith L. Arnolds South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, Cape Town, RSA, E-mail: [email protected] Jenneh F. Bebeley Sierra Leone Agricultural Research Institute (SLARI), PMB 1313, Tower Hill, Freetown, Sierra Leone, West Africa John Bukombe Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania Hagir Mahagoub EL-Nasry University of Khartoum, faculty of Forestry, Khartoum North, Sudan Mondjonnesso Gomina Department of Zoology, University of Lomé, Togo Danni Guo South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, Cape Town, RSA, E-mail: [email protected] Abdelnasir Ibrahim Hano University of Khartoum, faculty of Forestry, Khartoum North, Sudan Ouedraogo Issaka University Ouaga1 Pr Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso Nacoulma Blandine Marie Ivette University Ouaga1 Pr Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso Dimobe Kangbeni University Ouaga1 Pr Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso x Global Biodiversity, Volume 3 Etayeb S. Khalid Department of Zoology, Faculty of Sciences, Tripoli University, Libya, E-mail: [email protected] Hamza Kija Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania Kouami Kokou Department of Botany and Plant Ecology, University of Lomé, Togo, E-mail: [email protected] Nicephor Lesio Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania Stephen Liseki Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania Talaat Dafalla Abdel Magid University of Bahri, College of Natural Resources, Khartoum North, Sudan Honori Maliti Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania Gueye Mathieu Laboratory of Botany, Department of Botany and Geology, UMI 3189, IFAN Ch. A. Diop BP 206 Dakar, Senegal, E-mail: [email protected], [email protected] Mohamaed Menioui Scientific Institute of Rabat, Mohammed V. University, Morocco, E-mail: [email protected] Jean B. Mikissa National School of Forest and Water, Gabon, E-mail: [email protected] Ameer Awad Mohammed Wildlife Research Centre, Khartoum North, Sudan Mahklouf H. Mohammed Department of Botany, Faculty of Sciences, Tripoli University, Libya, E-mail: [email protected] Emmanuel Bayani Ngoyi General direction for Environmental, Gabon, E-mail: [email protected] Ally K. Nkwabi Tanzania Wildlife Research Institution (TAWIRI), Box 661 Arusha, Tanzania, E-mail: [email protected], [email protected] Prince E. Norman Sierra Leone Agricultural Research Institute (SLARI), PMB 1313, Tower Hill, Freetown, Sierra Leone, West Africa, E-mail: [email protected]/[email protected] Yvonne S. Norman Sierra Leone Agricultural Research Institute (SLARI), PMB 1313, Tower Hill, Freetown, Sierra Leone, West Africa Patrick Ofori CSIR-Soil Research Institute, Academy Post Office, Kwadaso, Kumasi, Ghana Michael Kwabena Osei CSIR-Crops Research Institute, P.O. Box 3785, Kumasi, Ghana, E-mail: [email protected] Ouedraogo Oumarou University Ouaga1 Pr Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso Flore Koumba Pambou Institute for Research on Agriculture and Forests, Gabon, E-mail: [email protected] List of Contributors xi Houinsodé Segniagbeto Department of Zoology, University of Lomé, Togo Janatu V. Sesay Sierra Leone Agricultural Research Institute (SLARI), PMB 1313, Tower Hill, Freetown, Sierra Leone, West Africa Stanford Mudenda Siachoono Department of Zoology and Aquatic Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia, E-mail: [email protected] Ahmed A. H. Siddig University of Khartoum, faculty of Forestry, Khartoum North, Sudan; Harvard Forest, Harvard University – 324 North Main St., Petersham MA 1366, USA, E-mail: [email protected] B. A. Taïbou Ecological Monitoring Center, Rue Leon Gontran Damascus, Fann Residence, BP 15532 Dakar, Senegal, E-mail: [email protected] Global Biodiversity Volume 3 Selected Countries in Africa Edited By T. Pullaiah, PhD Apple Academic Press Inc. Apple Academic Press Inc. 3333 Mistwell Crescent 9 Spinnaker Way Oakville, ON L6L 0A2 Waretown, NJ 08758 Canada USA © 2018 by Apple Academic Press, Inc. Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group No claim to original U.S. Government works International Standard Book Number-13: (Hardcover) International Standard Book Number-13: (eBook) All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and record- ing, or in any information storage or retrieval system, without permission in writing from the publisher or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged, please write and let us know so we may rectify in any future reprint. Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe. Library and Archives Canada Cataloguing in Publication TK Library of Congress Cataloging-in-Publication Data TK Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com and the CRC Press website at www.crcpress.com Contents About the Editor ......................................................................................................vii List of Contributors ..................................................................................................ix List of Abbreviations ............................................................................................. xiii Preface ...................................................................................................................xvii 1. Phytodiversity of Burkina Faso ....................................................................1 Nacoulma Blandine Marie Ivette, Ouedraogo Issaka, Ouedraogo Oumarou, Dimobe Kangbeni, and Thiombiano Adjima 2. Biodiversity in Egypt ....................................................................................35 Wafaa M. Amer 3. Biodiversity in Gabon: An Overview ..........................................................63 Jean B. Mikissa, Flore Koumba Pambou, and Emmanuel Bayani Ngoyi 4. Biodiversity in Ghana ..................................................................................81 Michael Kwabena Osei, Lawrence Misa Aboagye, Patrickofori, and Benjamin Annor 5. Biodiversity in Libya ..................................................................................113 Mahklouf H. Mohammed and Etayeb S. Khalid 6. Biological Diversity in Morocco ................................................................135 Mohamaed Menioui 7. Biodiversity in Senegal: Terrestrial Ecosystems Flora and Great Fauna ................................................................................................175 Gueye Mathieu, Ba Taïbou, and Diop Sall Aminata 8. Biodiversity in Sierra Leone ......................................................................215 Prince E. Norman, Jenneh F. Bebeley, Janatu V. Sesay, and Yvonne S. Norman 9. Biodiversity in South Africa ......................................................................249 Danni Guo and Judith L. Arnolds 10. Biodiversity in Sudan .................................................................................275 Ahmed A. H. Siddig, Talaat Dafalla Abdel Magid, Hagir Mahagoub El-Nasry, Abdelnasir Ibrahim Hano, and Ameer Awad Mohammed 11. An Overview of Biodiversity in Tanzania and Conservation Efforts ....297 Ally K. Nkwabi, John Bukombe, Honori Maliti, Stephen Liseki, Nicephor Lesio, and Hamza Kija 12. Biodiversity in Togo ....................................................................................343
Recommended publications
  • Seed Germination of the Halophyte Anabasis Setifera (Amaranthaceae) from Saudi Arabia
    Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Journal: Botany Manuscript ID cjb-2018-0053.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2018 Complete List of Authors: Basahi, Mohammed; Shaqra University College of Science and Arts Sajir, biology; Anabasis setifera,Draft halophyte, Temperature, Germination, seed germination Keyword: recovery Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 27 Botany Seed germination of the halophyte Anabasis setifera (Amaranthaceae) from Saudi Arabia. Mohammed A Basahi College of Science and Arts Sajir Shaqra University P.O. Box 33, Shaqra 11961 Saudi Arabia [email protected] Draft00966582223689 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 27 Abstract The main objective of this study was to determine the effects of temperature, light/darkness, and salinity (NaCl) on seed germination of Anabasis setifera Moq. and the effects of alleviating salinity stress using distilled water. One-hundred percent of seeds completed germination at 15/5, 20/10, and 20°C, and a higher percentage of seeds completed germinationin light than in the dark at 20/10 and 25/15°C. The percentage of seeds that completed the germination decreased as salinity increased from 0 to 700 mM NaCl. Seeds that did not complete germination in the 800 or 700 mM NaCl solutions completed its germinationDraft after being transferred to distilled water, with a recovery rate of 94.5% and 75.5%, respectively, at 25/15°C. The inhibitory effect of NaCl on the completion of germination in this species probably occurs via an osmotic effect.
    [Show full text]
  • Phytochemical Investigation of the Pods of Senna Occidentalis
    Addis Ababa University Science Faculty Chemistry Department Organic Stream Graduate Project - Chem. 774 Phytochemical Investigation of the Pods of Senna occidentalis Fekade Beshah Advisor: Dr. Gizachew Alemayehu(PhD) July 2008 Addis Ababa University Science Faculty Chemistry Department Organic Stream Phytochemical Investigation of the Pods of Senna occidentalis A graduate project submitted to the Department of Chemistry, Science Faculty, AAU Fekade Beshah Advisor: Dr. Gizachew Alemayehu(PhD) July 2008 Contents Acknowledgements ..................................................................................................................... v Abstract......................................................................................................................................... vi 1. Introduction .............................................................................................................................. 1 2. Senna occidentalis And Its Medicnal Uses ............................................................................. 6 3. Secondary Metabolites from Senna occidentalis.................................................................... 9 3.1 Preanthraquinones From Senna occidentalis .................................................................. 9 3.2 Anthraquinones From Senna occidentalis .................................................................... 10 3.3. Bianthraquinones From Senna occidentalis.................................................................. 11 3.4. Glycosides From Senna
    [Show full text]
  • Vegetation Succession Along New Roads at Soqotra Island (Yemen): Effects of Invasive Plant Species and Utilization of Selected N
    10.2478/jlecol-2014-0003 Journal of Landscape Ecology (2013), Vol: 6 / No. 3. VEGETATION SUCCESSION ALONG NEW ROADS AT SOQOTRA ISLAND (YEMEN): EFFECTS OF INVASIVE PLANT SPECIES AND UTILIZATION OF SELECTED NATIVE PLANT RESISTENCE AGAINST DISTURBANCE PETR MADĚRA1, PAVEL KOVÁŘ2, JAROSLAV VOJTA2, DANIEL VOLAŘÍK1, LUBOŠ ÚRADNÍČEK1, ALENA SALAŠOVÁ3, JAROSLAV KOBLÍŽEK1 & PETR JELÍNEK1 1Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of the Forest Botany, Dendrology and Geobiocoenology, Zemědělská 1/1665, 613 00 Brno 2Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01 Prague 3Mendel University in Brno, Faculty of Horticulture, Department of Landscape Planning, Valtická 337, 691 44 Lednice Received: 13th November 2013, Accepted: 17th December 2013 ABSTRACT The paved (tarmac) roads had been constructed on Soqotra island over the last 15 years. The vegetation along the roads was disturbed and the erosion started immediately after the disturbance caused by the road construction. Our assumption is that biotechnical measurements should prevent the problems caused by erosion and improve stabilization of road edges. The knowledge of plant species which are able to grow in unfavourable conditions along the roads is important for correct selection of plants used for outplanting. The vegetation succession was observed using phytosociological relevés as a tool of recording and mapping assambblages of plants species along the roads as new linear structures in the landscape. Data from phytosociological relevés were analysed and the succession was characterised in different altitudes. The results can help us to select group of plants (especially shrubs and trees), which are suitable to be used as stabilizing green mantle in various site conditions and for different purposes (anti-erosional, ornamental, protection against noise or dust, etc.).
    [Show full text]
  • Valorisation Des Activités Biologiques De Certaines Espèces Végétales Sahariennes Nord-Africaines Ionut-Florin Palici
    Valorisation des activités biologiques de certaines espèces végétales sahariennes nord-africaines Ionut-Florin Palici To cite this version: Ionut-Florin Palici. Valorisation des activités biologiques de certaines espèces végétales sahariennes nord-africaines. Biologie végétale. Université de Bordeaux, 2016. Français. NNT : 2016BORD0321. tel-01515319 HAL Id: tel-01515319 https://tel.archives-ouvertes.fr/tel-01515319 Submitted on 27 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Sciences de l’Environnement Thèse de Doctorat en Sciences Agronomiques, Biotechnologies Agro- alimentaires Présentée par Ionut-Florin Palici Docteur en Pharmacie, Assistant en Botanique Université de Médecine & de Pharmacie de Timisoara, Roumanie Titre Valorisation des Activités biologiques de certaines espèces végétales sahariennes Nord-africaines Soutenue publiquement le 30 Novembre 2016, devant le jury : Pierre Waffo-Téguo, Pr. Université de Bordeaux; Président Bernard Amiaud, Pr. Université de Lorraine; Rapporteur Jean-Christophe Clément, Pr. Université Savoie Mont-Blanc; Rapporteur Blaise Touzard, M. de Conf. ; HDR, Université de Bordeaux; Directeur Mohamed Chaieb, Prof., Université de Sfax, Tunisie; Membre Année Universitaire : 2015-2016 Résumé La région sahariennne est une des zones les plus défavorables à la croissance et développement des espèces animales.
    [Show full text]
  • Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia
    land Article Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia Mouldi Gamoun and Mounir Louhaichi * International Center for Agricultural Research in the Dry Areas (ICARDA), 2049 Ariana, Tunisia; [email protected] * Correspondence: [email protected]; Tel.: +216-7175-2099 Abstract: Natural rangelands occupy about 5.5 million hectares of Tunisia’s landmass, and 38% of this area is in Tataouine governorate. Although efforts towards natural restoration are increasing rapidly as a result of restoration projects, the area of degraded rangelands has continued to expand and the severity of desertification has continued to intensify. Any damage caused by disturbances, such as grazing and recurrent drought, may be masked by a return of favorable rainfall conditions. In this work, conducted during March 2018, we surveyed the botanical composition and species diversity of natural rangelands in Tataouine in southern Tunisia. The flora comprised about 279 species belonging to 58 families, with 54% annuals and 46% perennials. The Asteraceae family had the greatest richness of species, followed by Poaceae, Fabaceae, Amaranthaceae, Brassicaceae, Boraginaceae, Caryophyllaceae, Lamiaceae, Apiaceae, and Cistaceae. Therophytes made the highest contribution, followed by chamaephytes and hemicryptophytes. Of all these species, 40% were palatable to highly palatable and more than 13% are used in both traditional and modern medicine. Citation: Gamoun, M.; Louhaichi, M. Keywords: vegetation; species richness; drylands; south of Tunisia Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia. Land 2021, 10, 313. https://doi.org/ 1. Introduction 10.3390/land10030313 Climate change and human activity represent a big threat to biodiversity [1–3].
    [Show full text]
  • Vegetation and Grazing in the St. Katherine Protectorate, South Sinai, Egypt
    Rebecca Guenther: OpWall Plant Report Vegetation and Grazing in the St. Katherine Protectorate, South Sinai, Egypt Report on plant surveys done during Operation Wallacea expeditions during 2005 Rebecca Guenther ABSTRACT Plants were surveyed in the St. Katherine Protectorate of South Sinai, Egypt. The most commonly recorded plant species include: Artemisia herba-alba, Artemisia judaica, Fagonia arabica, Fagonia mollis, Schismus barbatus, Stachys aegyptiaca, Tanacetum sinaicum, Teucrium polium and Zilla spinosa. Dominant plant families were Compositae, Graminae, Labiatae, and Leguminosae. Communities with a high grazing pressure had a lower overall plant health. A strong negative correlation was found between plant health and grazing pressure. Twelve plant families showed heavy grazing pressure, including Resedaceae, Caryophyllaceae, Polygalaceae, Juncaceae, Solanaceae, Geraniaceae, Ephedraceae, Globulariaceae, Urticaceae, Moraceae, Plantaginaceae, and Salicaceae. INTRODUCTION The Sinai Peninsula has geographical importance in that it is where the continents of Africa and Asia meet. The St. Katherine Protectorate covers the mountainous region of Southern Sinai. It was declared as a protected area in 1996 due to its immense biological and cultural interest. It has been recognized by the IUCN as one of the most important regions for floral diversity in the Middle East, containing 30% of the entire flora of Egypt and a great proportion of its endemic species. Within the Protectorate, more than 400 species of higher plants have been recorded, of which 19 species are endemic, 10 are extremely endangered and 53 are endangered. Localized overgrazing, uprooting of plants for fuel or camel fodder, and over-collection of medicinal and herbal plants are greatly threatening the floral diversity of the Protectorate.
    [Show full text]
  • Biological Synthesis of Gold and Silver Nanoparticles by Nitraria Schoberi Fruits
    American Journal of Advanced Drug Delivery www.ajadd.co.uk Original Article Biological Synthesis of Gold and Silver Nanoparticles by Nitraria schoberi Fruits Majid Sharifi Rad 1, 2 , Javad Sharifi Rad 3, 4 *, Gholam Ali Heshmati 2, Abdolhossein Miri 3,4 and Dhrubo Jyoti Sen 5 1Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Iran 2Department of Rangeland Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138–15739, Iran 3Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, P.O. Box 61615- 585 Zabol, Iran 4Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, P.O. Box 61615-585 Zabol, Iran 5Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Gujarat Technological University, Arvind Baug, Mehsana-384001, Gujarat, India Date of Receipt - 18/0 6/2013 ABSTRACT Date of Revision- 20/06/2013 Date of Acceptance- 29/06/2013 Biological synthesis of nanoparticles by the use of natural solvents Address for and it’s natural protecting method was compared with physical and Correspondence chemical methods. Among of biological synthesis of nanoparticles Zabol Medicinal Plants methods, using of plant and particularly medical plants are more Research Center, important. Synthesis of silver and gold nanoparticles may be Zabol University of influenced directly or indirectly by phytochemicals in plants such as Medical Sciences, P.O. flavonoids, diosgenin and phenolics compounds. In this study the Box 61615- extracts of dry fruit was used for biological synthesis of gold and 585 Zabol, Iran & silver nanoparticles as a reducing agent. Salt of these elements was Department of added to extract with 1mM concentration and the reaction was Pharmacognosy, performed at room temperature.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • Characterization of the Wild Trees and Shrubs in the Egyptian Flora
    10 Egypt. J. Bot. Vol. 60, No. 1, pp. 147-168 (2020) Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ Characterization of the Wild Trees and Shrubs in the Egyptian Flora Heba Bedair#, Kamal Shaltout, Dalia Ahmed, Ahmed Sharaf El-Din, Ragab El- Fahhar Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt. HE present study aims to study the floristic characteristics of the native trees and shrubs T(with height ≥50cm) in the Egyptian flora. The floristic characteristics include taxonomic diversity, life and sex forms, flowering activity, dispersal types,economic potential, threats and national and global floristic distributions. Nine field visits were conducted to many locations all over Egypt for collecting trees and shrubs. From each location, plant and seed specimens were collected from different habitats. In present study 228 taxa belonged to 126 genera and 45 families were recorded, including 2 endemics (Rosa arabica and Origanum syriacum subsp. sinaicum) and 5 near-endemics. They inhabit 14 habitats (8 natural and 6 anthropogenic). Phanerophytes (120 plants) are the most represented life form, followed by chamaephytes (100 plants). Bisexuals are the most represented. Sarcochores (74 taxa) are the most represented dispersal type, followed by ballochores (40 taxa). April (151 taxa) and March (149 taxa) have the maximum flowering plants. Small geographic range - narrow habitat - non abundant plants are the most represented rarity form (180 plants). Deserts are the most rich regions with trees and shrubs (127 taxa), while Sudano-Zambezian (107 taxa) and Saharo-Arabian (98 taxa) was the most. Medicinal plants (154 taxa) are the most represented good, while salinity tolerance (105 taxa) was the most represented service and over-collecting and over-cutting was the most represented threat.
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • The Pollen Flora of Faiyum, Egypt I- Archichlamydeae Eman M
    3 Taeckholmia 32 (2012): 1-40 The Pollen Flora of Faiyum, Egypt I- Archichlamydeae Eman M. Shamso¹ and Fujiki Toshiyuki² ¹ The Herbarium, Botany Department, Faculty of Science, Cairo University, Giza 12613 Egypt; e-mail: [email protected] ²International Research Center for Japanese Studies, Japan; e-mail: [email protected] Eman M. Shamso and Fujiki Toshiyuki. 2012. The Pollen Flora of Faiyum, Egypt I- Archichlamydeae. Taeckholmia 32: 00-00. The aim of this investigation is dealing with determination of pollen micro- and macro-morphological characters of Egyptian taxa of subclass Archichlamydeae to provide palynological information and an identification key adapted for use with archeobotanical materials. The pollen of 41 Egyptian taxa belongs to 18 families representing the current vegetation of Faiyum area described and illustrated with both LM and SEM micrographs. On the basis of pollen units, number and type of apertures, exine patterns were great diagnostic significance among the examined taxa. Seven major pollen types and 18 subtypes included in two groups (complex and single pollen groups) were recognized. Pollen types: Polyads, triporate, tetra- hexaporate and pantobrevicolpate are characterized to Mimosoideae, Urticaceae, Fumariaceae and Portulacaceae respectively; while pantoporate, tricolpate and tricolporate pollen types show highly diversity in pollen characters, comprising 16 pollen subtypes distributed among 14 families. A description, illustriation in the form of scanning electron micrographs and a key for identification of the different taxa is provided. Received 1 November 2012, Accepted 16 November 2012 2 Eman M. Shamso and Fujiki Toshiyuki Key words: Archichlamydeae, Faiyum, Identification key, Pollen Flora, Pollen types, SEM micrographs. Introduction Western Desert of Egypt is one of the main geomorphologic units, which extends from the Mediterranean Coast in the north to the Egyptian- Sudanese border in the south (ca.
    [Show full text]
  • PROTOSCOLICIDAL ACTIVITY of AQUEOUS and ALCOHOLIC EXTRACTS of JUNCUS RIGIDUS (JUNCECEAE) in VITRO *Mohmoud S.A
    Bas.J.Vet.Res.Vol.8,No.1,2009. PROTOSCOLICIDAL ACTIVITY OF AQUEOUS AND ALCOHOLIC EXTRACTS OF JUNCUS RIGIDUS (JUNCECEAE) IN VITRO *Mohmoud S.A. AL-Mounasi **Fatin A-J- Mustafa * Basrah Technical institutes, IRAQ. **Department of Biology,College of Education ,University of Basrah ,Basrah, Iraq. (Received 21 January 2009, Accepted 3 March 2009) Key words : Juncus rigidus , biological activity , protoscolices. ABSTRACT The aim of the present study was to evaluate the protoscolicidal activity of aqeous and 70 % alcoholic extracts of the seed of the plant (Semmar) Juncus rigidus with different concentrations (5,10,15,20) % . The results showed that all concentrations have the ability to kill the protoscolices at 4- 8 days after treatment . The aqeous extract of the concentration (20)% showed the ability to kill all the protoscolices at the fourth day after treatment more than any concentration according to R.L.S.D. test. The aqeuos extract in all concentrations have more effect than the alcoholic extract on killing the protoscolices at the same concentrations. Hank´s reservative solution has been proved to keep the control group alive up to (20) days. INTRODUCTION Juncus rigidus (Juncaceae), the common name is samara and assla. It is grown native in Iraq specially in Basrah. In germination and propagation testing, J. rigidus has a wide ecological tolerance.[1] (Figer-1-) . In vitro studies have shown that phototoxins from J. effusus enhanced antimicrobial activities n light and have antifungul ctivity to Candida albicans. [2] In vivo the alcoholic extract of J. acutus showed significant anti-eczematic activity. The isolation of five phenolid glycosices which responsible for this activity were isolated and identified as oxyresvaratrol 2-OB-D-glucopyranoside 1 resvertatrol 3 , 4 – 0 , 0 – di – B – D , canthosideB4, and caffic acid glucopyranoside5.
    [Show full text]