IIIII
IIIIIIII
III
II
0
( )0 =
Γ( , )0 =
− <
( )/
0
/
(− )
= ( + )/
<
( − )0 =
−
( −
)
( − )0 =
−
+
−
- (
- )
−
- +
- ( )
- ꢂ
- ꢃ
√√
- √
- √
- ꢀ
- ꢁ
ꢁ
- ꢀ
- ꢁ
−
+
−−
+
√
√
- ꢂ
- ꢃ
- √
- √
- √
- √
- ꢀ
- ꢀ
- ꢁ
−
- +
- +
√
((
))
√
( − )
π
−
+
−
- ꢀ
- ꢁ
√
( + ) π +
- −
- −
- −
- ꢀ
- ꢁ
√
π
- (
- ) +
- ꢀ
- ꢁ
−
−Γ
,
−
- ꢀ
- ꢁ
Γ
,
- +
- +
- +
−
- ꢀ
- ꢁ
- ꢀ
- ꢁ
- −
- −
- −
Γ
,
- +
- +
- +
− Γ
,
- +
- +
- +
−
−
- ( + ) −
- ( ) ( ) +
- ( ) ( ) +
- ( ) (− )
q
- ꢂ
- ꢃ
π
q
π
- ꢂ
- ꢃ
- √
- √
√
+ +
+ +
−
π
- ꢄ
- ꢅ
- ꢀ
- ꢁ
+
- +
- +
+
- 0
- 0
- /
- ,
∈
=
III
- =
- (θ) θ
θ
0θ
(θ+ )
∈
θ0 =
θ/
−θ θ , . . . , θ ∈
=
(θ , . . . , θ )
≤ ≤
θ
θ0
θ
0
=
∈∈
0
θ0 =
0
θ0 =
,
∈
=
- 0
- 0
0
, ,
∈
,
θ0 =
- 0
- 0
- =
- =
- − <
- <
=
(θ , . . . , θ −
)
∈
(θ)
θ
¯
(θ)
0
- X
- X
=(θ)
X
(θ)
(θ)
- 0
- 0
- 0
- =
- +
- +
- +
- ∈
- ∈
- ∈
0
¯
0
- ∈
- ∈
- ∈
- ∪
∈
(θ)
∈
,
- ∈
- ∈
- ∈
=
- θ
- θ
- X
- X
θ
- 0
- 0
- θ = ( θ)0 +
- +
θ
- ∈
- ∈
0
θ = ( θ)0
- θ
- θ0 = 0θ
- X
- X
- 0
- 0
- 0
- 0
- =
- +
- +
- +
- ∈
- ∈
- ,
- ,
X
0
- =
- +
- +
IIII
I
ψ
(ψ)
- =
- + ψ +
∈
∈ Q =
ψψψ
[ψ]
[ψ, ψ−
]
[ψ]
ψψ
- =
- + ψ +
,
- ,
- ,
∂
- ψ
- ,
∂
ψ
0
( ) >
, ) =
( ) >
(
,
ψ
- (
- , ) =
,
∂
- (
- , ) =
ψ
,
- √
- √
- √
- √
- −
- 0
- )
- ( )/( − ) =
( − )0 −
( +
(φ)0
- P
- Q
0
- (φ +
- )
- (
- +
- )
( ) =
- ˜
- −˜
- (
- ( ) )/( ( ) + ) = (( ( ) + ) )0/(
- )
,
- (
- (
- ( ) +
- ( )) + (
- ( ) +
- ( ) + ))
- (
- ( ) )
=
( )( ( ) + )( ( ) + )
- ( (( ( ) + )( ( ) + ))0/ ( )( ( ) + ))0.
- +
- (
ꢄ
ꢅ0
ꢄ
ꢅ0
- (
- ( )/( ( )+ )) =
- −
- −
- +
- +
ψ
+
( − ( )) = ( )0
ψψ
∈
−
(( + ) ( ))
( )
- (
- ( ))
- (( + ) ( ))0 =
- =
( )
ψ
∈
X
˜
=
,,
,
,
,
- ,
- ,
- (
- ) =
ψ
,
≥
=
- (−
- −
( ) ) ψ = ( )
= −ψ −
+
∂
= − ψ
ψ
- ( , ∂ψ ) = ( −
- )
- ( , ∂ψ ) =
- =
( ))0
= −ψ
(
- = Γ( / ,
- ( ))0 =
(−
( ) + / ).
==
(−
( ))
/ ))0 =
- = −
- ( )
- =
( ) + / )
+
( / )
- (
- (
(−
- √
- √
- √
π
- (
- )0 =
(− )/
=
(− − ( )/ )