Analytical evaluation and asymptotic evaluation of Dawson’s integral and related functions in mathematical physics V. Nijimbere School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada Abstract Dawson’s integral and related functions in mathematical physics that in- clude the complex error function (Faddeeva’s integral), Fried-Conte (plasma dispersion) function, (Jackson) function, Fresnel function and Gordeyev’s in- tegral are analytically evaluated in terms of the confluent hypergeometric function. And hence, the asymptotic expansions of these functions on the complex plane C are derived using the asymptotic expansion of the confluent hypergeometric function. Keywords: Dawson’s integral, Complex error function, Plasma dispersion function, Fresnel functions, Gordeyev’s integral, Confluent hypergeometric function, asymptotic expansion 1. Introduction Let us consider the first-order initial value problem, D′ +2zD =1,D(0) = 0. (1) arXiv:1703.06757v1 [math.CA] 14 Mar 2017 Its solution given by the definite integral z z2 η2 daw z = D(z)= e− e dη (2) Z0 Email address:
[email protected] (V. Nijimbere) Preprint submitted to Elsevier March 21, 2017 is known as Dawson’s integral [1, 17, 24, 27]. Dawson’s integral is related to several important functions (in integral form) in mathematical physics that include Faddeeva’s integral (also know as the complex error function or Kramp function) [9, 10, 22, 18, 27] z z2 2i z2 z2 2i η2 w(z)= e− 1+ e daw z = e− 1+ e dη , (3) √π √π Z0 Fried-Conte function (or plasma dispersion function) [4, 11] z z2 2i z2 z2 2i η2 Z(z)= i√πw(z)= i√πe− 1+ e daw z = i√πe− 1+ e dη , √π √π Z0 (4) (Jackson) function [14] G(z)=1+ zZ(z)=1+ i√πzw(z) z2 2i z2 =1+ i√πze− 1+ e daw z √π z z2 2i η2 =1+ i√πze− 1+ e dη , (5) √π Z0 and Fresnel functions C(x) and S(x) [1] defined by the relation z iπz2 e 2 daw √iπz = eiπη dη = C(x)+ iS(x), (6) √iπ Z0 where z z C(x)= cos(πη2)dη and S(x)= sin (πη2)dη.