Ideal Energy Source by Mark Oliphant's Beam Fusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rutherford's Nuclear World: the Story of the Discovery of the Nuc
Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom. -
Progress Towards Polar-Drive Ignition for the NIF
Home Search Collections Journals About Contact us My IOPscience Progress towards polar-drive ignition for the NIF This content has been downloaded from IOPscience. Please scroll down to see the full text. 2013 Nucl. Fusion 53 113021 (http://iopscience.iop.org/0029-5515/53/11/113021) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.125.179.18 This content was downloaded on 06/11/2013 at 22:08 Please note that terms and conditions apply. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 113021 (5pp) doi:10.1088/0029-5515/53/11/113021 Progress towards polar-drive ignition for the NIF R.L. McCrory1,a, R. Betti1,a, T.R. Boehly1, D.T. Casey2, T.J.B. Collins1, R.S. Craxton1, J.A. Delettrez1, D.H. Edgell1, R. Epstein1, J.A. Frenje2, D.H. Froula1, M. Gatu-Johnson2, V.Yu. Glebov1, V.N. Goncharov1, D.R. Harding1, M. Hohenberger1, S.X. Hu1, I.V. Igumenshchev1, T.J. Kessler1, J.P. Knauer1, C.K. Li2, J.A. Marozas1, F.J. Marshall1, P.W. McKenty1, D.D. Meyerhofer1,a, D.T. Michel1, J.F. Myatt1, P.M. Nilson1, S.J. Padalino3, R.D. Petrasso2, P.B. Radha1, S.P. Regan1, T.C. Sangster1, F.H. Seguin´ 2, W. Seka1, R.W. Short1, A. Shvydky1, S. Skupsky1, J.M. Soures1, C. Stoeckl1, W. Theobald1, B. Yaakobi1 and J.D. Zuegel1 1 Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, USA 2 Plasma Science Fusion Center, 173 Albany Street, Massachusetts Institute of Technology, Cambridge MA 02139, USA 3 Department of Physics, State University of New York at Geneseo, 1 College Circle, Geneseo NY 14454, USA E-mail: [email protected] Received 31 December 2012, accepted for publication 4 September 2013 Published 27 September 2013 Online at stacks.iop.org/NF/53/113021 Abstract The University of Rochester’s Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. -
The Development of Military Nuclear Strategy And
The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew. -
Proceedings of the Sir Mark Oliphant International Frontiers of Science and Technology Australian Geothermal Energy Conference Record 2008/18 Gurgenci, H
GEOSCIENCE AUSTRALIA Sir Mark Oliphant Conferences – International Frontiers of Science and Technology Proceedings of the Sir Mark Oliphant International Frontiers of Science and Technology Australian Geothermal Energy Conference Record 2008/18 Gurgenci, H. and Budd, A.R. APPLYING GEOSCIENCE TO AUSTRALIA’S MOST IMPORTANT CHALLENGES Proceedings of the Sir Mark Oliphant International Frontiers of Science and Technology Australian Geothermal Energy Conference GEOSCIENCE AUSTRALIA RECORD 2008/18 Edited by Hal Gurgenci 1 and Anthony Budd 2 1 Queensland Geothermal Energy Centre, The University of Queensland, St Lucia 4072 2 Geoscience Australia, GPO Box 378, Canberra, ACT 2601 Department of Resources, Energy and Tourism Minister for Resources and Energy: The Hon. Martin Ferguson, AM MP Secretary: Dr Peter Boxall Geoscience Australia Chief Executive Officer: Dr Neil Williams PSM © Commonwealth of Australia, 2008 This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism, or review, as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the Chief Executive Officer, Geoscience Australia, GPO Box 378 Canberra ACT 2601. Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. ISSN 1448-2177 ISBN 978 1 921498 19 0 GeoCat # 67255 Recommended bibliographic reference: Gurgenci, H. and Budd, A.R. (editors), 2008. -
A Selected Bibliography of Publications By, and About, J
A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02]. -
Historic Barriers to Anglo-American Nuclear Cooperation
3 HISTORIC BARRIERS TO ANGLO- AMERICAN NUCLEAR COOPERATION ANDREW BROWN Despite being the closest of allies, with shared values and language, at- tempts by the United Kingdom and the United States to reach accords on nuclear matters generated distrust and resentment but no durable arrangements until the Mutual Defense Agreement of 1958. There were times when the perceived national interests of the two countries were unsynchronized or at odds; periods when political leaders did not see eye to eye or made secret agreements that remained just that; and when espionage, propaganda, and public opinion caused addi- tional tensions. STATUS IMBALANCE The Magna Carta of the nuclear age is the two-part Frisch-Peierls mem- orandum. It was produced by two European émigrés, Otto Frisch and Rudolf Peierls, at Birmingham University in the spring of 1940. Un- like Einstein’s famous letter to President Franklin D. Roosevelt, with its vague warning that a powerful new bomb might be constructed from uranium, the Frisch-Peierls memorandum set out detailed technical arguments leading to the conclusion that “a moderate amount of U-235 [highly enriched uranium] would indeed constitute an extremely effi- cient explosive.” Like Einstein, Frisch and Peierls were worried that the Germans might already be working toward an atomic bomb against which there would be no defense. By suggesting “a counter-threat with a similar bomb,” they first enunciated the concept of mutual deterrence and recommended “start[ing] production as soon as possible, even if 36 Historic Barriers to Anglo-American Nuclear Cooperation 37 it is not intended to use the bomb as a means of attack.”1 Professor Mark Oliphant from Birmingham convinced the UK authorities that “the whole thing must be taken rather seriously,”2 and a small group of senior scientists came together as the Maud Committee. -
Fusion Ignition Via a Magnetically-Assisted Fast Ignition Approach
Fusion ignition via a magnetically-assisted fast ignition approach W.-M. Wang1,3*, P. Gibbon2,4†, Z.-M. Sheng3,5,6‡, Y. T. Li1,3, and J. Zhang3,6 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China 2Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre, D-52425 Jülich, Germany 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 4Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 5SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom 6Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China * E-mail: [email protected] † E-mail: [email protected] ‡ E-mail: [email protected] 1 Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-propagate along a 3.5 kilotesla external magnetic field. Within a period of 5 picoseconds, the laser pulses heat a nuclear fuel to reach the ignition conditions. Furthermore, we present the parameter windows of lasers and magnetic fields required for ignition for experimental test. To achieve controlled nuclear fusion energy, the central ignition concept of inertial confinement fusion (ICF) was proposed in 1970s [1-4]. -
Character List
Character List - Bomb Use this chart to help you keep track of the hundreds of names of physicists, freedom fighters, government officials, and others involved in the making of the atomic bomb. Scientists Political/Military Leaders Spies Robert Oppenheimer - Winston Churchill -- Prime Klaus Fuchs - physicist in designed atomic bomb. He was Minister of England Manhattan Project who gave accused of spying. secrets to Russia Franklin D. Roosevelt -- Albert Einstein - convinced President of the United States Harry Gold - spy and Courier U.S. government that they for Russia KGB. Narrator of the needed to research fission. Harry Truman -- President of story the United States Enrico Fermi - created first Ruth Werner - Russian spy chain reaction Joseph Stalin -- dictator of the Tell Hall -- physicist in Soviet Union Igor Korchatov -- Russian Manhattan Project who gave physicist in charge of designing Adolf Hitler -- dictator of secrets to Russia bomb Germany Haakon Chevalier - friend who Werner Reisenberg -- Leslie Groves -- Military approached Oppenheimer about German physicist in charge of leader of the Manhattan Project spying for Russia. He was designing bomb watched by the FBI, but he was not charged. Otto Hahn -- German physicist who discovered fission Other scientists involved in the Manhattan Project: Aage Niels Bohr George Kistiakowsky Joseph W. Kennedy Richard Feynman Arthur C. Wahl Frank Oppenheimer Joseph Rotblat Robert Bacher Arthur H. Compton Hans Bethe Karl T. Compton Robert Serber Charles Critchfield Harold Agnew Kenneth Bainbridge Robert Wilson Charles Thomas Harold Urey Leo James Rainwater Rudolf Pelerls Crawford Greenewalt Harold DeWolf Smyth Leo Szilard Samuel K. Allison Cyril S. Smith Herbert L. Anderson Luis Alvarez Samuel Goudsmit Edward Norris Isidor I. -
USAD Science Resource Guide • 2016–2017 • Revised Page The
sure that nuclei are energetic enough to fuse. As we have seen, hydrogen fusion in the Sun requires temperatures of at least ten million kelvin. Temperatures of this mag- nitude are difficult to achieve and maintain in a labora- tory or power plant. Achieving a single fusion reaction is not enough, how- ever; a fusion reactor, like a fission reactor, must be self- sustaining. Fusion ignition refers to the point at which a fusion reaction becomes self-sustaining. That is, the energy released by the fusion reactions continues to heat the fuel, and the external energy that was used to heat the fuel can be turned off—much like lighting a piece of pa- per with a match. Although it has not yet been achieved, reaching fusion ignition is considered an important first step toward harnessing fusion energy. The deuterium-tritium target pellet at the Fusion reactors require not only extremely high tem- peratures, but also a sufficiently high density of nuclei National Ignition Facility. to ensure that fusion reactions will occur with a great enough frequency. When atoms are heated past their 2H + 2H 3H + 1n ionization energy, their electrons are no longer bound to 1 1 2 0 (Q=3.27 MeV) the nucleus. A collection of superheated atoms forms a cloud of positively charged nuclei and negatively charged 2H + 2 H 3 H + 1 H 1 1 1 1 (Q=4.03 MeV) electrons called a plasma. Two parameters for describing the characteristics of a plasma are the plasma ion den- τ 2H + 3H 4He + 1n sity, n, and the plasma confinement time, . -
Road Map to Clean Energy Using Laser Beam Ignition of Boron-Hydrogen Fusion
Laser and Particle Beams (2017), 35, 730–740. © Cambridge University Press, 2017 0263-0346/17 doi:10.1017/S0263034617000799 Road map to clean energy using laser beam ignition of boron-hydrogen fusion H. HORA,1 S. ELIEZER,2,4 G.J. KIRCHHOFF,3 N. NISSIM,2,5 J.X. WANG,6 P. LALOUSIS,7 Y.X. XU,6 8 4 9 9 G.H. MILEY, J.M. MARTINEZ-VAL, W. MCKENZIE, AND J. KIRCHHOFF 1Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia 2SOREQ Research Centre, Yavne, Israel 3UJG Management GmbH, 85586 Poing, Germany 4Polytechnique University, Madrid, Spain 5Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA 6State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 7Institute of Electronic Structure and Laser FORTH, Heraklion, Greece 8Department Nuclear, Plasma & Radiol. Engineering, University of Illinois, Urbana IL, USA 9HB11 Energy Pty. Ltd., Sydney, Australia (RECEIVED 26 September 2017; ACCEPTED 16 October 2017) Abstract With the aim to overcome the problems of climatic changes and rising ocean levels, one option is to produce large-scale sustainable energy by nuclear fusion of hydrogen and other very light nuclei similar to the energy source of the sun. Sixty years of worldwide research for the ignition of the heavy hydrogen isotopes deuterium (D) and tritium (T) have come close to a breakthrough for ignition. The problem with the DT fusion is that generated neutrons are producing radioactive waste. One exception as the ideal clean fusion process – without neutron production – is the fusion of hydrogen (H) with the boron isotope 11B11 (B11). -
Fusion Power a Ten-Year Plan for American Energy Security
Fusion Power A Ten-Year Plan for American Energy Security 1 Andrew Holland and Nick Cunningham BOARD OF DIRECTORS The Honorable Gary Hart, Chairman Admiral William Fallon, USN (Ret.) Senator Hart served the State of Colorado in the Admiral Fallon has led U.S. and Allied forces and U.S. Senate and was a member of the Committee played a leadership role in military and diplomatic on Armed Services during his tenure. matters at the highest levels of the U.S. government. Norman R. Augustine Raj Fernando Mr. Augustine was Chairman and Principal Raj Fernando is CEO and founder of RGY Officer of the American Red Cross for nine Chopper Trading, a technology based trading years and Chairman of the Council of the firm headquartered in Chicago. E National Academy of Engineering. The Hon. Donald Beyer Vice Admiral Lee Gunn, USN (Ret.) N The Hon. Donald Beyer is the former United Vice Admiral Gunn is the President of the States Ambassador to to Switzerland and Institute of Public Research at the CNA Liechtenstein, as well as a former Lieutenant Corporation, a non-profit corporation in Virginia. Governor and President of the Senate of Virginia. E The Hon. Jeffery Bleich Lieutenant General Claudia Kennedy, USA (Ret.) The Hon. Jeffery Bleich heads the Global Practice Lieutenant General Kennedy was the first woman for Munger, Tolles & Olson. He served as the U.S. to achieve the rank of three-star general in the Ambassador to Australia from 2009 to 2013. He United States Army. previously served in the Clinton Administration. General Lester L. -
Introduction to Magnetic Fusion
MIT Plasma Science & Fusion Center Introduction to Magnetic Fusion Dennis Whyte MIT Plasma Science and Fusion Center Nuclear Science and Engineering SULI, PPPL June 2015 Whyte, MFE, SULI 2015 1 Overview: Fusion Energy • Why? ! To meet growing world energy demands using a safe, clean method of producing electricity. • What? ! Extract net energy from controlled thermonuclear fusion of light elements • Who? ! International research teams of engineers and physicists. • Where? ! Research is worldwide ….eventual energy source has few geographical restrictions. • When? ! Many feasibility issues resolved….demonstration in next decades • How? ! This lecture Whyte, MFE, SULI 2015 2 Fusion & fission: binding energy, E = Δm c2 Whyte, MFE, SULI 2015 3 Thermonuclear fusion of hydrogen powers the universe: stars Whyte, MFE, SULI 2015 4 As a terrestrial energy source we are primarily interested in the exothermic fusion reactions of heavier hydrogenic isotopes and 3He • Hydrogenic species definitions: ! Hydrogen or p (M=1), Deuterium (M=2), Tritium (M=3) Whyte, MFE, SULI 2015 5 Exothermic fusion reactions of interest Net energy gain is distributed in the Kinetic energy of the fusion products Whyte, MFE, SULI 2015 6 D-T fusion facts d + t → α + n Q = 17.6 MeV 2 3 4 1 H + 1 H → 2 He + n Q = 17.6 MeV Conservation of energy & linear momentum when Ed,t<<Q mn 1 mα 4 Eα ! Q = QDT = 3.5 MeV En ! Q = QDT = 14.1 MeV mα + mn 5 mα + mn 5 Whyte, MFE, SULI 2015 7 A note about units • In nuclear engineering, nuclear science and plasmas we use the unit of electron-volt “eV” for both energy and temperature ! N.B.