Nazi Nuclear Research: Why Didn’T Hitler Get the Bomb? Jim Thomson

Total Page:16

File Type:pdf, Size:1020Kb

Nazi Nuclear Research: Why Didn’T Hitler Get the Bomb? Jim Thomson Nazi nuclear research: Why didn’t Hitler get the Bomb? Jim Thomson www.safetyinengineering.com 1 Nazi nuclear research 1. The German project and a brief comparison with the Manhattan and V-weapons projects 2. German project technical achievements and failures 3. Political and organisational factors 4. Motives, ethics, competence and honesty 5. Postscript: The lunatic fringes 2 Jim Thomson www.safetyinengineering.com 1. The German project and a brief comparison with the Manhattan and V-weapons projects 3 Jim Thomson www.safetyinengineering.com Arnold Kramish 1985 The Griffin 1947: April 1943: “Los ALSOS – Samuel Mark Walker 1989 German National Socialism and the Quest Dec 1942: for Nuclear Power 1939–1949 Alamos Primer” Goudsmit Chicago pile UK Government 1992 Farm Hall transcripts declassified lecture notes give (republished 1996) critical complete overview of David Cassidy 1992 Uncertainty: The Life and Science of Werner Heisenberg bomb project Frisch-Peierls 1944/1945: ALSOS 1956: Thomas Powers 1993 Heisenberg’s War memorandum mission to capture Brighter Than a Mark Walker 1995 Nazi Science: Myth, Truth, and the German March 1940 German researchers , Thousand Suns – Atomic Bomb July/Aug 1945: Einstein letter equipment and data Robert Jungk Paul Lawrence 1998 Heisenberg and the Nazi Atomic Bomb to Roosevelt Trinity, Little Boy and Rose Project: A Study in German Culture Fat Man. The Smyth 1968: Hans Bethe 2000 ‘The German Uranium Project’, Article in August 1939 Physics Today Report outlines the The Virus House - Jeremy Bernstein 2001 Hitler's Uranium Club: The Secret Manhattan project David Irving and David Cassidy Recordings at Farm Hall 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s March 1945: Discovery B-VIII pile at Haigerloch of fission fails to go critical FirstGermany German government 1938/39 1943: Vemork 1947: interest April heavy water plant Heisenberg 1939 publishes his First sub- May/June 1942:destroyed L-IV pile shows account in Nature critical pile, Ongoing efforts neutron multiplication, Autumn at enrichment 1940 then destroyed in February 1942: Presentationhydrogen explosion to senior GovernmentMay-Dec 1945:officials. Ten Despite suggesting “bombs the size of pineapples”, the nuclearmembers project is ofjudged team not to help war effort on the necessary timescale and is thereforeinterned downgraded at Farm in importance. Responsibility moved from Army OrdnanceHall, Cambridgeto Reich Research Council 4 Jim Thomson www.safetyinengineering.com Why were the Allies so worried about the Germans? For example: • Heisenberg: Nobel prize 1932 for quantum mechanics and the ‘Uncertainty Principle’. Refused offer to move to USA in summer 1939 (when he visited Goudsmit in USA). • von Weizsäcker: Physicist with extremely good political connections; pupil of Heisenberg. • Hahn: Discoverer of fission 1938. Worked with Fritz Haber on poison gas during WW1. Discovered Protoactinium 1921. • Clusius: First person (1939) to separate the two naturally- occurring isotopes of chlorine Cl-35 and Cl-36. 5 Jim Thomson www.safetyinengineering.com Einstein’s letter to President Roosevelt, 2 August 1939 (drafted by Leo Szilard) “I understand that Germany has actually stopped the sale of uranium from the Czechoslovakian mines which she has taken over. That she should have taken such early action might perhaps be understood on the ground that the son of the German Under-Secretary of State, von Weizsacker, is attached to the Kaiser Wilhelm Institute in Berlin, where some of the American work on uranium is now being repeated.” 6 Jim Thomson www.safetyinengineering.com Extracts from the Frisch-Peierls memorandum, Birmingham UK, March 1940 (written before anyone really knew the scale of the effort needed) “............it is quite conceivable that Germany is, in fact, developing this weapon. Whether this is the case is difficult to find out, since the plant for the separation of isotopes need not be of such a size as to attract attention. Information that could be helpful in this respect would be data about the exploitation of the uranium mines under German control (mainly in Czechoslovakia) and about any recent German purchases of uranium abroad. It is likely that the plant would be controlled by Dr. K. Clusius (Professor of Physical Chemistry in Munich University), the inventor of the best method for separating isotopes, and therefore information as to his whereabouts and status might also give an important clue......... “Since the separation of the necessary amount of uranium is, in the most favourable circumstances, a matter of several months, it would obviously be too late to start production when such a bomb is known to be in the hands of Germany, and the matter seems, therefore, very urgent....... “For the separation of the uranium 235, the method of thermal diffusion, developed by Clusius and others, seems to be the only one which can cope with the large amounts required.” 7 Jim Thomson www.safetyinengineering.com The view from Soviet Russia in 1940 Georgi Flerov (Soviet physicist who worked on the Soviet weapons programme and who also discovered in 1940 the spontaneous fission of uranium): “It seemed to us that if someone could make a nuclear bomb, it would be neither the Americans, English or French but Germans. The Germans had brilliant chemistry; they had technology for the production of metallic uranium; they were involved in experiments on the centrifugal separation of uranium isotopes. And, finally, the Germans possessed heavy water and reserves of uranium. Our first impression was that Germans were capable of making the thing. It was obvious what the consequences would be if they succeeded.” 8 Jim Thomson www.safetyinengineering.com Some key German scientists Werner Otto Hahn Paul Harteck Walther Gerlach Walter Bothe Heisenberg 1879-1968 1902-1985 1889-1979 1891-1957 1901-1976 Carl-Friedrich Carl Wirtz Kurt Diebner Erich Bagge Klaus Clusius von Weizsäcker 1910-1994 1905-1964 1912-1996 1903-1963 1912-2007 9 Jim Thomson www.safetyinengineering.com Erich Bagge Developed a uranium enrichment device in 1944. Nazi Party member. 1912-1996 Prisoner at Farm Hall 1945. Walther Bothe Theoretical physicist. Nobel Prize 1954 for study of wave-particle duality. An important member of the German nuclear project, his 1891-1957 measurements led to the conclusion that graphite was not a suitable moderator, probably due to boron contamination. Klaus Clusius In 1939 he achieved the separation of the natural chlorine isotopes. During WW2, he worked on isotope separation and heavy water 1903-1963 production. Zurich University 1947 to 1963. Kurt Diebner Overall manager of the German nuclear project. After WW2, worked with Bagge on marine applications of nuclear power. Nazi Party member. 1905-1964 Prisoner at Farm Hall 1945. Hans Geiger Developed Geiger counter. Geiger-Marsden experiment (1909) discovered atomic nucleus. Enigmatic, he expressed no views about Nazism. 1882-1945 Walter Gerlach In 1921 he discovered spin quantisation in a magnetic field (the Stern-Gerlach effect). Head of Physics in the Reichforshungsrat (Reich Research 1889-1979 Council) 1944-1945. University of Munich 1948-1957. Prisoner at Farm Hall 1945. Otto Hahn With Lise Meitner, discovered Protoactinium 1921. Director of the Kaiser Wilhelm Institute for Chemistry 1928 to 1946. With his student Fritz 1879-1968 Strassman, and also Lise Meitner and Otto Frisch, he discovered fission in 1938. An opponent of Jewish persecution in Nazi Germany, he did not contribute to the wartime nuclear research programme. Nobel Prize 1944. Prisoner at Farm Hall 1945. Paul Harteck Alerted the Herreswaffenamt (Army Weapons Office) in April 1939 about the possible military applications of nuclear research. Did work on 1902-1985 uranium isotope separation and heavy water production. Developed a prototype centrifuge for isotope separation. Rensselaer Polytechnic Institute, New York, 1955 to 1968. Prisoner at Farm Hall 1945. Werner Heisenberg Key founder of quantum mechanics. Nobel Prize 1932. Technical leader of the German wartime nuclear research programmes. After WW2, he 1901-1976 was involved in the first German nuclear reactor at Karlruhe. Director of the Kaiser Wilhelm Institute for Physics (KWIP) (later re-named the Max Planck Institute for Physics). Prisoner at Farm Hall 1945. Pascual Jordan Theoretical physicist, one of the founders of quantum mechanics. Nazi Party member. 1902-1980 Horst Korsching A colleague of Karl Wirtz, he worked on isotope separation during WW2. Prisoner at Farm Hall 1945. 1912-1998 Max von Laue Discovered diffraction of X-rays by crystals. Nobel Prize 1914. A strong anti-Nazi, he took no part in the wartime nuclear research programme. www.safetyinengineering.com Thomson Jim 1879-1960 A prisoner at Farm Hall 1945, this may have been to stop the Soviets capturing him. Karl Wirtz Scientist at KWIP who worked on reactor design. University of Gottingen 1948 to 1957. Technische Hochschule Karlsruhe 1957 to 1979. 1910-1994 Prisoner at Farm Hall 1945. Carl Friedrich von His father was a State Secretary at German Foreign Office from 1938 to 1943. His brother Richard later became President of Germany 1984 to Weizsacker 1994. His grandfather had been Prime Minister of Wurttemburg. He studied under Heisenberg and Niels Bohr. He was involved throughout 1912-2007 WW2 in the German nuclear programme. In 1941 he filed a patent for nuclear bombs. Max Planck Institute for Physics, Gottingen, 1946 to 1957. University of Hamburg 1957 to 1969. Became a Christian pacifist. Prisoner at Farm Hall 1945. Manfred Ardenne Early television pioneer. Worked on radar and nuclear research during WW2. Worked on Soviet A-bomb programme after WW2. Worked with 1907-1997 Fritz Houtermans (1903-1966). Robert Dopel Experimental nuclear physicist, worked for Heisenberg on design of spherical sub-critical assemblies at Leipzig. Worked on Soviet A-bomb Some notable German nuclear scientists whostayed in Germany 1895-1992 programme after WW2. 10 Siegfried Flugge Theoretical physicist. Worked with Weizsacker. Post-war, he edited the 54 volume Encyclopaedia of Physics. 1912-1997 Some notable exiles from Nazi mainland Europe Hans Bethe Half Jewish German physicist, moved to UK 1933 then USA 1935.
Recommended publications
  • Download Download
    Revealing the Heritage of Post-Military Landscapes Verena Butt Leibniz Universität Hannover Hannover, Germany https://doi.org/10.7480/spool.2018.2.3306 Abstract In Germany, the fall of the Iron Curtain led to the extensive withdrawal of allied troops stationed there, as well as the reduction in number of the German armed forces. This process was accompanied by the repurposing of formerly restricted military terrain in both urban contexts and the countryside. Post-military landscapes are full of traces of former usage and comprise a heritage that ranges from their earlier civilian history to their militarisation, from past to recent conflicts. This paper focuses on the remembered and forgotten narratives of these fascinating sites and relates them to current management policies for the development of former military sites. Two examples show how landscape design can contribute to preserving or even revealing the forgotten political dimensions of post-military landscapes. Keywords landscape, post-military landscapes, Germany 7 SPOOL | ISSN 2215-0897 | E-ISSN 2215-0900 | VOLUME #03 | ISSUE #02 Background Preparing for the wars of the 20th century gave rise to the enormous militarisation of Germany’s towns and countryside. This was accompanied by the transformation of civilian landscapes into restricted military zones. During the subsequent Cold War, the allied and Russian forces and the two German armies used and sometimes even enlarged these establishments. Surrounded by civilian life, military landscapes have been used to prepare for war all over the world. However, following the political upheavals towards the end of 1989 and in early 1990 and the subsequent fall of the Iron Curtain, the majority of the stationed forces gradually left Germany, while the German troops were also reduced.
    [Show full text]
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • James Chadwick: Ahead of His Time
    July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised.
    [Show full text]
  • Physics Connections
    Charles Tracy L P S / y a a w s n e v a R n a v v e l t e D Physics connections Last year we celebrated the International Year of Physics — time and light. In particular, it described how space also known as Einstein Year. In the century since Einstein’s becomes distorted near a massive object such as a star, so that light follows a curved path rather than annus mirabilis (see CATALYST Vol. 16, No. 1) there has travelling in a straight line (Figure 1). been a revolution in the study of physics. This article explores Its publication in wartime and the fact that it was the links between some of the architects of this revolution. written in German meant that few people read it. However, one person who did read it was the British astronomer Arthur Eddington. The story goes that it was Eddington who brought Einstein to the world’s attention — though Einstein might have disagreed. instein did not become instantly famous in Eddington was a conscientious objector. As such, GCSE key words 1905; it took several years before he became a he should have spent the war in jail. Instead, he got Gravity Eglobal icon. In 1915, while Europe was caught official permission to prepare for a trip to observe a Alpha particle scattering up in the First World War, Einstein broadened his total eclipse of the Sun — a rare event. His intention Nuclear fission special theory of relativity. His general theory of was to verify Einstein’s general theory of relativity.
    [Show full text]
  • Bringing out the Dead Alison Abbott Reviews the Story of How a DNA Forensics Team Cracked a Grisly Puzzle
    BOOKS & ARTS COMMENT DADO RUVIC/REUTERS/CORBIS DADO A forensics specialist from the International Commission on Missing Persons examines human remains from a mass grave in Tomašica, Bosnia and Herzegovina. FORENSIC SCIENCE Bringing out the dead Alison Abbott reviews the story of how a DNA forensics team cracked a grisly puzzle. uring nine sweltering days in July Bosnia’s Million Bones tells the story of how locating, storing, pre- 1995, Bosnian Serb soldiers slaugh- innovative DNA forensic science solved the paring and analysing tered about 7,000 Muslim men and grisly conundrum of identifying each bone the million or more Dboys from Srebrenica in Bosnia. They took so that grieving families might find some bones. It was in large them to several different locations and shot closure. part possible because them, or blew them up with hand grenades. This is an important book: it illustrates the during those fate- They then scooped up the bodies with bull- unspeakable horrors of a complex war whose ful days in July 1995, dozers and heavy earth-moving equipment, causes have always been hard for outsiders to aerial reconnais- and dumped them into mass graves. comprehend. The author, a British journalist, sance missions by the Bosnia’s Million It was the single most inhuman massacre has the advantage of on-the-ground knowl- Bones: Solving the United States and the of the Bosnian war, which erupted after the edge of the war and of the International World’s Greatest North Atlantic Treaty break-up of Yugoslavia and lasted from 1992 Commission on Missing Persons (ICMP), an Forensic Puzzle Organization had to 1995, leaving some 100,000 dead.
    [Show full text]
  • University of Cincinnati
    ! "# $ % & % ' % !" #$ !% !' &$ &""! '() ' #$ *+ ' "# ' '% $$(' ,) * !$- .*./- 0 #!1- 2 *,*- Atomic Apocalypse – ‘Nuclear Fiction’ in German Literature and Culture A dissertation submitted to the Graduate School of the University of Cincinnati In partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) in the Department of German Studies of the College of Arts and Sciences 2010 by Wolfgang Lueckel B.A. (equivalent) in German Literature, Universität Mainz, 2003 M.A. in German Studies, University of Cincinnati, 2005 Committee Chair: Sara Friedrichsmeyer, Ph.D. Committee Members: Todd Herzog, Ph.D. (second reader) Katharina Gerstenberger, Ph.D. Richard E. Schade, Ph.D. ii Abstract In my dissertation “Atomic Apocalypse – ‘Nuclear Fiction’ in German Literature and Culture,” I investigate the portrayal of the nuclear age and its most dreaded fantasy, the nuclear apocalypse, in German fictionalizations and cultural writings. My selection contains texts of disparate natures and provenance: about fifty plays, novels, audio plays, treatises, narratives, films from 1946 to 2009. I regard these texts as a genre of their own and attempt a description of the various elements that tie them together. The fascination with the end of the world that high and popular culture have developed after 9/11 partially originated from the tradition of nuclear fiction since 1945. The Cold War has produced strong and lasting apocalyptic images in German culture that reject the traditional biblical apocalypse and that draw up a new worldview. In particular, German nuclear fiction sees the atomic apocalypse as another step towards the technical facilitation of genocide, preceded by the Jewish Holocaust with its gas chambers and ovens.
    [Show full text]
  • PEENEMUENDE, NATIONAL SOCIALISM, and the V-2 MISSILE, 1924-1945 Michael
    ABSTRACT Title of Dissertation: ENGINEERING CONSENT: PEENEMUENDE, NATIONAL SOCIALISM, AND THE V-2 MISSILE, 1924-1945 Michael Brian Petersen, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Jeffrey Herf Departmen t of History This dissertation is the story of the German scientists and engineers who developed, tested, and produced the V-2 missile, the world’s first liquid -fueled ballistic missile. It examines the social, political, and cultural roots of the prog ram in the Weimar Republic, the professional world of the Peenemünde missile base, and the results of the specialists’ decision to use concentration camp slave labor to produce the missile. Previous studies of this subject have been the domain of either of sensationalistic journalists or the unabashed admirers of the German missile pioneers. Only rarely have historians ventured into this area of inquiry, fruitfully examining the history of the German missile program from the top down while noting its admi nistrative battles and technical development. However, this work has been done at the expense of a detailed examination of the mid and lower -level employees who formed the backbone of the research and production effort. This work addresses that shortcomi ng by investigating the daily lives of these employees and the social, cultural, and political environment in which they existed. It focuses on the key questions of dedication, motivation, and criminality in the Nazi regime by asking “How did Nazi authori ties in charge of the missile program enlist the support of their employees in their effort?” “How did their work translate into political consent for the regime?” “How did these employees come to view slave labor as a viable option for completing their work?” This study is informed by traditions in European intellectual and social history while borrowing from different methods of sociology and anthropology.
    [Show full text]
  • EINSTEIN and NAZI PHYSICS When Science Meets Ideology and Prejudice
    MONOGRAPH Mètode Science Studies Journal, 10 (2020): 147-155. University of Valencia. DOI: 10.7203/metode.10.13472 ISSN: 2174-3487. eISSN: 2174-9221. Submitted: 29/11/2018. Approved: 23/05/2019. EINSTEIN AND NAZI PHYSICS When science meets ideology and prejudice PHILIP BALL In the 1920s and 30s, in a Germany with widespread and growing anti-Semitism, and later with the rise of Nazism, Albert Einstein’s physics faced hostility and was attacked on racial grounds. That assault was orchestrated by two Nobel laureates in physics, who asserted that stereotypical racial features are exhibited in scientific thinking. Their actions show how ideology can infect and inflect science. Reviewing this episode in the current context remains an instructive and cautionary tale. Keywords: Albert Einstein, Nazism, anti-Semitism, science and ideology. It was German society, Einstein said, that revealed from epidemiology and research into disease (the to him his Jewishness. «This discovery was brought connection of smoking to cancer, and of HIV to home to me by non-Jews rather than Jews», he wrote AIDS) to climate change, this idea perhaps should in 1929 (cited in Folsing, 1998, p. 488). come as no surprise. But it is for that very reason that Shortly after the boycott of Jewish businesses at the the hostility Einstein’s physics sometimes encountered start of April 1933, the German Students Association, in Germany in the 1920s and 30s remains an emboldened by Hitler’s rise to total power, declared instructive and cautionary tale. that literature should be cleansed of the «un-German spirit». The result, on 10 May, was a ritualistic ■ AGAINST RELATIVITY burning of tens of thousands of books «marred» by Jewish intellectualism.
    [Show full text]
  • Alfred O. C. Nier
    CHEMICAL HERITAGE FOUNDATION ALFRED O. C. NIER Transcript of Interviews Conducted by Michael A. Grayson and Thomas Krick at University of Minnesota Minneapolis, Minnesota on 7, 8, 9, and 10 April 1989 (With Subsequent Corrections and Additions) ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry Upon Alfred O.C. Nier’s death in 1994, this oral history was designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Alfred O.C. Nier, interview by Michael A. Grayson and Thomas Krick at the University of Minnesota, Minneapolis, Minnesota, 7-10 April 1989 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0112). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • Chronological List of Correspondence, 1895–1920
    CHRONOLOGICAL LIST OF CORRESPONDENCE, 1895–1920 In this chronological list of correspondence, the volume and document numbers follow each name. Documents abstracted in the calendars are listed in the Alphabetical List of Texts in this volume. 1895 13 or 20 Mar To Mileva Maric;;, 1, 45 29 Apr To Rosa Winteler, 1, 46 Summer To Caesar Koch, 1, 6 18 May To Rosa Winteler, 1, 47 28 Jul To Julia Niggli, 1, 48 Aug To Rosa Winteler, 5: Vol. 1, 48a 1896 early Aug To Mileva Maric;;, 1, 50 6? Aug To Julia Niggli, 1, 51 21 Apr To Marie Winteler, with a 10? Aug To Mileva Maric;;, 1, 52 postscript by Pauline Einstein, after 10 Aug–before 10 Sep 1,18 From Mileva Maric;;, 1, 53 7 Sep To the Department of Education, 10 Sep To Mileva Maric;;, 1, 54 Canton of Aargau, 1, 20 11 Sep To Julia Niggli, 1, 55 4–25 Nov From Marie Winteler, 1, 29 11 Sep To Pauline Winteler, 1, 56 30 Nov From Marie Winteler, 1, 30 28? Sep To Mileva Maric;;, 1, 57 10 Oct To Mileva Maric;;, 1, 58 1897 19 Oct To the Swiss Federal Council, 1, 60 May? To Pauline Winteler, 1, 34 1900 21 May To Pauline Winteler, 5: Vol. 1, 34a 7 Jun To Pauline Winteler, 1, 35 ? From Mileva Maric;;, 1, 61 after 20 Oct From Mileva Maric;;, 1, 36 28 Feb To the Swiss Department of Foreign Affairs, 1, 62 1898 26 Jun To the Zurich City Council, 1, 65 29? Jul To Mileva Maric;;, 1, 68 ? To Maja Einstein, 1, 38 1 Aug To Mileva Maric;;, 1, 69 2 Jan To Mileva Maric;; [envelope only], 1 6 Aug To Mileva Maric;;, 1, 70 13 Jan To Maja Einstein, 8: Vol.
    [Show full text]
  • Der Mythos Der Deutschen Atombombe
    Langsame oder schnelle Neutronen? Der Mythos der deutschen Atombombe Prof. Dr. Manfred Popp Karlsruher Institut für Technologie Ringvorlesung zum Gedächtnis an Lise Meitner Freie Universität Berlin 29. Oktober 2018 In diesem Beitrag geht es zwar um Arbeiten zur Kernphysik in Deutschland während des 2.Weltkrieges, an denen Lise Meitner wegen ihrer Emigration 1938 nicht teilnahm. Es geht aber um das Thema Kernspaltung, zu dessen Verständnis sie wesentliches beigetragen hat, um die Arbeit vieler, gut vertrauter, ehemaliger Kollegen und letztlich um das Schicksal der deutschen Physik unter den Nationalsozialisten, die ihre geistige Heimat gewesen war. Da sie nach dem Abwurf der Bombe auf Hiroshima auch als „Mutter der Atombombe“ diffamiert wurde, ist es ihr gewiss nicht gleichgültig gewesen, wie ihr langjähriger Partner und Freund Otto Hahn und seine Kollegen während des Krieges mit dem Problem der möglichen Atombombe umgegangen sind. 1. Stand der Geschichtsschreibung Die Geschichtsschreibung über das deutsche Uranprojekt 1939-1945 ist eine Domäne amerikanischer und britischer Historiker. Für die deutschen Geschichtsforscher hatte eines der wenigen im Ergebnis harmlosen Kapitel der Geschichte des 3. Reiches keine Priorität. Unter den alliierten Historikern hat sich Mark Walker seit seiner Dissertation1 durchgesetzt. Sein Beitrag zur Geschichte der Kaiser Wilhelm-Gesellschaft im 3. Reich beginnt mit den Worten: „The Kaiser Wilhelm Institute for Physics is best known as the place where Werner Heisenberg worked on nuclear weapons for Hitler.“2 Im Jahr 2016 habe ich zum ersten Mal belegt, dass diese Schlussfolgerung auf Fehlinterpretationen der Dokumente und auf dem Ignorieren physikalischer Fakten beruht.3 Seit Walker gilt: Nicht an fehlenden Kenntnissen sei die deutsche Atombombe gescheitert, sondern nur an den ökonomischen Engpässen der deutschen Kriegswirtschaft: „An eine Bombenentwicklung wäre [...] auch bei voller Unterstützung des Regimes nicht zu denken gewesen.
    [Show full text]
  • Manhattan Project Spies and Oak Ridge, Part 1 (As Published in the Oak Ridger’S Historically Speaking Column on December 1, 2014)
    Manhattan Project Spies and Oak Ridge, part 1 (As published in The Oak Ridger’s Historically Speaking column on December 1, 2014) This is the first in a series of four Historically Speaking columns on Manhattan Project spies with connections to Oak Ridge. For many years, I was not sure that any spies were actually in Oak Ridge. Bill Wilcox and I discussed this at length and he too was doubtful at that time. Even though some names were mentioned, evidence seemed lacking. However, of late, so much additional information has been declassified and made available to the public regarding those activities of some 65 – 70 years ago. Much more is now known regarding the detailed activities of those who passed sensitive classified information to the Russians during the Manhattan Project. We will look first at George Koval, next at Klaus Fuchs and finally at Al Slack. Recently there seems to be more and more information coming available about spies during the Manhattan Project. The Spy Who Stole The Urchin: George Koval’s Infiltration of the Manhattan Project by Owen N. Pagano, an Atomic Heritage Foundation intern, posted on the Atomic Heritage Foundation’s web site: http://www.atomicheritage.org/ is the most recent information I have seen about George Koval. Koval is the ONLY official Soviet spy known to have infiltrated the Manhattan Project and the early Cold War era developments. His deep penetration only came to light in the recent past after over 50 years of obscurity. Some of the most notable spies were: George Koval; Theodore “Ted” Hall who was never caught; David Greenglass; Ethel and Julius Rosenberg; Harry Gold; and Klaus Fuchs.
    [Show full text]