<<

Section 8.3, Improper : Infinite Limits of Integration

Homework: 8.3 #1–19 odds, 25, 27, 31

In this section and the next, we will look at improper integrals, which are definite integrals where either one or both of the limits of integration are infinite, or the integrand is infinite. In this section, we will focus on definite integrals with infinite limits. Definition of Improper Integrals with Infinite Limits

Z b Z b f(x) dx = lim f(x) dx −∞ a→−∞ a Z ∞ Z b f(x) dx = lim f(x) dx a b→∞ a

If the exists and have finite values, we say that the improper converges. Otherwise, we say that the integral diverges. Examples Evaluate each of the following integrals or show that it diverges: Z 2 1. ex dx −∞

Z 2 Z 2 ex dx = lim ex dx −∞ a→−∞ a 2 x = lim e a→−∞ a = lim e2 − ea) = e2 a→−∞

Z ∞ dx 2. √ 1 πx

Z ∞ dx Z b √ = lim (πx)−1/2 dx 1 πx b→∞ 1 b 2 1/2 = lim (πx) b→∞ π 1 2 = lim (bπ)1/2 − π1/2 b→∞ π = ∞,

so this integral diverges.

1 Z ∞ x 3. 2 2 dx 1 (1 + x ) Z ∞ Z b x 2 −2 2 2 dx = lim x(1 + x ) dx 1 (1 + x ) b→∞ 1   b 1 2 −1 = lim − (1 + x ) b→∞ 2 1  1 1 1 = lim − (1 + b2)−1 + · b→∞ 2 2 2 1 = 4

Z ∞ 1 4. p dx, where p is a 1 x We will consider every possible value of p. First, for p = 1:

Z ∞ 1 Z b 1 dx = lim dx 1 x b→∞ 1 x b

= lim ln x b→∞ 1 = lim ln b = ∞, b→∞ so the integral diverges when p = 1. Now, for p 6= 1, the applies:

Z ∞ Z b 1 −p p dx = lim x dx 1 x b→∞ 1 b 1 1−p = lim x b→∞ 1 − p 1  1 1  = lim b1−p − b→∞ 1 − p 1 − p ( ∞ if p < 1 = 1 p−1 if p > 1

1 This means that for p ≤ 1, the integral diverges, and for p > 1, it equals p−1 Definition of Improper Integrals with Two Infinite Limits R ∞ R 0 R ∞ If 0 f(x) dx and −∞ f(x) dx converge, then −∞ f(x) dx converges and Z ∞ Z 0 Z ∞ f(x) dx = f(x) dx + f(x) dx −∞ −∞ 0 R ∞ Otherwise, −∞ f(x) dx diverges. Example Z ∞ dx 2 −∞ x + 16

Z ∞ dx Z 0 dx Z b dx 2 = lim 2 + lim 2 −∞ x + 16 a→−∞ a x + 16 b→∞ 0 x + 16 0 b 1 −1 x 1 −1 x = lim tan + lim tan a→−∞ 4 4 a b→∞ 4 4 0  1 a 1 b  = lim 0 − tan−1 + lim tan−1 − 0 a→−∞ 4 4 b→∞ 4 4 1 π 1 π π = · + · = 4 2 4 2 4

2 1 Probability Density Functions

A probability density function (PDF) is a non-negative function f(x), defined on the real num- R ∞ bers such that −∞ f(x) dx = 1. R b The probability that a random variable X is between a and b is a f(x) dx. The mean of the random variable with the PDF of f(x) is Z ∞ µ = xf(x) dx. −∞ This is a weighted average of all the value that the random variable can take. The is Z ∞ σ2 = (x − µ2)f(x) dx. −∞ This describes how spread out the distribution is. Example A continuous random variable X has an exponential distribution with parameter θ for θ > 0 if its PDF is: ( 1 e−x/θ if x > 0 f(x) = θ 0 if x < 0

1. Show that this is a valid PDF. Z ∞ Z 0 Z ∞ 1 f(x) dx = 0 dx + e−x/θ dx −∞ −∞ 0 θ b −x/θ = 0 + lim (−e ) b→∞ 0 = lim − e−b/θ + e0 = 1 b→∞

2. Find the mean µ and variance σ2 of the distribution.

Z ∞ x µ = e−x/θ dx 0 θ ∞ Z ∞ −x/θ −x/θ = −xe + e dx 0 0 ∞ −x/θ = 0 + −θe 0 = θ,

where we used .

Z ∞ 1 σ2 = (x − θ)2 e−x/θ dx 0 θ ∞ Z ∞ 2 −x/θ −x/θ = −(x − θ) e + 2(x − θ)e dx 0 0 ∞ Z ∞ 2 −x/θ −x/θ = θ + (−2)θ(x − θ)e + 2θe dx 0 0 ∞ 2 2 2 −x/θ = θ − 2θ − 2θ e 0 = θ2 − 2θ2 + 2θ2 = θ2

3 3. If θ = 2, find the probability that X is less than ln 4.

Z ln 4 1 P (X < ln 4) = e−x/2 dx 0 2 ln 4 −x/2 −(ln 4)/2 = −e = −e + 1 0 1 = 2

4