Analytical Evaluation and Asymptotic Evaluation of Dawson's Integral And

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Evaluation and Asymptotic Evaluation of Dawson's Integral And Analytical evaluation and asymptotic evaluation of Dawson’s integral and related functions in mathematical physics V. Nijimbere School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada Abstract Dawson’s integral and related functions in mathematical physics that in- clude the complex error function (Faddeeva’s integral), Fried-Conte (plasma dispersion) function, (Jackson) function, Fresnel function and Gordeyev’s in- tegral are analytically evaluated in terms of the confluent hypergeometric function. And hence, the asymptotic expansions of these functions on the complex plane C are derived using the asymptotic expansion of the confluent hypergeometric function. Keywords: Dawson’s integral, Complex error function, Plasma dispersion function, Fresnel functions, Gordeyev’s integral, Confluent hypergeometric function, asymptotic expansion 1. Introduction Let us consider the first-order initial value problem, D′ +2zD =1,D(0) = 0. (1) arXiv:1703.06757v1 [math.CA] 14 Mar 2017 Its solution given by the definite integral z z2 η2 daw z = D(z)= e− e dη (2) Z0 Email address: [email protected] (V. Nijimbere) Preprint submitted to Elsevier March 21, 2017 is known as Dawson’s integral [1, 17, 24, 27]. Dawson’s integral is related to several important functions (in integral form) in mathematical physics that include Faddeeva’s integral (also know as the complex error function or Kramp function) [9, 10, 22, 18, 27] z z2 2i z2 z2 2i η2 w(z)= e− 1+ e daw z = e− 1+ e dη , (3) √π √π Z0 Fried-Conte function (or plasma dispersion function) [4, 11] z z2 2i z2 z2 2i η2 Z(z)= i√πw(z)= i√πe− 1+ e daw z = i√πe− 1+ e dη , √π √π Z0 (4) (Jackson) function [14] G(z)=1+ zZ(z)=1+ i√πzw(z) z2 2i z2 =1+ i√πze− 1+ e daw z √π z z2 2i η2 =1+ i√πze− 1+ e dη , (5) √π Z0 and Fresnel functions C(x) and S(x) [1] defined by the relation z iπz2 e 2 daw √iπz = eiπη dη = C(x)+ iS(x), (6) √iπ Z0 where z z C(x)= cos(πη2)dη and S(x)= sin (πη2)dη. (7) Z0 Z0 There is also Gordeyev’s integral [13] which is related to Dawson’s integral via the plasma dispersion (Fried-Conte) function Z, and is given ∞ iωt λ(1 cos t) νt2/2 Gν(ω,λ)= ω e − − − dt Z0 ∞ iω λ ω n = − e− In(λ)Z − , Re(ν) > 0, (8) √2ν √2ν n= X−∞ 2 where In is the Bessel function of the first kind [1], the real part of ω is the wave frequency of an electrostatic wave propagating in a hot magnetized plasma, and λ and ν are respectively the squares of the perpendicular and parallel components of the wave vector [21]. Another function related to Dawson’s integral was defined by Sitenko [25], and only takes real arguments. It is given by x x2 η2 ϕ(x)=2x daw x =2xe− e dη. (9) Z0 In that case, for real argument x, Jackson function G(x), given by (5), takes the form x2 G(x)=1 ϕ(x)+ i√πxe− . (10) − These functions find their applications in astronomy, celestial mechanics, optical physics, plasma physics, planetary atmosphere, radiophysics, spec- troscopy and so on [4, 6, 11, 13, 14, 18, 25, 26]. Therefore, it is important to adequately evaluate them. Having computed Dawson’s integral or Faddeeva’s integral, it is then straightforward to compute the other related integrals or functions such as Fried-Conte function, Jackson function, Fresnel integral and Gordeyev function. First, it is important to point out that Dawson’s integral and Faddeeva’s integral are non-elementary integrals. Being non-elementary means that they cannot neither be expressed in terms of elementary functions such polynomi- als of finite degree, exponentials and logarithms, nor in terms of mathematical expressions obtained by performing finite algebraic combinations involving elementary functions [16, 20, 23]. For this reason, it is not possible to evalu- ate analytically these integrals in closed form or, in other words, in terms of elementary functions [3, 16, 20, 23]. To this end, intensive works have mainly focused on numerical approximations [2, 3, 7, 8, 9, 10, 12, 17, 15, 22, 27, 28]. But numerical integrations do have drawbacks, they become very expensive and inaccurate very quickly as z becomes large or for some values of z, see for example the recent work by Abrarov and Quine [3]. None of the above integrals can be evaluated analytically in close form, or in terms of elementary functions, as pointed out by Abrarov and Quine [3] of course, but one can express them in terms of a special function, the confluent hypergeometric function 1F1 [1, 19]. Noting that Nijimbere [20] (Theorem 1) has evaluated the non-elementary integral b eλxα dx,α 2 for any constant a ≥ R 3 λ in terms of the confluent hypergeometric function 1F1, as a first objective of this paper, we use the results in Nijimbere [20] to obtain an analytical expression for Dawson’s integral in terms of the confluent hypergeometric function 1F1. And hence, we write Faddeeva’s integral and the above related integrals in terms of 1F1. On the other hand, the confluent hypergeometric function is an entire function on the whole complex plane C, and its properties are well known [1, 19]. For instance, its asymptotic expansion is given in [1, 19]. Therefore, as a second objective of this work, the asymptotic expansion of the confluent hypergeometric function is used to obtain the asymptotic expansions of the above functions (integrals) on the complex plane C. 2. Evaluation of Dawson’s integral and related function in terms of 1F1 In this section, Dawson’s integral is evaluated in terms of the confluent hypergeometric 1F1, and relations (3), (4), (5), (6) and (8) are used to express Faddeeva, Fried-Conte, Jackson, Fresnel and Gordeyev integrals respectively in terms of 1F1. 2.1. Evaluation of Dawson’s integral in terms of 1F1 We use Theorem 1 in Nijimbere [20] to express (2) in terms of the con- fluent hypergeometric functions 1F1, and then obtain z z2 η2 z2 1 3 2 daw z = D(z)= e− e dη = ze− F ; ; z . (11) 1 1 2 2 Z0 One may also solve (1) and obtain [20] the general solution z z2 η2 z2 1 3 2 z2 D(z)= e− e dη + C = ze− F ; ; z + Ce− . (12) 1 1 2 2 Z0 Therefore, applying the initial condition D(0) = 0 gives (11). 4 2.2. Evaluation of related functions in terms of 1F1 We now can evaluate the other functions related to Dawson’s integral (see section 1) in terms of the confluent hypergeometric function. Using (3) Faddeeva’s integral is now given by z z2 2i η2 z2 2iz 1 3 2 w(z)= e− 1+ e dη = e− 1+ F ; ; z . (13) √π √π 1 1 2 2 Z0 Using (4), the plasma dispersion function Z(z) also called Fried-Conte func- tion is given by z2 2iz 1 3 2 Z(z)= i√πw(z)= i√πe− 1+ F ; ; z . (14) √π 1 1 2 2 Using (5), the (Jackson) function, denoted by G(z) is given by z2 2iz 1 3 2 G(z)=1+zZ(z)=1+i√πzw(z)=1+i√πze− 1+ F ; ; z . √π 1 1 2 2 (15) Using (6) (one may also use Proposition 1 in [20]) gives z iπz2 iπη2 e 1 3 2 e dη = daw √iπz = z 1F1 ; ; iπz , (16) √iπ 2 2 Z0 which is equivalent to formula 7.3.25 in [1]. Now using formula (53) in The- orem 2 and formula (57) in Theorem 3 in [20] (or using formulas (50) and (51) in [20]), we obtain z 1 1 5 πz2 C(x)= cos(πη2)dη = z F ; , ; , (17) 1 2 4 2 4 − 4 Z0 and z πz3 3 3 7 πz2 S(x)= sin (πη2)dη = F ; , ; . (18) 3 1 2 4 2 4 − 4 Z0 5 ω n Setting z = − in Fried-Conte function and substituting in (8), Gordeyev’s √2ν integral can now be written in terms of 1F1 as ∞ iω λ ω n Gν(ω,λ)= − e− In(λ)Z − (19) √2ν √2ν n= X−∞ λ 2 2 ωe− ∞ ω n 2i(ω n) 1 3 ω n √− = e− 2ν In(λ) 1+ − 1F1 ; ; − . 2ν/π √2πν 2 2 √2ν n= ( " #) X−∞ p (20) 3. Asymptotic evaluation In this section, we derive the asymptotic expansion of Dawson’s integral and related functions that include the complex error function, Fried-Conte function, Jackson function, Fresnel functions and Gordeyev’s function, using the asymptotic expansion of the confluent hypergeometric 1F1. The results are summarized in Theorem 2, Theorem 3 and Theorem 4. 3.1. Asymptotic evaluation of Dawson’s integral Lemma 1. For z 1, | |≫ 1 1 z F ; + 1; zα 1 1 α α 1 1 π zα Γ( α +1) Γ(2 α ) 1 i α z 1 e − 1 Γ α +1 e± z 1+ zα + O z2α + αzα 1 1+ zα + O z2α , if α is even | | − 1 1 π zα Γ( α +1) Γ(2 α ) ∼ 1 i α 1 e − 1 Γ +1 e± 1+ α + O 2α + α 1 1+ α + O 2α , if α is odd α z z αz − z z (21) where α is a constant, and the positive sign is taken if π 2kπ 3π 2kπ + < arg(z) < + , (22) −2α α 2α α while the negative sign is taken if 3π 2kπ π 2kπ + < arg(z) < + , (23) −2α α −2α α k =0, 1, 2, .
Recommended publications
  • Fresnel Integral Computation Techniques
    FRESNEL INTEGRAL COMPUTATION TECHNIQUES ALEXANDRU IONUT, , JAMES C. HATELEY Abstract. This work is an extension of previous work by Alazah et al. [M. Alazah, S. N. Chandler-Wilde, and S. La Porte, Numerische Mathematik, 128(4):635{661, 2014]. We split the computation of the Fresnel Integrals into 3 cases: a truncated Taylor series, modified trapezoid rule and an asymptotic expansion for small, medium and large arguments respectively. These special functions can be computed accurately and efficiently up to an arbitrary preci- sion. Error estimates are provided and we give a systematic method in choosing the various parameters for a desired precision. We illustrate this method and verify numerically using double precision. 1. Introduction The Fresnel integrals and their simultaneous parametric plot, the clothoid, have numerous applications including; but not limited to, optics and electromagnetic theory [8, 15, 16, 17, 21], robotics [2,7, 12, 13, 14], civil engineering [4,9, 20] and biology [18]. There have been numerous works over the past 70 years computing and numerically approximating Fresnel integrals. Boersma established approximations using the Lanczos tau-method [3] and Cody computed rational Chebyshev approx- imations using the Remes algorithm [5]. Another approach includes a spreadsheet computation by Mielenz [10]; which is based on successive improvements of known relational approximations. Mielenz also gives an improvement of his work [11], where the accuracy is less then 1:e-9. More recently, Alazah, Chandler-Wilde and LaPorte propose a method to compute these integrals via a modified trapezoid rule [1]. Alazah et al. remark after some experimentation that a truncation of the Taylor series is more efficient and accurate than their new method for a small argument [1].
    [Show full text]
  • Oscillatority of Fresnel Integrals and Chirp-Like Functions
    D ifferential E quations & A pplications Volume 5, Number 4 (2013), 527–547 doi:10.7153/dea-05-31 OSCILLATORITY OF FRESNEL INTEGRALS AND CHIRP–LIKE FUNCTIONS MAJA RESMAN,DOMAGOJ VLAH AND VESNA Zˇ UPANOVIC´ Dedicated to Luka Korkut, upon his retirement (Communicated by Yuki Naito) Abstract. In this review article, we present results concerning fractal analysis of Fresnel and gen- eralized Fresnel integrals. The study is related to computation of box dimension and Minkowski content of spirals defined parametrically by Fresnel integrals, as well as computation of box di- mension of the graph of reflected component function which are chirp-like function. Also, we present some results about relationship between oscillatority of the graph of solution of differ- ential equation, and oscillatority of a trajectory of the corresponding system in the phase space. We are concentrated on a class of differential equations with chirp-like solutions, and also spiral behavior in the phase space. 1. Introduction As coauthors of Luka Korkut, we present here an overview of his scientific con- tribution in fractal analysis of Fresnel integrals and chirp-like functions. We cite the main results from joint articles of Korkut, Resman, Vlah, Zubrini´ˇ candZupanovi´ˇ c, [18, 19, 20, 21, 22, 23]. The articles are mostly based on qualitative theory of differen- tial equations. A standard technique of this theory is phase plane analysis. We study trajectories of the corresponding system of differential equations in the phase plane, instead of studying the graph of the solution of the equation directly. Our main interest is fractal analysis of behavior of the graph of oscillatory solution, and of a trajectory of the associated system.
    [Show full text]
  • Fast and Accurate $ G^ 1$ Fitting of Clothoid Curves
    Fast and accurate G1 fitting of clothoid curves ENRICO BERTOLAZZI and MARCO FREGO University of Trento, Italy A new effective solution to the problem of Hermite G1 interpolation with a clothoid curve is here proposed, that is a clothoid that interpolates two given points in a plane with assigned unit tangent vectors. The interpolation problem is a system of three nonlinear equations with multiple solutions which is difficult to solve also numerically. Here the solution of this system is reduced to the computation of the zeros of one single function in one variable. The location of the zero associated to the relevant solution is studied analytically: the interval containing the zero where the solution is proved to exists and to be unique is provided. A simple guess function allows to find that zero with very few iterations in all possible configurations. The computation of the clothoid curves and the solution algorithm call for the evaluation of Fresnel related integrals. Such integrals need asymptotic expansions near critical values to avoid loss of precision. This is necessary when, for example, the solution of the interpolation problem is close to a straight line or an arc of circle. A simple algorithm is presented for efficient computation of the asymptotic expansion. The reduction of the problem to a single nonlinear function in one variable and the use of asymptotic expansions make the present solution algorithm fast and robust. In particular a comparison with algorithms present in literature shows that the present algorithm requires less iterations. Moreover accuracy is maintained in all possible configurations while other algorithms have a loss of accuracy near the transition zones.
    [Show full text]
  • Short Course on Asymptotics Mathematics Summer REU Programs University of Illinois Summer 2015
    Short Course on Asymptotics Mathematics Summer REU Programs University of Illinois Summer 2015 A.J. Hildebrand 7/21/2015 2 Short Course on Asymptotics A.J. Hildebrand Contents Notations and Conventions 5 1 Introduction: What is asymptotics? 7 1.1 Exact formulas versus approximations and estimates . 7 1.2 A sampler of applications of asymptotics . 8 2 Asymptotic notations 11 2.1 Big Oh . 11 2.2 Small oh and asymptotic equivalence . 14 2.3 Working with Big Oh estimates . 15 2.4 A case study: Comparing (1 + 1=n)n with e . 18 2.5 Remarks and extensions . 20 3 Applications to probability 23 3.1 Probabilities in the birthday problem. 23 3.2 Poisson approximation to the binomial distribution. 25 3.3 The center of the binomial distribution . 27 3.4 Normal approximation to the binomial distribution . 30 4 Integrals 35 4.1 The error function integral . 35 4.2 The logarithmic integral . 37 4.3 The Fresnel integrals . 39 5 Sums 43 5.1 Euler's summation formula . 43 5.2 Harmonic numbers . 46 5.3 Proof of Stirling's formula with unspecified constant . 48 3 4 CONTENTS Short Course on Asymptotics A.J. Hildebrand Notations and Conventions R the set of real numbers C the set of complex numbers N the set of positive integers x; y; t; : : : real numbers h; k; n; m; : : : integers (usually positive) [x] the greatest integer ≤ x (floor function) fxg the fractional part of x, i.e., x − [x] p; pi; q; qi;::: primes P summation over all positive integers ≤ x n≤x P summation over all nonnegative integers ≤ x (i.e., including 0≤n≤x n = 0) P summation over all primes ≤ x p≤x Convention for empty sums and products: An empty sum (i.e., one in which the summation condition is never satisfied) is defined as 0; an empty product is defined as 1.
    [Show full text]
  • Orange Peels and Fresnel Integrals
    Orange Peels and Fresnel Integrals LAURENT BARTHOLDI AND ANDRE´ HENRIQUES ut the skin of an orange along a thin spiral of The same spiral is also used in civil engineering: it constant width (Fig. 1) and place it flat on a table provides optimal curvature for train tracks between a CC(Fig. 2). A natural breakfast question, for a mathe- straight run and an upcoming bend [4, §14.1.2]. A train that matician, is what shape the spiral peel will have when travels at constant speed and increases the curvature of its flattened out. We derive a formula that, for a given cut trajectory at a constant rate will naturally follow an arc of width, describes the corresponding spiral’s shape. the Euler spiral. For the analysis, we parametrize the spiral curve by a The review [2] describes the history of the Euler spiral constant speed trajectory, and express the curvature of the and its three independent discoveries. flattened-out spiral as a function of time. For the purpose of our mathematical treatment, we shall This is achieved by comparing a revolution of the spiral replace the orange by a sphere of radius one. The spiral on on the orange with a corresponding spiral on a cone tan- the sphere is taken to be of width 1/N, as in Fig. 5. The area gent to the surface of the orange (Fig. 3, left). Once we of the sphere is 4p, so the spiral has a length of roughly 4p know the curvature, we derive a differential equation for N.
    [Show full text]
  • A Table of Integrals of the Error Functions*
    JOURNAL OF RESEAR CH of the Natiana l Bureau of Standards - B. Mathematical Sciences Vol. 73B, No. 1, January-March 1969 A Table of Integrals of the Error Functions* Edward W. Ng** and Murray Geller** (October 23, 1968) This is a compendium of indefinite and definite integrals of products of the Error function with elementary or transcendental functions. A s'ubstantial portion of the results are ne w. Key Words: Astrophysics; atomic physics; Error functions; indefi nite integrals; special functions; statistical analysis. 1. Introduction Integrals of the error function occur in a great variety of applicati ons, us ualJy in problems involvin g multiple integration where the integrand contains expone ntials of the squares of the argu­ me nts. Examples of applications can be cited from atomic physics [16),1 astrophysics [13] , and statistical analysis [15]. This paper is an attempt to give a n up-to-date exhaustive tabulation of s uch integrals. All formulas for indefi nite integrals in sections 4.1, 4.2, 4.5, a nd 4.6 below were derived from integration by parts and c hecked by differe ntiation of the resulting expressions_ Section 4.3 and the second hali' of 4.5 cover all formulas give n in [7] , with omission of trivial duplications and with a number of additions; section 4.4 covers essentially formulas give n in [4], Vol. I, pp. 233-235. All these formulas have been re-derived and checked, eithe r from the integral representation or from the hype rgeometric series of the error function. Sections 4.7,4_8 and 4_9 ori ginated in a more varied way.
    [Show full text]
  • Generalized Fresnel Integrals
    Bull. Sci. math. 129 (2005) 1–23 www.elsevier.com/locate/bulsci Generalized Fresnel integrals S. Albeverio 1,2,∗, S. Mazzucchi 2 Institut für Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany Received 25 May 2004; accepted 26 May 2004 Available online 6 August 2004 Abstract A general class of (finite dimensional) oscillatory integrals with polynomially growing phase func- tions is studied. A representation formula of the Parseval type is proven as well as a formula giving the integrals in terms of analytically continued absolutely convergent integrals. Their asymptotic ex- pansion for “strong oscillations” is given. The expansion is in powers of h¯ 1/2M,whereh¯ is a small parameters and 2M is the order of growth of the phase function. Additional assumptions on the integrands are found which are sufficient to yield convergent, resp. Borel summable, expansions. 2004 Elsevier SAS. All rights reserved. Résumé On étudie une classe générale d’intégrales oscillatoires en dimension finie avec une fonction de phase à croissance polynomiale. Une formule de représentation du type Parseval est démontrée, ainsi qu’une formule donnant les intégrales au moyen de la continuation analytique d’intégrales ab- solument convergentes. On donne les développements asymptotiques de ces intégrales dans le cas d’ “oscillations rapides”. Ces développements sont en puissance de h¯ 1/2M,oùh¯ est un petit para- mètre et 2M est l’ordre de croissance de la fonction de phase. Sous des conditions additionelles sur les integrands on obtient la convergence, resp. la sommabilité au sens de Borel, des développements asymptotiques. 2004 Elsevier SAS. All rights reserved. MSC: 28C05; 35S30; 34E05; 40G10; 81S40 * Corresponding author.
    [Show full text]
  • Chapter S – Approximations of Special Functions
    s – Approximations of Special Functions Introduction – s Chapter s – Approximations of Special Functions 1. Scope of the Chapter This chapter provides functions for computing some of the most commonly required special functions of mathematics. See Chapter g01 for probability distribution functions and their inverses. 2. Accuracy The majority of the functions in this chapter evaluate real-valued functions of a single real variable x. The accuracy of the computed value is discussed in each function document, along the following lines. Let ∆ be the absolute error in the argument x,andδ be the relative error in x. If we ignore errors that arise in the argument by propagation of data errors etc. and consider only those errors that result from the fact that a real number is being represented in the computer in floating-point form with finite precision, then δ is bounded and this bound is independent of the magnitude of x; for example, on an n-digit machine |δ|≤10−n. (This of course implies that the absolute error ∆ = xδ is also bounded but the bound is now dependent on x.) Let E be the absolute error in the computed function value f(x), and be the relative error. Then E |f (x)|∆ E |xf (x)|δ |xf (x)/f(x)|δ. If possible, the function documents discuss the last of these relations, that is the propagation of relative error, in terms of the error amplification factor |xf (x)/f(x)|. But in some cases, such as near zeros of the function which cannot be extracted explicitly, absolute error in the result is the quantity of significance and here the factor |xf (x)| is described.
    [Show full text]
  • Chapter S Approximations of Special Functions Contents
    S – Approximations of Special Functions Chapter S Approximations of Special Functions Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Functions of a Single Real Argument .............................. 2 2.2 Approximations to Elliptic Integrals .............................. 4 2.3 Bessel and Airy Functions of a Complex Argument ...................... 5 3 Recommendations on Choice and Use of Available Routines 5 3.1 Elliptic Integrals ......................................... 5 3.2 Bessel and Airy Functions .................................... 6 4Index 6 5 Routines Withdrawn or Scheduled for Withdrawal 7 6 References 7 [NP3390/19/pdf] S.1 Introduction – S S – Approximations of Special Functions 1 Scope of the Chapter This chapter is concerned with the provision of some commonly occurring physical and mathematical functions. 2 Background to the Problems The majority of the routines in this chapter approximate real-valued functions of a single real argument, and the techniques involved are described in Section 2.1. In addition the chapter contains routines for elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3), exponential of a complex argument, and complementary error function of a complex argument. 2.1 Functions of a Single Real Argument Most of the routines for functions of a single real argument have been based on truncated Chebyshev expansions. This method of approximation was adopted as a compromise between the conflicting requirements of efficiency and ease of implementation on many different machine ranges. For details of the reasons behind this choice and the production and testing procedures followed in constructing this chapter see Schonfelder [7].
    [Show full text]
  • The Riemann Integral
    Chapter 1 The Riemann Integral I know of some universities in England where the Lebesgue integral is taught in the first year of a mathematics degree instead of the Riemann integral, but I know of no universities in England where students learn the Lebesgue integral in the first year of a mathematics degree. (Ap- proximate quotation attributed to T. W. K¨orner) Let f :[a,b] R be a bounded (not necessarily continuous) function on a compact (closed,→ bounded) interval. We will define what it means for f to be b Riemann integrable on [a,b] and, in that case, define its Riemann integral a f. The integral of f on [a,b] is a real number whose geometrical interpretation is the signed area under the graph y = f(x) for a x b. This number is also calledR the definite integral of f. By integrating f over≤ an≤ interval [a, x] with varying right end-point, we get a function of x, called the indefinite integral of f. The most important result about integration is the fundamental theorem of calculus, which states that integration and differentiation are inverse operations in an appropriately understood sense. Among other things, this connection enables us to compute many integrals explicitly. Integrability is a less restrictive condition on a function than differentiabil- ity. Roughly speaking, integration makes functions smoother, while differentiation makes functions rougher. For example, the indefinite integral of every continuous function exists and is differentiable, whereas the derivative of a continuous function need not exist (and generally doesn’t). The Riemann integral is the simplest integral to define, and it allows one to integrate every continuous function as well as some not-too-badly discontinuous functions.
    [Show full text]
  • Automatic Computing Methods for Special Functions. Part IV. Complex Error Function, Fresnel Integrals, and Other Related Functions
    JOURNAL OF RESEARCH of the National Bureau of Standards Vol. 86. NO.6. November-December 1981 Automatic Computing Methods for Special Functions. Part IV. Complex Error Function, Fresnel Integrals, and Other Related Functions Irene A. Stegun* and Ruth Zucker* National Bureau of Standards, Washington, DC 20234 July 15. 1981 Accurate, efficient, automatic methods for computing the complex error function to any precision are detailed and implemented in an American Standard FORTRAN subroutine. A six significant figure table of erfc z, ell erfc z, and eEl erfc( -z) is included for z in polar coordinate form with the modulus of z ranging from 0 to 9. The argand diagram is given for erf z. Key words: Argand diagram; complex error function; continued fraction; Dawson's function; FORTRAN subroutine; Fresnel integrals; key values; line broadening function; plasma dispersion function; Voigt function. 1. Introduction In computing many of the functions of mathematical physics, for example, Fresnel integrals, Dawson's integral, Voigt function, plasma dispersion function, etc., difficulties are frequently encountered. Since these functions may be expressed in terms of the error function of complex argument, we have chosen this function for Part IV.l The major part of the coding of the power series, continued fraction and asymptotic expansion computations for complex arguments will carryover equally well for other functions. As Part I was devoted to the error function of a real variable, the probability function and other related functions, Part IV will only emphasize those functions and pitfalls due to complex arguments. While accuracy over the entire domain of definition remains our main concern, the methods employed ensure efficiency, portability and ease of programming and modification.
    [Show full text]
  • On the Zeros of the Fresnel Integrals
    ON THE ZEROS OF THE FRESNEL INTEGRALS ERWIN KREYSZIG 1. Introduction. This paper is concerned with the Fresnel integrals cos(p2)dp, S(u) = sm(p2)dp o Jo in the complex domain. Recent research work in different Melds of physical and technical applica­ tions of mathematics shows that an increasing number of problems require a detailed knowledge of elementary and higher functions for complex values of the argument. The Fresnel integrals, introduced by A. J. Fresnel (1788- 1827) in connection with diffraction problems, are among these functions; a small collection of papers of the above-mentioned kind is included in the bibliography at the end of this paper (3; 5; 7; 12; 13; 17; 19; 20; 22). Moreover, the Fresnel integrals are important since various types of more complicated integrals can be reduced (6) to analytic expressions involving C{u) and S(u). At the present time the detailed investigation of special functions for com­ plex argument is still in its infancy. It has been limited, until now, to certain classes of functions, especially to those which have the advantage of possessing simple functional relations or of satisfying an ordinary differential equation; in the latter case the theory of differential equations can be used when con­ sidering these functions. The Gamma function and the Bessel functions, respectively, are of this kind. The Fresnel integrals do not possess these advantageous properties and must therefore be treated by other methods. The Fresnel integrals have been considered from different points of view (1; 2; 4; 8; 9; 14; 16; 18), but, until a short time ago, for a real argument only.
    [Show full text]