Harvesting correlations in Schwarzschild and collapsing shell spacetimes Erickson Tjoa,a,b,1 Robert B. Manna,c aDepartment of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada bInstitute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada cPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada E-mail:
[email protected],
[email protected] Abstract: We study the harvesting of correlations by two Unruh-DeWitt static detectors from the vacuum state of a massless scalar field in a background Vaidya spacetime con- sisting of a collapsing null shell that forms a Schwarzschild black hole (hereafter Vaidya spacetime for brevity), and we compare the results with those associated with the three pre- ferred vacua (Boulware, Unruh, Hartle-Hawking-Israel vacua) of the eternal Schwarzschild black hole spacetime. To do this we make use of the explicit Wightman functions for a massless scalar field available in (1+1)-dimensional models of the collapsing spacetime and Schwarzschild spacetimes, and the detectors couple to the proper time derivative of the field. First we find that, with respect to the harvesting protocol, the Unruh vacuum agrees very well with the Vaidya vacuum near the horizon even for finite-time interactions. Sec- ond, all four vacua have different capacities for creating correlations between the detectors, with the Vaidya vacuum interpolating between the Unruh vacuum near the horizon and the Boulware vacuum far from the horizon. Third, we show that the black hole horizon inhibits any correlations, not just entanglement. Finally, we show that the efficiency of the harvesting protocol depend strongly on the signalling ability of the detectors, which is highly non-trivial in presence of curvature.