Derivative, Gradient, and Lagrange Multipliers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Modern Calculus of Variations
MA4G6 Lecture Notes Introduction to the Modern Calculus of Variations Filip Rindler Spring Term 2015 Filip Rindler Mathematics Institute University of Warwick Coventry CV4 7AL United Kingdom [email protected] http://www.warwick.ac.uk/filiprindler Copyright ©2015 Filip Rindler. Version 1.1. Preface These lecture notes, written for the MA4G6 Calculus of Variations course at the University of Warwick, intend to give a modern introduction to the Calculus of Variations. I have tried to cover different aspects of the field and to explain how they fit into the “big picture”. This is not an encyclopedic work; many important results are omitted and sometimes I only present a special case of a more general theorem. I have, however, tried to strike a balance between a pure introduction and a text that can be used for later revision of forgotten material. The presentation is based around a few principles: • The presentation is quite “modern” in that I use several techniques which are perhaps not usually found in an introductory text or that have only recently been developed. • For most results, I try to use “reasonable” assumptions, not necessarily minimal ones. • When presented with a choice of how to prove a result, I have usually preferred the (in my opinion) most conceptually clear approach over more “elementary” ones. For example, I use Young measures in many instances, even though this comes at the expense of a higher initial burden of abstract theory. • Wherever possible, I first present an abstract result for general functionals defined on Banach spaces to illustrate the general structure of a certain result. -
Finite Elements for the Treatment of the Inextensibility Constraint
Comput Mech DOI 10.1007/s00466-017-1437-9 ORIGINAL PAPER Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint Ferdinando Auricchio1 · Giulia Scalet1 · Peter Wriggers2 Received: 5 April 2017 / Accepted: 29 May 2017 © Springer-Verlag GmbH Germany 2017 Abstract The present paper proposes a numerical frame- 1 Introduction work for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic The use of fiber-reinforcements for the development of novel solids, reinforced by a single family of inextensible fibers, and efficient materials can be traced back to the 1960s are considered. The kinematic constraint equation of inex- and, to date, it is an active research topic. Such materi- tensibility in the fiber direction leads to the presence of als are composed of a matrix, reinforced by one or more an undetermined fiber stress in the constitutive equations. families of fibers which are systematically arranged in the To avoid locking-phenomena in the numerical solution due matrix itself. The interest towards fiber-reinforced mate- to the presence of the constraint, mixed finite elements rials stems from the mechanical properties of the fibers, based on the Lagrange multiplier, perturbed Lagrangian, and which offer a significant increase in structural efficiency. penalty method are proposed. Several boundary-value prob- Particularly, these materials possess high resistance and lems under plane strain conditions are solved and numerical stiffness, despite the low specific weight, together with an results are compared to analytical solutions, whenever the anisotropic mechanical behavior determined by the fiber derivation is possible. The performed simulations allow to distribution. -
A Variational Approach to Lagrange Multipliers
JOTA manuscript No. (will be inserted by the editor) A Variational Approach to Lagrange Multipliers Jonathan M. Borwein · Qiji J. Zhu Received: date / Accepted: date Abstract We discuss Lagrange multiplier rules from a variational perspective. This allows us to highlight many of the issues involved and also to illustrate how broadly an abstract version can be applied. Keywords Lagrange multiplier Variational method Convex duality Constrained optimiza- tion Nonsmooth analysis · · · · Mathematics Subject Classification (2000) 90C25 90C46 49N15 · · 1 Introduction The Lagrange multiplier method is fundamental in dealing with constrained optimization prob- lems and is also related to many other important results. There are many different routes to reaching the fundamental result. The variational approach used in [1] provides a deep under- standing of the nature of the Lagrange multiplier rule and is the focus of this survey. David Gale's seminal paper [2] provides a penetrating explanation of the economic meaning of the Lagrange multiplier in the convex case. Consider maximizing the output of an economy with resource constraints. Then the optimal output is a function of the level of resources. It turns out the derivative of this function, if exists, is exactly the Lagrange multiplier for the constrained optimization problem. A Lagrange multiplier, then, reflects the marginal gain of the output function with respect to the vector of resource constraints. Following this observation, if we penalize the resource utilization with a (vector) Lagrange multiplier then the constrained optimization problem can be converted to an unconstrained one. One cannot emphasize enough the importance of this insight. In general, however, an optimal value function for a constrained optimization problem is nei- ther convex nor smooth. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Infinitesimal Calculus
Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = . -
Calculus Formulas and Theorems
Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9. -
Integration by Parts
3 Integration By Parts Formula ∫∫udv = uv − vdu I. Guidelines for Selecting u and dv: (There are always exceptions, but these are generally helpful.) “L-I-A-T-E” Choose ‘u’ to be the function that comes first in this list: L: Logrithmic Function I: Inverse Trig Function A: Algebraic Function T: Trig Function E: Exponential Function Example A: ∫ x3 ln x dx *Since lnx is a logarithmic function and x3 is an algebraic function, let: u = lnx (L comes before A in LIATE) dv = x3 dx 1 du = dx x x 4 v = x 3dx = ∫ 4 ∫∫x3 ln xdx = uv − vdu x 4 x 4 1 = (ln x) − dx 4 ∫ 4 x x 4 1 = (ln x) − x 3dx 4 4 ∫ x 4 1 x 4 = (ln x) − + C 4 4 4 x 4 x 4 = (ln x) − + C ANSWER 4 16 www.rit.edu/asc Page 1 of 7 Example B: ∫sin x ln(cos x) dx u = ln(cosx) (Logarithmic Function) dv = sinx dx (Trig Function [L comes before T in LIATE]) 1 du = (−sin x) dx = − tan x dx cos x v = ∫sin x dx = − cos x ∫sin x ln(cos x) dx = uv − ∫ vdu = (ln(cos x))(−cos x) − ∫ (−cos x)(− tan x)dx sin x = −cos x ln(cos x) − (cos x) dx ∫ cos x = −cos x ln(cos x) − ∫sin x dx = −cos x ln(cos x) + cos x + C ANSWER Example C: ∫sin −1 x dx *At first it appears that integration by parts does not apply, but let: u = sin −1 x (Inverse Trig Function) dv = 1 dx (Algebraic Function) 1 du = dx 1− x 2 v = ∫1dx = x ∫∫sin −1 x dx = uv − vdu 1 = (sin −1 x)(x) − x dx ∫ 2 1− x ⎛ 1 ⎞ = x sin −1 x − ⎜− ⎟ (1− x 2 ) −1/ 2 (−2x) dx ⎝ 2 ⎠∫ 1 = x sin −1 x + (1− x 2 )1/ 2 (2) + C 2 = x sin −1 x + 1− x 2 + C ANSWER www.rit.edu/asc Page 2 of 7 II. -
Chain Rule & Implicit Differentiation
INTRODUCTION The chain rule and implicit differentiation are techniques used to easily differentiate otherwise difficult equations. Both use the rules for derivatives by applying them in slightly different ways to differentiate the complex equations without much hassle. In this presentation, both the chain rule and implicit differentiation will be shown with applications to real world problems. DEFINITION Chain Rule Implicit Differentiation A way to differentiate A way to take the derivative functions within of a term with respect to functions. another variable without having to isolate either variable. HISTORY The Chain Rule is thought to have first originated from the German mathematician Gottfried W. Leibniz. Although the memoir it was first found in contained various mistakes, it is apparent that he used chain rule in order to differentiate a polynomial inside of a square root. Guillaume de l'Hôpital, a French mathematician, also has traces of the chain rule in his Analyse des infiniment petits. HISTORY Implicit differentiation was developed by the famed physicist and mathematician Isaac Newton. He applied it to various physics problems he came across. In addition, the German mathematician Gottfried W. Leibniz also developed the technique independently of Newton around the same time period. EXAMPLE 1: CHAIN RULE Find the derivative of the following using chain rule y=(x2+5x3-16)37 EXAMPLE 1: CHAIN RULE Step 1: Define inner and outer functions y=(x2+5x3-16)37 EXAMPLE 1: CHAIN RULE Step 2: Differentiate outer function via power rule y’=37(x2+5x3-16)36 EXAMPLE 1: CHAIN RULE Step 3: Differentiate inner function and multiply by the answer from the previous step y’=37(x2+5x3-16)36(2x+15x2) EXAMPLE 2: CHAIN RULE A biologist must use the chain rule to determine how fast a given bacteria population is growing at a given point in time t days later. -
Contactmethodsintegratingplasti
Contact methodsintegrating plasticity B13/1 modelswith application to soil mechanics ChristianWeißenfels Leibniz Universität Hannover Contact methods integrating plasticity models with application to soil mechanics Von der Fakultät für Maschinenbau der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Christian Weißenfels geboren am 30.01.1979 in Rosenheim 2013 Herausgeber: Prof. Dr.-Ing. Peter Wriggers Verwaltung: Institut für Kontinuumsmechanik Gottfried Wilhelm Leibniz Universität Hannover Appelstraße 11 30167 Hannover Tel: +49 511 762 3220 Fax: +49 511 762 5496 Web: www.ikm.uni-hannover.de © Dipl.-Ing. Christian Weißenfels Institut für Kontinuumsmechanik Gottfried Wilhelm Leibniz Universität Hannover Appelstraße 11 30167 Hannover Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten. Ohne Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise auf photomechanischem, elektronischem oder sonstigem Wege zu vervielfältigen. ISBN 978-3-941302-06-8 1. Referent: Prof. Dr.-Ing. Peter Wriggers 2. Referent: Prof. Dr.-Ing. Karl Schweizerhof Tag der Promotion: 13.12.2012 i Zusammenfassung Der Schwerpunkt der vorliegenden Arbeit liegt in der Entwicklung von neuartigen Kon- zepten zur direkten Integration von drei-dimensionalen Plastizit¨atsmodellen in eine Kontaktformulierung. Die allgemeinen Konzepte wurden speziell auf Boden Bauwerk Interaktionen angewandt und im Rahmen der Mortar-Methode numerisch umgesetzt. Zwei unterschiedliche Strategien wurden dabei verfolgt. Die Erste integriert die Boden- modelle in eine Standard-Kontaktdiskretisierung, wobei die zweite Variante die Kon- taktformulierung in Richtung eines drei-dimensionalen Kontaktelements erweitert. Innerhalb der ersten Variante wurden zwei unterschiedliche Konzepte ausgearbeitet, wobei das erste Konzept das Bodenmodell mit dem Reibbeiwert koppelt. Dabei muss die H¨ohe der Lokalisierungszone entlang der Kontaktfl¨ache bestimmt werden. -
Dual-Dual Formulations for Frictional Contact Problems in Mechanics
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutionelles Repositorium der Leibniz Universität... Dual-dual formulations for frictional contact problems in mechanics Von der Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Dipl. Math. Michael Andres geboren am 28. 12. 1980 in Siemianowice (Polen) 2011 Referent: Prof. Dr. Ernst P. Stephan, Leibniz Universität Hannover Korreferent: Prof. Dr. Gabriel N. Gatica, Universidad de Concepción, Chile Korreferent: PD Dr. Matthias Maischak, Brunel University, Uxbridge, UK Tag der Promotion: 17. 12. 2010 ii To my Mum. Abstract This thesis deals with unilateral contact problems with Coulomb friction. The main focus of this work lies on the derivation of the dual-dual formulation for a frictional contact problem. First, we regard the complementary energy minimization problem and apply Fenchel’s duality theory. The result is a saddle point formulation of dual type involving Lagrange multipliers for the governing equation, the symmetry of the stress tensor as well as the boundary conditions on the Neumann boundary and the contact boundary, respectively. For the saddle point problem an equivalent variational inequality problem is presented. Both formulations include a nondiffer- entiable functional arising from the frictional boundary condition. Therefore, we introduce an additional dual Lagrange multiplier denoting the friction force. This procedure yields a dual-dual formulation of a two-fold saddle point structure. For the corresponding variational inequality problem we show the unique solvability. Two different inf-sup conditions are introduced that allow an a priori error analysis of the dual-dual variational inequality problem. -
18.02SC Notes: Lagrange Multipliers
Lagrange Multipliers We will give the argument for why Lagrange multipliers work later. Here, we’ll look at where and how to use them. Lagrange multipliers are used to solve constrained optimization problems. That is, suppose you have a function, say f(x; y), for which you want to find the maximum or minimum value. But, you are not allowed to consider all (x; y) while you look for this value. Instead, the (x; y) you can consider are constrained to lie on some curve or surface. There are lots of examples of this in science, engineering and economics, for example, optimizing some utility function under budget constraints. Lagrange multipliers problem: Minimize (or maximize) w = f(x; y; z) constrained by g(x; y; z) = c. Lagrange multipliers solution: Local minima (or maxima) must occur at a critical point. This is a point where rf = λrg, and g(x; y; z) = c. Example: Making a box using a minimum amount of material. A box is made of cardboard with double thick sides, a triple thick bottom, single thick front and back and no top. It’s volume is fixed at 3. What dimensions use the least amount of cardboard? Answer: We did this problem once before by solving for z in terms of x and y and substi tuting for it. That led to an unconstrained optimization problem in x and y. Here we will do it as a constrained problem. It is important to be able to do this because eliminating one variable is not always easy. The box shown has dimensions x, y, and z. -
1. Antiderivatives for Exponential Functions Recall That for F(X) = Ec⋅X, F ′(X) = C ⋅ Ec⋅X (For Any Constant C)
1. Antiderivatives for exponential functions Recall that for f(x) = ec⋅x, f ′(x) = c ⋅ ec⋅x (for any constant c). That is, ex is its own derivative. So it makes sense that it is its own antiderivative as well! Theorem 1.1 (Antiderivatives of exponential functions). Let f(x) = ec⋅x for some 1 constant c. Then F x ec⋅c D, for any constant D, is an antiderivative of ( ) = c + f(x). 1 c⋅x ′ 1 c⋅x c⋅x Proof. Consider F (x) = c e +D. Then by the chain rule, F (x) = c⋅ c e +0 = e . So F (x) is an antiderivative of f(x). Of course, the theorem does not work for c = 0, but then we would have that f(x) = e0 = 1, which is constant. By the power rule, an antiderivative would be F (x) = x + C for some constant C. 1 2. Antiderivative for f(x) = x We have the power rule for antiderivatives, but it does not work for f(x) = x−1. 1 However, we know that the derivative of ln(x) is x . So it makes sense that the 1 antiderivative of x should be ln(x). Unfortunately, it is not. But it is close. 1 1 Theorem 2.1 (Antiderivative of f(x) = x ). Let f(x) = x . Then the antiderivatives of f(x) are of the form F (x) = ln(SxS) + C. Proof. Notice that ln(x) for x > 0 F (x) = ln(SxS) = . ln(−x) for x < 0 ′ 1 For x > 0, we have [ln(x)] = x .