<<

Cheat Sheet Definitions Definite : Suppose fx( ) is continuous Anti- : An anti-derivative of fx( ) on [ab, ] . Divide [ab, ] into n subintervals of is a , Fx( ) , such that Fx′( ) = fx( ) . width ∆ x and choose x* from each . = + i Indefinite Integral : ∫ f( x) dx F( x) c b n Then f( x) dx= lim f x* ∆ x . where Fx( ) is an anti-derivative of fx( ) . ∫a n→∞ ∑ ( i ) i=1

Fundamental Theorem of Calculus Part I : If fx( ) is continuous on [ab, ] then Variants of Part I : d ux( ) x f( t) dt= u′( x) f u( x) g( x) = f( t) dt is also continuous on [ab, ] ∫a  ∫a dx d x d b and g′( x) = f( t) dt= f( x) . ∫ f( t) dt= − v′( x) f v( x) dx ∫a dx vx( ) d ux( ) Part II : fx( ) is continuous on[ab, ] , Fx( ) is ftdtuxf( ) = ′′( ) [ux()]− vxf( ) [vx()] dx ∫vx( ) an anti-derivative of fx( ) (i.e. F( x) = ∫ f( x) dx ) b then f( x) dx= F( b) − F( a) . ∫a Properties ∫f( x) ±= g( x) dx ∫∫ f( x) dx ± g( x) dx ∫∫cf( x) dx= c f( x) dx , c is a b bb bb f( x) ±= g( x) dx f( x) dx ± g( x) dx cf( x) dx= c f( x) dx , c is a constant ∫a ∫∫ aa ∫∫aa a b f( x) dx = 0 c dx= c( b − a) ∫a ∫a ba bb f( x) dx= − f( x) dx f( x) dx≤ f( x) dx ∫∫ab ∫∫aa b cb f( x) dx= f( x) dx + f( x) dx for any value of c. ∫∫∫a ac bb If f( x) ≥ gx( ) on axb≤≤then f( x) dx≥ g( x) dx ∫∫aa b If fx( ) ≥ 0 on axb≤≤ then f( x) dx ≥ 0 ∫a b If m≤≤ fx( ) Mon axb≤≤ then mba( −≤) fxdxMba( ) ≤( −) ∫a

Common Integrals ∫ k dx= k x + c ∫ cosu du= sin u + c ∫ tanu du= ln sec u + c nn=1 +1 + ≠− =−+ = ++ ∫ x dxn+1 x c,1 n ∫sinu du cos u c ∫secu du ln sec u tan u c x−1 dx=1 dx =ln x + c sec2 u du= tan u + c 1 du =1 tan −1 ( u ) + c ∫∫x ∫ ∫ au22+ aa 11= ++ = + 1 −1 u ∫ + dxa ln ax b c ∫secu tan u du sec u c du =sin ( ) + c ax b ∫ au22− a ∫ lnu du= u ln ( u) −+ u c ∫ cscu cot udu=−+ csc u c 2 ∫eeuudu= + c ∫ cscu du=−+ cot u c Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins Calculus Cheat Sheet Standard Integration Techniques Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class.

b gb( ) u Substitution : The substitution u= gx( ) will convert f( g( x)) g′( x) dx= f( u) du using ∫∫a ga( ) du= g′( x) dx . For indefinite integrals drop the limits of integration. 2 28 Ex. 5x23 cos x dx 5x23 cos x dx= 5 cos( u) du ∫ ( ) ∫∫11( ) 3 1 =⇒=3 22 ⇒ =1 558 u x du3 x dx x dx3 du =sinu = sin 8 − sin 1 33( ) 1 ( ( ) ( )) xu=⇒==111::22833 xu =⇒==

bbb : u dv= uv − v du and u dv= uv − v du . Choose u and dv from ∫∫∫∫aaa integral and compute du by differentiating u and compute v using v= ∫ dv . − x 5 Ex. xe dx Ex. ln x dx ∫ ∫3 −−xx u= x dv =⇒=eedu dx v =− 1 u=ln x dv =⇒= dx dux dx v = x −−−−−xxxxx xeeeee dx=−+=−−+ x dx x c 555 5 ∫∫ lnx dx= x ln x −= dx xln ( x) − x ∫∫333 ( ) 3 =−−5ln( 5) 3ln( 3) 2

Products and (some) Quotients of Trig Functions For ∫sinnmx cos x dx we have the following : For ∫ tannmx sec x dx we have the following : 1. n odd. Strip 1 out and convert rest to 1. n odd. Strip 1 and 1 secant out and cosines using sin22xx= 1 − cos , then use convert the rest to secants using the substitution ux= cos . tan22xx= sec − 1, then use the substitution 2. m odd. Strip 1 cosine out and convert rest ux= sec . to using cos22xx= 1 − sin , then use 2. m even. Strip 2 secants out and convert rest the substitution ux= sin . to using sec22xx= 1 + tan , then 3. n and m both odd. Use either 1. or 2. use the substitution ux= tan . 4. n and m both even. Use double angle 3. n odd and m even. Use either 1. or 2. and/or half angle formulas to reduce the 4. n even and m odd. Each integral will be integral into a form that can be integrated. dealt with differently. 2 1 2 1 Trig Formulas : sin( 2x) = 2sin( xx) cos( ) , cos( xx) =2 ( 1 + cos( 2 )), sin( xx) =2 ( 1 − cos( 2 ))

5 Ex. tan35x sec x dx Ex. sin x dx ∫ ∫ cos3 x 35 24 54 22 ∫∫tanx sec xdx= tan x sec x tan x sec xdx sinxdx= sin xx sin dx = (sinx ) sin x dx ∫∫cos33xxcos ∫cos 3 x 24 =secx − 1 sec x tan x sec xdx (1− cos22x ) sin x ∫( ) = dx( u= cos x) ∫ cos3 x 24 =−=(u1) u du( usec x) (1−u22 ) 24 ∫ =−=−du 12−+uudu ∫∫uu33 =−+1175 75secx sec xc 1122 =+22secx 2ln cos x −+ cos xc

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins Calculus Cheat Sheet Trig Substitutions : If the integral contains the following root use the given substitution and formula to convert into an integral involving trig functions. 2− 22 ⇒=a θ 22− 2 ⇒=a θ 2+ 22 ⇒=a θ a bx x b sin bx a x b sec a bx x b tan cos22θθ= 1 − sin tan22θθ= sec − 1 sec22θθ= 1 + tan

Ex. 16 dx ⌠ 16 2 12 ∫ 2 2 ( 3 cosθθ)dd= 2 θ x 49− x ⌡ 4 sin2θθ( 2cos ) ∫ sin θ 9 x =22sinθ ⇒=dxcosθθ d 33 =∫12csc2 dcθθ =−+ 12cot 2 22 49− x =−==4 4sinθ 4cos θθ 2cos Use Right Triangle Trig to go back to x’s. From 2 θ = 3x Recall xx= . Because we have an indefinite substitution we have sin 2 so, integral we’ll assume positive and drop bars. If we had a definite integral we’d need to compute θ ’s and remove absolute value bars based on that and,

 xxif ≥ 0 − 2 x =  From this we see that cotθ = 49x . So, −

Px( ) Partial Fractions : If integrating dx where the degree of Px( ) is smaller than the degree of ∫ Qx( ) Qx( ) . Factor denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table.

Factor in Qx( ) Term in P.F.D Factor in Qx( ) Term in P.F.D AA A A k 12+ ++ k ax+ b (ax+ b) 2  k ax+ b ax+ b (ax++ b) ( ax b)

Ax11+ B Axkk+ B Ax+ B 2 k ++ 2 2  k ax++ bx c 2 (ax++ bx c) 2 ax++ bx c ax++ bx c (ax++ bx c)

2 2 2 ++ +− Ex. 7xx+ 13 dx 7xx+ 13 =+=A Bx+ C Ax( 4) (Bx C ) ( x 1 ) ∫ (xx−+14 )(2 ) (xx−+14 )(22 ) x−1 x + 4( xx −+ 14 )( 2 ) 2 7xx+ 13 dx =4 + 3x+ 16 dx Set numerators equal and collect like terms. ∫∫(xx−+14 )(2 ) x−1 x2 +4 7x22+ 13 x =+( A Bx) +−( C Bx) +−4 A C =4 ++3x 16 dx ∫ x−1 xx22++44 Set coefficients equal to get a system and solve 3 21− x to get constants. =4lnxx −+ 122 ln( + 4) + 8 tan ( ) AB+=7 C −= B13 4 AC −= 0 Here is partial fraction form and recombined. ABC= 4 = 3 =16

An alternate method that sometimes works to find constants. Start with setting numerators equal in previous example : 7x22+ 13 x = A( x ++ 4) ( Bx + C) ( x −1) . Chose nice values of x and plug in. For example if x =1 we get 20= 5A which gives A = 4 . This won’t always easily.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins Calculus Cheat Sheet Applications of Integrals b Net : f( x) dx represents the net area between fx( ) and the ∫a x-axis with area above x-axis positive and area below x-axis negative.

Area Between : The general formulas for the two main cases for each are, b d   y= f( x) ⇒= A upper function − lower function dx & x= f( y) ⇒= A right function − left function dy ∫a ∫c If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases.

b d cb A= f( x) − g( x) dx A=∫ f( y) − g( y) dy A=−+− f( x) g( x) dx g( x) f( x) dx ∫a c ∫∫ac

Volumes of Revolution : The two main formulas are V= ∫ A( x) dx and V= ∫ A( y) dy . Here is some general information about each method of computing and some examples. Rings Cylinders 22 A = π ((outer radius) − ( inner radius) ) A = 2π (radius) ( width / height) Limits: x/y of right/bot ring to x/y of left/top ring Limits : x/y of inner cyl. to x/y of outer cyl. Horz. Axis use fx( ) , Vert. Axis use fy( ) , Horz. Axis use fy( ) , Vert. Axis use fx( ) , gx( ) , Ax( ) and dx. gy( ) , Ay( ) and dy. gy( ) , Ay( ) and dy. gx( ) , Ax( ) and dx.

Ex. Axis : ya= > 0 Ex. Axis : ya= ≤ 0 Ex. Axis : ya= > 0 Ex. Axis : ya= ≤ 0

outer radius : a− fx( ) outer radius: a+ gx( ) radius : ay− radius : ay+ inner radius : a− gx( ) inner radius: a+ fx( ) width : f( y) − gy( ) width : f( y) − gy( )

These are only a few cases for horizontal axis of rotation. If axis of rotation is the x-axis use the ya= ≤ 0 case with a = 0 . For vertical axis of rotation ( xa= > 0 and xa= ≤ 0 ) interchange x and y to get appropriate formulas.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins Calculus Cheat Sheet Work : If a force of Fx( ) moves an object Average Function Value : The average value b b of fx( ) on axb≤≤ is f= 1 f( x) dx in axb≤≤, the work done is W= F( x) dx avg ba− ∫a ∫a

Arc Length Area : Note that this is often a Calc II topic. The three basic formulas are, b b b L= ds SA= 2π y ds (rotate about x-axis) SA= 2π x ds (rotate about y-axis) ∫a ∫a ∫a where ds is dependent upon the form of the function being worked with as follows. dy 2 2 dy 2 ds =1 +dx if y = f x , a ≤≤ x b ds =dx + dt if x= f t , y = g t , a ≤≤ t b ( dx ) ( ) ( dt ) ( dt ) ( ) ( )

2 2 dr 2 ds =1 +dx dy if x = f y , a ≤≤ y b ds= r +( ) dθ if r= f( θθ) , a ≤≤ b ( dy ) ( ) dθ With you may have to substitute in for the x or y depending on your choice of ds to match the differential in the ds. With parametric and polar you will always need to substitute.

Improper Integral An is an integral with one or more infinite limits and/or discontinuous integrands. Integral is called convergent if the exists and has a finite value and divergent if the limit doesn’t exist or has infinite value. This is typically a Calc II topic.

Infinite Limit ∞ t bb 1. f( x) dx= lim f( x) dx 2. f( x) dx= lim f( x) dx ∫∫aat→∞ ∫∫−∞ t→−∞ t ∞∞c 3. f( x) dx= f( x) dx+ f( x) dx provided BOTH integrals are convergent. ∫∫∫−−∞∞c Discontinuous Integrand bb bt 1. Discont. at a: f( x) dx= lim f( x) dx 2. Discont. at b : f( x) dx= lim f( x) dx ∫∫atta→ + ∫∫aatb→ − b cb 3. Discontinuity at acb<< : f( x) dx= f( x) dx + f( x) dx provided both are convergent. ∫∫∫aac

Comparison Test for Improper Integrals : If f( x) ≥≥ gx( ) 0 on [a,∞) then, ∞ ∞ ∞ ∞ 1. If f( x) dx conv. then g( x) dx conv. 2. If g( x) dx divg. then f( x) dx divg. ∫a ∫a ∫a ∫a ∞ Useful fact : If a > 0 then 1 dx converges if p >1 and diverges for p ≤1. ∫a x p

Approximating Definite Integrals b For given integral f( x) dx and a n (must be even for Simpson’s Rule) define ∆=x ba− and ∫a n divide [ab, ] into n subintervals [xx01, ] , [xx12, ] , … , [xxn−1, n ] with xa0 = and xbn = then, b ** ** Midpoint Rule : fxdxxfx( ) ≈∆ + fx + + fx , x is midpoint [xx− , ] ∫a ( 12) ( ) ( n ) i i 1 i b ∆x Rule : fxdx( ) ≈ fx( 01) +22 fx( ) ++ fx( 2) + + 2 fx( nn− 1) + fx( ) ∫a 2 b ∆x Simpson’s Rule : fxdx( ) ≈ fx( 012) +42 fx( ) + fx( ) ++ 2 fx( n−− 2) + 4 fx( nn 1) + fx( ) ∫a 3

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins