<<

NIKOLAI Е. KOROTKOV

Edited by ALEXANDER N. KOROTKOV

TABLE OF

RELATED TO ERROR

2019

i Table of integrals related to error function by Nikolai E. Korotkov Retired Leading Researcher, Voronezh Institute of Communications, Russia edited by Alexander N. Korotkov Professor, University of California, Riverside, USA

 2019 Nikolai E. Korotkov and Alexander N. Korotkov

ii Preface

This book presents a table of integrals related to the error function, including indefinite and improper definite integrals. Since many tables of integrals have been published previously and, moreover, computers are widely used nowadays to find integrals numerically and analytically, a natural question is why such a new table would be useful. There are at least three reasons for that. First, to the best of our knowledge, this is the first book (except Russian versions of essentially the same book), which presents a comprehensive collection of integrals related to the error function. Most of the formulas in this book have not been presented in other tables of integrals or have been presented only for some special cases of parameters or for integration only along the real axis of the . Second, many of the integrals presented here cannot be obtained using a computer (except via an approximate ). Third, for improper integrals, this book emphasizes the necessary and sufficient conditions for the validity of the presented formulas, including the trajectory for going to infinity on the complex plane; such conditions are usually not given in computer-assisted analytical integration and often not presented in the previously published tables of integrals. We hope that this book will be useful to researchers whose work involves the error function (e.g., via integrals in communication theory). It can also be useful to a broader audience.

Alexander N. Korotkov and Nikolai E. Korotkov

iii CONTENTS

Notations and definitions ...... 1

Introduction ...... 2

Part 1. Indefinite integrals ...... 5

1.1. Integrals of the form ∫ z n exp [  (α z + β)2 ] dz ...... 5 1.2. Integrals of the form ∫ zn exp ( α22 z +β z +γ) dz ...... 7

1.3. Integrals of the form ∫ erf n (α z + β) exp[ −(α z + β)2 ] dz ...... 8

1.4. Integrals of the form ∫ z n erf (α z + β) exp[ −(α z + β)2 ] dz ...... 8

1.5. Integrals of the form z n erf (α z + β) exp (β z + γ ) dz ...... ∫ 1 10 + 1.6. Integrals of the form ∫ z 2m 1 erf (α z + β) exp(  α 2 z 2 + γ ) dz ...... 11

2m+1 2 1.7. Integrals of the form ∫ z erf (αz + β)exp(α1 z + γ ) dz ...... 12

1.8. Integrals of the form ∫ z n erf 2 (α z )exp ( α 2 z 2 )dz ...... 14 1.9. Integrals of the form ∫ z n erf (α z + β) d z ...... 15 1.10. Integrals of the form ∫ z nerf 2 (α z + β) dz ...... 15

2m 1.11. Integrals of the form ∫ z erf (α z ) erf (α1z ) dz ...... 17 1.12. Integrals of the form ∫ z 2 m+1erf 3 (α z ) dz ...... 18

n m 2 2 1.13. Integrals of the forms ∫ z sin (α z + β z + γ ) dz, ∫ znmsinh (α22 z++ βγ z) dz,

n m α 2 2 + β + γ ∫ z cos ( z z ) dz , ∫ znmcosh (α22 z++ βγ z) dz ...... 19 n 2 2 1.14. Integrals of the form ∫ z sin (α z + β z + γ )exp (β1 z ) dz ...... 27

n 2 2 1.15. Integrals of the form ∫ z exp (− α z + β z ) sin (β1 z + γ ) dz ...... 30

iv n −α22 +β α +β +γ 1.16. Integrals of the form ∫ zexp ( z z) sin( 11 z z) dz ...... 33

1.17. Integrals of the form n αβ++ β βγ ...... ∫ zerf( z ) exp( 12z) sin ( z) dz 36

1.18. Integrals of the form 21n+ αβ++ α2 α 2 γ ...... ∫ zerf( z ) exp( 12z) sin ( z) dz 40

Part 2. Definite integrals ...... 49

2.1. Integrals of z n exp [ (α z + β)2 ] ...... 49

2.2. Integrals of z n exp ( α 2 z 2 + β z + γ )...... 51

2.3. Integrals of erf n (α z + β) exp [− (α z + β)2 ] ...... 54

2.4. Integrals of z nerf (α z + β) exp [− (α z + β)2 ] ...... 55

n 2.5. Integrals of z erf (α z + β) exp (β1z + γ ) ...... 5 8

21m+ 2 2.6. Integrals of zzerf(α + β) exp ( −α1 z) ...... 60

n 2 ddddv 2.7. Integrals of zexp(−+α zz β) erf ( αβ11 z +) , vvd n 2 zzexp(−α) erf( αβ11 z ++) erf ( αβ 2 z 2) ...... 63

2.8. Integrals of sin 2m+1 (α 2 z 2 + β z + γ ), sinh2m+ 1(α 22zz++ βγ) ,

2m+1 2 2 2m+ 1 22 cos (α z + β z + γ ), cosh (αzz++ βγ) …… 73

n 2 2 2.9. Integrals of z sin (α z + β z + γ )exp (β1 z ) ...... 7 7 n 2 2 2 2.10. Integrals of z exp (− α z + β z )sin (α1 z + β1 z + γ ) ...... 80 n 2.11. Integrals of z erf ( α z + β ) exp ( β1 z ) sin(β 2 z + γ ) ...... 8 6 2 n+1 2 2 2.12. Integrals of z erf (α z + β) exp(− α1 z )sin (α 2 z + γ ) ...... 89 n 2 2 2.13. Integrals of z erf (α z + β) exp ( −α1 z + β1 z )sin(α 2 z + β 2 z + γ ),

n 2 z erf (α z ) exp ( −α1 z )sin(βz ),

n 2 z erf (α z ) exp ( −α1 z ) cos(βz ) ...... 96

2.14. Integrals of z n [±1− erf (α z + β)],

n z [erf (α1 z + β1 )  erf (α 2 z + β 2 )] ...... 109

v

2.15. Integrals of z n [±1− erf (α z + β)]2 , z n [1− erf 2 (α z + β)] ,

n (α + β ) 2 (α + β ) z [erf 1 z 1  erf 2 z 2 ], n 22α +β − α +β zzerf ( 11) erf ( 2 z 2) ...... 114

n 2.16. Integrals of z exp(β z ) [±1 − erf (α z + β1 )],

n z exp(β z ) [ erf (α1 z + β1 )  erf (α 2 z + β 2 )] ...... 12 2 n 22 2.17. Integrals of zexp(−α zz +β) ±1 − erf ( α11 z +β) ,

n 2 2 z exp(− α z + β z )[erf (α1 z + β1 )  erf (α 2 z + β 2 )] ...... 126

n 2 2.18. Integrals of z erf (α z + β1 ) exp [− ( α z + β2 ) ] ,

n 2 z [±1− erf (α z + β1 )] exp [− ( α z + β2 ) ] ,

n 2 zzexp(β) erf ( α z +β1 ) ,

n 2 zzexp(β) 1 − erf ( α z +β1 ) ,  n β22 α +β − α +β 141 zzexp( ) erf ( 11 z) erf ( 2 z 2) ......

2 2.19. Integrals of (± 1)nn − erf( αzz +β) exp  −( α +β) , 

2m+1 3 2m+1 3 z [±1 − erf (α z )] , z [±1 − erf (α z )], 2m+1 3 3 z [erf (α1 z )  erf (α 2 z )] ,

z 2merf 2 (α z )exp(− α 2 z 2 ),

z 2m [1 − erf 2 (α z )]exp( − α 2 z 2 ) ...... 15 9

n (β + γ ) ± − (α + β ) 2.20. Integrals of z sin z [ 1 erf z 1 ], n z sin (β z + γ )[erf (α1z + β1 )  erf (α 2 z + β 2 )],

n 2 zsin (α zz +β+γ±−)1 erf ( α11 z +β) ,

n 2 163 zsin (α zz +β+γ)erf ( α+β11 z)  erf ( α 2 z +β 2) ......

Appendix. Some useful formulas for obtaining other integrals ...... 177

vi NOTATIONS and DEFINITIONS

θ 2 erf (θ= )∫ exp( −z2 ) dz is the error function (probability ). π 0 θ 2 erfi(θ= )∫ exp(z2 ) dz=− i erf ( i θ ) is the imaginary error function. π 0 m, n, k, l, r, q are nonnegative integers (0, 1, 2, …). a, b, are real numbers. α, β, γ, µ, ν, θ are complex numbers (can be real as well). x is a real integration variable. z is a complex integration variable (can be real as well). i is the imaginary unit. π and e have their usual meaning. Reθ and Imθ are real and imaginary parts of θ , θ = Re θ + i Imθ. θ= Reθ − i Im θ is the complex conjugate of θ .

θ = Re 2 θ + Im 2 θ is the of θ . arg θ is the argument of a θ , −<ππarg θ ≤ .

∞ is the infinity symbol used on the complex plane. − ∞ and + ∞ are the infinity symbols for real numbers (or the real axis). θ → ∞(T ) θ goes to infinity on the complex plane along trajectory T . n ∑ θk denotes summation; equals 0 if n < m . k =m m! is the factorial of m (with usual convention 0!1!1= = ). E (c) is the integer part (floor function) of a c.

∞ ()T2 ∫ ϕ()z dz is an improper integral on the complex plane with trajectories ∞ ()T1 T1 and T2 both going to infinity. lnθ= ln θ +i arg θ is the principal value of natural .

11+θi arctanθ= arctg θ= atan θ= ln is the principal value of inverse . 21ii−θ

1 INTRODUCTION

Formulas in this book are numbered by part, section, subsection, and formula number. When a formula is too long, it is written in terms of abbreviated expressions, which are listed at the ends of sections. Most of the presented formulas assume complex parameters and integration on the complex plane. However, the formulas which use letters a, b, x are valid only for real values of the corresponding variables (see the list of notations). In particular, integrals ∫ f() x dx assume integration only over the real axis. The symbol “ ∞ ” denotes infinity on the complex plane, while for the real axis we use notations “ +∞ ” (positive infinity) or “ −∞ ” (negative infinity). For improper ∞ integrals on the complex plane of the type f() z dz (usually µ = 0 ), the conditions ∫µ for how the trajectory approaches infinity are listed after the formula. When both ∞()T complex limits of integration are infinite, we use notation 2 f() z dz and list ∫∞()T1 conditions of approaching infinity for both trajectories T1 and T2 . Note that since the integrands considered in this book are analytic functions, the results of integration do not depend on the integration contours; it is only important how these trajectories approach infinity. The validity conditions for formulas are listed in curly after them. For improper integrals, we also include in the curly brackets the conditions for approaching infinity, which are necessary and sufficient for the integral convergence. Most integrals with complex parameters presented in this book can also be used for real values of these parameters. However, conversion of the formulas to this case is not always simple. This is why we also present integrals with real parameters (as the most practically interesting case) for convenience. The θ in formulas is defined with a positive real part (or positive imaginary part if the real part is zero), as consistent with our convention −<ππarg θ ≤ . When the left-hand side of a formula contains θ2 but does not contain

θ , we assume θθ= 2 . Multiple double-sign notations ± or  (in formulas and validity conditions) assume that either all upper signs or all lower signs are used.

Part 1 of this book contains indefinite integrals, Part 2 contains definite (mainly improper) integrals. Appendix contains some formulas with relations between integrals, which can be used to obtain integrals not presented in this book. Definite integrals with finite limits are presented in the Part 2 only in the case when there are no corresponding indefinite integrals. Improper integrals are presented independently of whether the corresponding indefinite integrals are presented or not.

2 ∞ Most of improper integrals have the form f() z dz ; however, some integrals have ∫0 ∞ ∞()T the form f() z dz . The integrals 2 f() z dz with two infinite complex limits are ∫µ ∫∞()T1 presented only when we are unable to obtain corresponding improper integrals with +∞ one infinite of integration. If an integral f() z dz with two real infinite limits ∫−∞ exists, it is presented (except for odd functions). If from an integral containing the function erf it is easy to obtain the corresponding integral containing the function erfi (using the first two formulas in Appendix), then we present only the integral with erf . However, if such a conversion is not easy (and in some other cases), we also present the integral with erfi .

The formulas in this book contain the error function erf (θ) and the imaginary error function erfi(θ) defined as θ θ 2 2 erf (θ= )∫ exp( −z2 ) dz , erfi(θ= )∫ exp(z2 ) dz . π 0 π 0 We do not use notation of the complementary error function erfc(θ)= 1 − erf (θ) . Let us briefly discuss some properties of the functions erf (θ) and erfi(θ) . 1. These functions are related to each other as erfi(θ)= −ii erf ( θ) , erf (θ)= −ii erfi( θ). 2. Both functions are odd, erf (−=−θ) erf (θ) , erfi(−=−θ) erfi(θ) . Obviously, erf(0)= erfi(0) = 0 . 3. For complex conjugate arguments, these functions are also conjugate, erf (θ)= erf (θ) , erfi(θ)= erfi(θ) . 4. For a real θ , both erf (θ) and erfi(θ) are real and have the same sign as θ . For an imaginary θ , both erf (θ) and erfi(θ) are imaginary, and their imaginary parts have the same sign as the imaginary part of θ . 5. For |θ| 1 (in practice, for at least θ3> ) the error function erf (θ) can be approximated by using a few terms in its , e.g.,

exp(−θ2 ) 1 3 3⋅ 5 θ≈ θ − − + − erf ( ) sign[Re( )] 1 2 22 23 , πθ 2θθ (2 ) (2 θ ) where sign[Re(θ)] is 1 for Re(θ)≥ 0 and −1 for Re(θ)< 0 . The discontinuity of this approximation at Re(θ)= 0 is irrelevant because in this case the approximation becomes applicable only at exponentially large erf (θ) . The addition of more terms

3 into this expansion requires larger θ for accuracy improvement. Numerical calculations show that the absolute value of error in using the formula above is always less than three times the absolute value of the first neglected term of the expansion, i.e., the term −exp( −θ2 )( π θ ) ⋅ 357/(2 ⋅ ⋅ θ)24.

As mentioned above, all improper integrals in this book are given with the necessary and sufficient conditions of their convergence. These conditions have been obtained using in particular the following properties of erf (θ) for θ →∞. The error function erf (θ) has a limit at θ →∞ (i.e., converges) if and only if

lim Re (θ2 )+ ln θ = +∞ ; θ→∞  in this case lim erf (θ)= ± 1 for lim Re(θ) = ±∞ . θ→∞ θ→∞ For θ →∞, there is an ±−1 erf ( θ ) N < for ±Re(θ) > 0 , exp[−θ Re(2 )] θ where N is some positive number (it is possible to use N =1.4 / π for any θ ). As a consequence, for trajectories, for which Re(θ2 )+ ln θ →−∞ or at least Re(θ2 )+ ln θ remains bounded from above as θ →∞, there is another similar inequality: erf (θ ) 1 NM < +< , exp[−θ Re(22 )] exp[ −θ Re( )] θθ where M is also some positive number (which depends on the trajectory). The asymptotic properties of the error function erf (θ) at θ →∞ and their use to find the necessary and sufficient conditions for convergence of the improper integrals presented in this book, are discussed in detail in our Russian-language book: Коротков Н.Е., Коротков А.Н, Интегралы, связанные с интегралом вероятностей. Под ред. В.И. Борисова. – Воронеж: изд. ОАО «Концерн «Созвездие», 2012. – 276 с. – ISBN 978-5-900777-18-4. The methods to derive and check the presented integrals are described in another book, also published in Russia: Коротков Н.Е., Интегралы для приложений интеграла вероятностей. Под ред. В.И. Борисова. – Воронеж: изд. ФГУП «ВНИИС», 2002. – 800 с. – ISBN 5- 900777-10-3.

4 PART 1 INDEFINITE INTEGRALS

2 1.1. Integrals of the form zn exp α z +β dz ∫  ( )

1.1.1. π 1. exp [ − (α z + β)2 ] dz = erf (α z + β) . ∫ 2α

π 2. exp [ (α z + β)2 ] dz = erfi(α z + β). ∫ 2α

1.1.2.

221   1.∫ z exp −( α z +β) dz = – exp −( αz +β)  + π β erf ( αz +β) . 2α2 {   }

1 2. ∫ zexp[(α z + β)2 ] dz = {exp[(α z + β)2 ] − π β erfi (α z + β) } . 2α 2

1.1.3.

2 1.z2 exp −( α z +β) dz = ∫ 

2 1  2 π (2β + 1)  =  (β − α z )exp [ − (α z + β) ] + erf (α z + β) . 2α 3  2 

2 2.z2 exp (α z +β) dz = ∫ 

π21 β−2 1 2 ( ) =( α−βzz)exp ( α+β) + erfi (α+βz) . 3  2α 2 

1.1.4.

π E (n / 2) n! (− β)n−2k 1. z n exp − (α z + β)2 dz = erf (α z + β) − ∫ [ ] n+1 ∑ k 2α k =0 4 k ! (n − 2k )!

5 ( ) − − 1  E n 2 n!( −β)n 2 k k l!(α z + β)2l 1 − exp[ −(α z + β)2 ]  + n+1 ∑ ∑ k −l 2α  k =1 k!(n − 2k )! l =1 4 (2l )!

nk+−12 2l− 2 nEn− ( /2) nk!( − 1!) ( −β) k ( αz +β)  + ∑∑ . 2kn− 1! +− 1 2 k ! l − 1!  kl=11( ) ( ) = ( ) 

(2m)!  π erf (α z ) exp ( −α 2 z 2 ) m k! z 2k −1  2. z 2m exp (− α 2 z 2 ) dz =  − ∑  . ∫ 2m+1 α 2m+1−2k m!  (2α) k =1 (2k )!(2α) 

m! m z 2k 3. z 2m+1 exp (− α 2 z 2 ) dz = − exp (− α 2 z 2 ) . ∫ 2 ∑ m−k 2α k =0 k!(α 2 )

π E (n / 2) n! (− β)n−2k 4. z n exp (α z + β)2 dz = erfi(α z + β) + ∫ [ ] n+1 ∑ k 2 α k =0 (− 4) k ! (n − 2 k )!

( −1)n  E (n / 2) n!βn−2k k l! (α z + β)2l −1 + exp (α z + β)2  − n+1 [ ] ∑ ∑ k −l 2 α  k =1 k ! (n − 2 k )! l =1 (− 4) (2l )!

22l− nEn− ( /2) nk!( − 1!) βnk+−12 k (αz +β)  − ∑∑ . 2kn− 1! +− 1 2 k ! kl−  kl=11( ) ( ) = (−−1) (l 1!) 

 (2m)! π erfi(α z) 5. z 2m exp (α 2 z 2 ) dz =  − exp (α 2 z 2 )× ∫ m!  m  2α (− 4α 2 )

 m kz! 21k−  × . ∑ mk+−1  k=1 22mk+− 12 2!k −α2  ( ) ( ) 

m! m z2 k 6.z2m+ 1 expα= 22z dz exp α22z . ∫ ( ) 2 ( ) ∑ mk− 2α k=0 k!(−α2 )

6 1.2. Integrals of the form ∫ zn exp (  α22 z +β z +γ) dz

1.2.1.

π  β 2   β  − α 2 2 + β + γ =  + γ  α − 1. ∫ exp ( z z ) dz exp   erf  z  . 2α  4α 2   2α 

π  β2  β α 2 2 + β + γ =  γ −   α +  2. ∫ exp( z z ) dz exp  erfi  z  . 2α  4α 2   2α 

1.2.2.

π β  β 2   β  − α 2 2 + β + γ =  + γ  α − − 1. ∫ z exp ( z z ) dz exp   erf  z  4α 3  4α 2   2α  1 − exp (− α 2 z 2 + β z + γ ). 2α 2

1 π β  β 2  α 2 2 + β + γ = α 2 2 + β + γ −  γ −  × 2. ∫ z exp ( z z ) dz exp ( z z ) exp   2α 2 4α 3  4α 2 

 β  × erfi  α z +  .  2α  1.2.3.

π 2α 2 + β2  β2  β 2 − α 2 2 + β + γ = ( )  + γ   α −  − 1. ∫ z exp( z z ) dz exp  erf  z  8α5  4α 2   2α 

2α 2 z + β − exp (− α 2 z 2 + β z + γ ). 4α 4

π β2 − 2α 2  β2  β 2 α 2 2 + β + γ = ( )  γ −   α +  + 2. ∫ z exp( z z ) dz exp  erfi  z  8α5  4α 2   2α 

2α 2 z − β + exp (α 2 z 2 + β z + γ ). 4α 4 1.2.4.

π ββ2  1.zn exp −α22 zzdz +β +γ = exp+γ erf αz − × ∫ ( ) n+12 24αα2α

7 ( ) −  ( ) − E n 2 n!β n 2k 1 E n 2 n! β n 2k × ∑ − exp (− α 2 z 2 + β z + γ )  ∑ × n−k n  k!(n − 2k )! k=0 k! (n − 2k )! (α 2 ) 2  k=1

2l−1 2l−2 k l ! (2α2 z − β) n−E(n 2) n! (k − 1)! β n+1−2k k 4 k−l (2α2 z − β)  × ∑ + ∑ ∑  . 2 n−k+l (2k − 1)! (n + 1 − 2k)! 2 n−k+l  l=1 (2l)! (α ) k=1 l=1 (l − 1)! (α ) 

π ββ2  2.zn exp α+β+γ=22 zzdz exp γ− erfi α+z × ∫ ( ) n+12 24αα2α

( ) n−2k  ( ) n−2k E n 2 n! β 1 E n 2 n! β × ∑ + exp (α 2 z 2 + β z + γ )  ∑ × n−k n  k! (n − 2k )! k =0 k! (n − 2k )! (− α 2 ) 2  k =1

2l −1 − ( ) + − − 2l −2  k l! (2α 2 z + β) n E n 2 n!(k −1)!β n 1 2 k k 4 k l (2α 2 z + β) × ∑ − ∑ ∑  n−k +l ( − ) ( + − ) n−k +l  l =1 ( ) −α 2 k =1 2k 1 ! n 1 2k ! l =1 ( − ) − α 2 2l ! ( ) l 1 ! ( )  .

n! n z k 1.2.5. z n exp( β z + γ ) dz = exp( β z + γ ) . ∫ ∑ n−k β k =0 k!(− β)

2 1.3. Integrals of the form erfn αz +β exp  − αz +β dz ∫ ( ) ( )

2 π 1.3.1. erf(α+βz ) exp  −α+β( z) dz =erf 2 ( α+βz ) . ∫ 4α

2 π 1.3.2. erf23(α+βz ) exp  −α+β( z) dz =erf ( α+βz ) . ∫ 6α

2 π 1.3.3. erfnn(αz +β) exp  −( αz +β) dz = erf +1 (αz +β) . ∫ (22n +α)

2 zn erfα z +β exp  − αz +β dz 1.4. Integrals of the form ∫ ( ) ( )

2 1  1.4.1. ∫ zerf(α z +β) exp −( αz +β) dz = { 2 erf 2 (αz +β) − 4α2

8 1 2 −πβerf 2 ( α+β−z)} erf( α+β zz) exp  −α+β( ) . 2α2  22β−αz 1.4.2. ∫ zzzd2 erf(α+β) exp  −α+β( ) z =erf( α+β zz) exp  −α+β+( ) 2α3 

π (2β2 +1) β 1 + erf 2 (α z + β) − erf [ 2 (α z + β)]− × 8α3 2α3 4 πα3

× exp [ − 2(α z + β)2 ] . 1.4.3. π 1. ∫ z n erf (α z + β) exp [ − (α z + β)2 ] dz = erf 2 (α z + β) × 4α n+1 ( ) − ( ) E n 2 n! (− β)n 2k n! E n 2 (− β)n−2k  × − erf (α z + β) × ∑ k n+1 ∑ k k =0 4 k ! (n − 2k )! α k =1 4 k ! (n − 2k )! 

+ k−1 4l l ! (α z + β)2l 1 1 k−1 (l ! )2 × exp [ − (α z + β)2 ] ∑ + exp [ − 2(α z + β)2 ] ∑ × l =0 (2l + 1)! 2 π l =0(2l + 1)!

+ 2r − ( ) n+1−2k l 2l r (α z + β)  n! n E n 2 (k −1)! (−β)  1 × + × ∑  n+1 ∑  r =0 r !  2α k=1 (2k −1)! (n +1− 2k)!  2

k−1 (2l )! k−1(α z + β)2l × erf [ 2 (α z + β)] − erf (α z + β) exp[ −(α z + β)2 ] − ∑ l 2 ∑ l =08 (l! ) l =0 l!

k −1 l −1 2r +1  2 2 (2l )! r ! (α z + β)  − exp − 2(α z + β)  . [ ] ∑ 2 ∑ l −r π l =1 (l ! ) r =0 8 (2r + 1)! 

 (2m)! π α 2. z 2m erf (α z ) exp ( − α 2 z 2 ) dz =  erf 2 (α z ) − ∫ m!  m+1  (4α 2 )

+ m−1 k ! z 2k 1 1 − erf (α z ) exp ( − α 2 z 2 ) − exp ( − 2α 2 z 2 )× ∑ m−k k =0 (2k + 1)! (4α 2 ) 2 π α

− 2  m 1 (k! ) k z2l × ∑ ∑  . m−k + 2 m−l  k=0 2 (2k 1)! l=0 l ! (2α ) 

9 m + m!  1 (2k )! 3. z 2m 1 erf (α z ) exp ( − α 2 z 2 ) dz =  erf ( 2 α z ) − ∫ 2m+2 ∑ k 2 2α  2 k =0 8 (k ! )

m (α z )2k 2 m (2k )! − erf (α z ) exp ( − α 2 z 2 ) − exp ( − 2α 2 z 2 ) × ∑ ∑ 2 k =0 k ! π k =1(k ! )

k−1 l ! (α z)2l+1  ×  . ∑ k−l l=0 8 (2l +1)! 

n 1.5. Integrals of the form ∫ zerf(α z +β) exp( β1 z +γ) dz

1  1.5.1. erf(α+βzzd) exp( β+γ) zzz =erf( α+β) exp( β+γ−) ∫ 11β 1 

 β 2 − 4αββ   β  − exp 1 1 + γ erf  α z + β − 1  .  2   4α   2α 

β−z 1 1.5.2. zzzderf(α+β) exp( β+γ) z =1 erf( α+β zz) exp( β+γ+) ∫ 112 β1    2  1 β 1 β − 4α ββ1  β  1 +  + −  exp  1 + γ  erf  α z + β − 1  + ×  β2 α β α 2   α 2   2α  π α β  1 1 2   4  1

2 × exp[ −(α z + β) + β1 z + γ ] .

 n!  n zk 1.5.3. zn erf(α+β z) exp( β+γ z) dz =erf( α+βz ) exp ( β+γz ) − ∫ 11 ∑ nk− β1 k=0 −β  k!( 1 )

 2  n β − 4α ββ1  β  1 − exp  1 + γ  erf  α z + β − 1  ∑ ×  2   2α  k n−k  4α  k =0 2 (−β1 )

E (k 2 ) k−2l n ( β1 − 2α β) 2α 2 1 × ∑ + exp [ − (α z + β) + β1z + γ ] ∑ × 2 k−l π k n−k l =0 l! (k − 2l )! (α ) k=1 2 (−β1 )

 − 2r −1 E (k 2 ) ( β − 2αβ)k 2l l r! (2α 2 z + 2αβ − β ) ×  ∑ 1 ∑ 1 +  l!(k − 2l )! 2 k −l +r  l =1 r =1 (2r )! (α )

10 2r −2 k −E (k 2 ) k +1−2l l l −r 2  (l −1)!( β1 − 2αβ) 4 (2α z + 2αβ − β1 )  + ∑ ∑  . (2l −1)!(k +1− 2l )! 2 k −l +r  l =1 r =1 (r −1)! (α ) 

+ 1.6. Integrals of the form ∫ z2m 1erf(α z +β) exp(  α22z +γ) dz

1.6.1.

1  β 2   β  α + β − α 2 2 + γ =  γ −  α + − 1. ∫ z erf ( z ) exp ( z ) dz exp   erf  2 z  2 2 α 2  2   2 

1 − erf (α z + β) exp ( − α 2 z 2 + γ ). 2α 2

 exp(γ) erf ( 2α z) 2.∫ z erf(α z) exp( −α22 z + γ) dz = −erf( αz) exp( −α22 z ) . 2α2 2 

22 1  22 3.∫ zzzd erf(α+β) exp( α +γ) z =erf( α+β zz) exp( α +γ+) 2α2 

1 2  + exp (γ −β − 2α β z )  . π β 

22 exp(γ)  1 22 z  4.∫ zzzdz erf(αα+γ=) exp( )  erf( αα− zz) exp( )  . αα2 π 

1.6.2.

+ m! 1. z 2m 1 erf (α z + β) exp ( − α 2 z 2 + γ ) dz = − erf (α z + β) exp ( − α 2 z 2 + γ )× ∫ 2

m z 2k m! m (2k )!  1  β 2   β  × ∑ + ∑  exp  γ −  erf  2 α z +  × m+1−k m+1 k !   2    k =0 k ! (α 2 ) 2 (α 2 ) k =0  2   2 − − k β 2k 2l 1 k β 2k 2l × + exp (γ − β 2 − 2 α β z − 2α 2 z 2 ) × ∑ 2k +l ∑ l =0 2 l ! (2k − 2l )! π l =1 (2k − 2l )!

− l (2α z + β)2r 2  (l −1)!β r!(2α z + β)   ×  −   . ∑ 2k −l +r l −r r =1 2  (2k +1− 2l ) (2l −1)!(r −1)! 4 l!(2r )!  

11 m + m! exp(γ ) 1 2. z 2m 1erf (α z )exp ( − α 2 z 2 + γ ) dz = × ∫ m+1 ∑ (α 2 ) k =0 k!

−  (2 k )!  erf ( 2 α z ) exp( − 2 α 2 z 2 ) k 8l l! (α z )2l 1  ×   −  − k ∑  8 k !  8 4 π l =1 (2l )! 

2k (αz ) 2 2  − erf (αz )exp (− α z ) . 2  3.∫ z 2m+1 erf (α z + β)exp (α 2 z 2 + γ ) dz =

 m ! m z 2k = erf ( α z + β)exp ( α 2 z 2 + γ ) + 2  ∑ m−k 2α  k =0 k !(− α 2 )

 exp (γ − β 2 − 2αβ z ) m (2k )! 2k z l + ∑ ∑  . π β 2 m−k 2k −l  k =0 k ! ( − α ) l =0 l !(2αβ) 

m ! exp (γ ) m z 2k 4. z 2m+1 erf (α z )exp ( α 2 z 2 + γ ) dz = ∑ × ∫ α m−k k =0 k ! ( − α 2 )

 erf (α z ) 2 2 z  ×  exp (α z ) −  .  2 α (2 k + 1) π 

2 m+1 2 1.7. Integrals of the form ∫ z erf (α z + β) exp (α 1 z + γ ) dz

1.7.1.  2 1 2 1. ∫ z erf (α z + β) exp (α1z + γ ) dz = erf (α z + β) exp (α1z + γ )− 2 α1 

αβ2  −αexp1 + γV ( β)  . 2 α −α1 

22erf (αz) αγexp( ) 2.∫ z erf(α z) exp( α11 z +γ) dz = exp(αz +γ) − V (0) 22αα11

2 { α1 ≠α }.

12 1.7.2.

m! m ( −1) m−k z 2 k 1. z 2m+1 erf (α z + β) exp(α z 2 + γ ) dz = erf (α z + β) exp(α z 2 + γ ) + ∫ 1 1 ∑ m+1−k 2 = α k 0 k! 1

m!α m (2!k )  αβ2 + ∑  exp1 +γV ( β) × 2 mk+−12α −α k=0 k!( −α1 )  1

− k (α β)2 k 2l 1 × + exp − (α z + β)2 + α z 2 + γ × ∑ 2 k −l [ 1 ] l =0 l 2 π 4 l! (2 k − 2l )! (α − α1 )

2 r −2  k (l − 1)! (αβ)2 k+1−2l l (α2 z − α z + αβ) k (αβ)2 k−2l ×  1 − × ∑ ∑ 2 k−l+r ∑ l=1 (2 l − 1)! (2 k + 1 − 2 l)! r =1 2 l=1 l ! (2 k − 2 l)!  (r − 1)! (α − α1 )

2 r −1 l r ! (α2 z − α z + αβ)   × 1  . ∑ 2k−l+r  = l−r 2  r 1 4 (2 r )! (α − α1 )  

mk− 2k m! m ( −1) z 2.z21m+ erf(α z) exp α z2 +γ dz =erf( αz) exp α z2 +γ + ∫ ( 11) ( ) ∑ mk+−1 2 k=0 k!α1

 mk!αγ exp( ) m (2) !  1 +− ∑ +−  V (0) 2 21mk k 2 k k=0 (k! ) ( −α1 ) 4 α −α  ( 1 )

2 2 k 2l −1  exp[(α1 − α ) z ] l! z  −  . ∑ k +1−l π l =1 k −l 2  4 (2l )! (α − α1 ) 

Introduced notation:

 1 2 αβ Vz(β) = erf α −α1 + = 22 α −α11α −α

  1  2 α β  = erfi α1 − α z − . 2  2  α1 − α  α1 − α 

13 1.8. Integrals of the form ∫ zn erf2(αα z) exp ( 22 z) dz

2 erf (αz) 2 1.8.1. ∫ zerf2(α z) exp ( α22 z) dz =exp ( α−×22z ) 2α22πα

2 z × exp(− α 2 z 2 )− erf (αz ) . π α

παerf 3 ( zz) erf( 3αz) erf (α) 1.8.2. ∫ z2erf 2(α z) exp( −α22 z) dz = + − × 12α3 2 3πα 33 2 πα

z erf 2 (αz ) × exp(− 2α 2 z 2 )− exp(− α 2 z 2 ). 2α 2

3 (2mz) ! πα erf ( ) 1.8.3. z2m erf 2(α z) exp −α22 z dz =  − ∫ ( ) m! 21m+  32( α)

+ m−1 k ! z 2k 1 1 m−1 (k ! )2 − erf 2 (αz ) exp(− α 2 z 2 ) ∑ + ∑ × m−k (2k +1)! k =0 (2k +1)! (4α 2 ) π k =0

 erf ( 3 αz ) k (2l )! ×  − erf (αz )exp(− 2α 2 z 2 )× 2m+1 ∑ 2m−k +l l 2  3α l =0 2 3 (l!)

k z 2l  exp(− 3α 2 z 2 ) m−1 (k ! )2 k (2l )! ×  − × ∑ 2m−k −l 2m+1−2l ∑ ∑ 2 l=0 2 l! α  π k =1 (2k +1)! l=1(l! )

2 r −1  l r ! z  × ∑  . − + − + − m+1−r r =1 2 2 m k l 2 r 3 l 1 r ( 2 r )! (α 2 ) 

2 erf (αz) m mz! 2 k 1.8.4. z2m+ 1erf 2(αα z) exp 22 z dz =exp α22z − ∫ ( ) 2 ( ) ∑ mk− 2α k=0 k! −α2 ( )

−   2 m (−1)m k m! z 2k +1erf (αz ) exp(− α 2 z 2 ) k z 2l − ∑  + ∑  . π 2k +1  2m+1−2k π 2 m+1−l  k =0  k ! α l =0 l! (α ) 

14 1.9. Integrals of the form ∫ zn erf(α z +β) dz

β 1 2 1.9.1. ∫erf(α+βz) dz =+ zerf ( α+β+ z ) exp −α+β( z ) . α πα   z 2 2β 2 + 1  α z − β (α + β) =  −  (α + β) + − (α + β) 2 1.9.2. ∫ z erf z dz   erf z exp[ z ].  2 4α 2  2 πα 2 z3 23β+β3 α22zz −αβ +β2 +1 1.9.3. z2 erf(α z +β) dz = + erf (αz +β) + × ∫ 33 3 63α πα × exp[− (αz + β)2 ]. 1.9.4. − ( ) + −  z n+1 n! n E n 2 (− β)n 1 2k  1. z n erf (α z + β) dz = erf (αz + β)  −  + ∫ n+1 ∑ k  n +1 α k =0 4 k! (n +1− 2k )! 

( ) − n!  E n 2 k!(− β)n 2k k (αz + β)2l + exp[− (α z + β)2 ]  ∑ ∑ + n+1 + − π α  k =0 (2k 1)!(n 2k )! l =0 l!

n−E ( n 2 ) (− β) n+1−2 k k l! (αz + β) 2l−1  +  . ∑ ∑ k−l k=1 k! (n + 1 − 2k )! l=1 4 (2l )! 

z 2m+1 m! m z 2k 2m (α ) = (α ) + − α 2 2 2. ∫ z erf z dz erf z exp( z ) ∑ • 2m + 1 (2m + 1) π α 2m+1−2k k=0 k !

  z 2m+2 (2m +1)! (2m +1)! 3. ∫ z 2m+1 erf (α z ) dz = erf (α z )  −  + ×  2m + 2 2 m+1  ( + ) π α  (m +1)! (4α )  m 1 !

m (k +1)! z 2k +1 × exp(− α 2 z 2 ) . ∑ m−k k =0 (2k + 2)! (4α 2 )

1.10. Integrals of the form ∫ zn erf2 (α z +β) dz

22β 2 1.10.1. ∫erf(α+βz) dz =+ z erf ( α+β+z ) erf ( α+β×z ) α πα 2 × exp[− (αz + β)2 ]− erf [ 2 (αz + β)]. π α

15 z2 21β2 + αz −β 1.10.2. zerf22(α z +β) dz = − erf (αz +β) +erf ( αz +β) × ∫ 22 2 4α πα 2β 1 × exp [− (α z + β)2 ]+ erf [ 2 (αz + β)]+ exp[− 2(αz + β)2 ]. πα 2 2πα 2

z3 23β+β3 α−βz 2 1.10.3. z22erf(α z +β) dz = + erf 2(αz +β) + × ∫ 33 3 63α πα 2(α 2 z 2 − α β z + β2 + 1) × exp [− 2(α z + β)2 ]+ exp[− (α z + β)2 ]erf (α z + β) − 3 π α3

2 (12β 2 + 5) − erf [ 2 (αz + β)]. 12 π α 3 1.10.4. − ( ) + −  z n+1 n! n E n 2 (− β) n 1 2k  1. z n erf 2 (α z + β) dz = erf 2 (α z + β)  − ∑  + ∫ + n+1 k  n 1 α k =0 4 k ! (n + 1 − 2k )! 

E (n 2 ) n−2k n! k !(− β)  2 + 2erf (αz + β)exp − (αz + β) × n+1 ∑ [ ] π α k =0 (2k +1)!(n − 2k )! 

k (αz + β)2l k (2l )! 4 × − 2 erf [ 2 (αz + β)] + exp[− 2(αz + β)2 ]× ∑ ∑ l 2 l =0 l ! l =0 8 (l ! ) π

+ − ( ) + − k (2l )! l−1 r ! (αz + β) 2 r 1  n! n E n 2 (− β) n 1 2 k × + × ∑ 2 ∑ l−r  n+1 ∑ l=1 (l! ) r =0 8 (2r + 1)!  π α k=1 k! (n + 1 − 2k )!

 k 2l −1  2 (l −1)!(αz + β) × erf (αz + β)exp[− (αz + β) ] + ∑ k −l  l =1 4 (2l −1)!

k −1 2 l 2r  2 2 (l! ) (αz + β)  + exp[− 2(αz + β) ]  . ∑ ∑ 2k −l −r π l =0(2l +1)! r =0 2 r! 

z 2m+1 m!  2. ∫ z 2m erf 2 (αz ) dz = erf 2 (αz ) + 2erf (αz)× 2m +1 (2m +1) π α 2m+1 

m (αz )2k m (2k )! 1 × exp(− α 2 z 2 ) − 2 erf ( 2 αz ) + × ∑ ∑ k 2 k =0 k ! k =0 8 (k ! ) 2 π

m (2k )! k (l −1)! (αz )2l −1  × exp(− 2α 2 z 2 )  . ∑ 2 ∑ k −l k =1 (k ! ) l =1 8 (2l −1)! 

16   z 2m+2 (2m + 1)! 3. z 2m+1 erf 2 (αz )dz = erf 2 (αz )  −  + ∫  2m + 2 m+1   (m + 1)! (4α 2 ) 

(2m +1)!  m k ! (αz )2k +  z erf (αz ) exp(− α 2 z 2 ) + 2m+1 ∑ m−k (m +1)! π α  k =0 4 (2k +1)!

1 m (k ! )2 k (αz )2l  + exp − 2α 2 z 2  . ( ) ∑ ∑ 2m−k −l 2 π α k =0 (2k +1)! l=0 2 l! 

2 m 1.11. Integrals of the form ∫ zerf(αα z) erf( 1 z) dz

1.11.1. 1 erf (αz)  22 1. ∫erf(αα=αα+z) erf( 11 z) dz zerf( z) erf ( z) exp( −α+ 1z ) π  α1  2 2  erf (α z ) α + α + 1 exp(− α 2 z 2 )− 1 erf  α 2 + α 2 z  . α αα  1  1  1 2. ∫erf(αα=αα+×zzdzzzz) erfi( ) erf( ) erfi( ) πα ×erfi αz exp −α22 z − erf α zz exp α22 ( ) ( ) ( ) ( ) . 1.11.2. 3 2 z z 1. ∫ z erf (α z )erf (α1 z ) dz = erf (α z )erf (α1 z ) + × 3 3π α α1

 2 2 α 2 2 + 1 α z +1 z 1 × − α 2 + α 2 2 +  1 α − α 2 2 + × exp[ ( 1 )z ] erf ( z )exp( 1 z ) 3 π  α3 α3  1

4 4 2  2α + 2α + (αα1 ) × erf (α z)exp(− α 2 z2 )− 1 erf  α 2 + α 2 z  . 1  1  α 2 + α 2 αα 3 2 1 ( 1 ) 

z3 1 2.∫ zzzdzzz2 erf(αα=αα+×) erfi( ) erf( ) erfi ( ) 3 3 πα

112 22 2 × +zerfi( α z) exp( −α z) + − zzerf ( α) × αα22

17 4 z  ×αexp( 22z ) −  . πα 1.11.3. 2m+1 m 2m z 1 m! 1. ∫ z erf (α z )erf (α1 z ) dz = erf (α z )erf (α1 z ) + ∑ × 2m +1 (2m +1) π k = 0 k!

    2 erf (αz ) 2 2 erf (α1z ) 2 2 (2k )! × z k  exp (− α z )+ exp (− α z ) − × 2m+1−2k 1 2m+1−2k k   α α  k α 2 + α 2  1 4 k ! ( 1 )

   erf  α 2 + α 2 z   α α    1  1 × + 1 − exp(− α 2 z 2 − α 2 z 2 )×  2m+1−2k 2m+1−2k   1  α α   α 2 + α 2 π  1   1

l−1 k l 2 2 2l−1  4 l! (α + α1 ) z  × ∑  (2l )!  l=1 

22 { α +α1 ≠0 for m > 0 }.

 1! + m 2. ∫ z2mmerf(αα= zzdz) erfi( ) erf( αα zzz) erfi( ) 21 +× 21m +  πα

m 2k m−k z  (−1) −1 2αz + − × ∑  ⋅ + (−1)m 1 k erf (αz )exp(α 2 z 2 )+ m−k 2k +1 k =0 k ! (α 2 )  π

  2 2  + erfi(αz )exp(− α z ) .  

1.12. Integrals of the form ∫ z21m+ erf 3(αz) dz

2 z2 1 3zz erf (α ) 1.12.1. zerf3(α z) dz = −erf 3( αz) + exp −α22z + ∫ 2 ( ) 2 4α 2 πα 3erf (αz) 3 erf ( 3αz) + exp (− 2 α 2 z2 )− . 2πα 2 2πα 2

18  z22m+ (2mm++ 1!) ( 2 1!) 21m+ 3α=α3 − + × 1.12.2. ∫ z erf( z) dzerf ( z)+ 22m + 2 m 1 m +α1! 4 (m +π1!) ( ) ( )  m k!z 2k+1 1 m (k!)2 × 3erf 2 (α z)exp(− α 2 z 2 ) + × ∑ 2m+1−2k ∑  k=0 (2k +1)!(2α) π k=0 (2k +1)!

 k z 2l × 3erf (α z )exp(− 2α 2 z 2 ) ∑ −  + − − m+1−l  l =0 2 2m 1 k l l! (α 2 )

 3 erf ( 3αz) k (2l )! exp (− 3α 2 z 2 ) − ∑  + × m+1 2m+1−k+l l 2  2πα (α 2 ) l =0 2 3 (l!) 

−  m (k!)2 k (2l )! l r ! z 2r 1  × ∑ ∑ ∑  . (2k +1)! 2 − + − − m+1−r k=1 l =1 (l! ) r =1 2 2m k l 2r 3l r (2r )!(α 2 ) 

1.13. Integrals of the forms ∫ z n sin m (α 2 z 2 + β z + γ ) dz ,

∫ znmsinh (α22z +β z +γ) dz,

∫ znmcos (α22 z +β z +γ) dz , ∫ znmcosh (α22z +β z +γ) dz

1.13.1.

 22 22 21π+ b b ib 1. sin a x+ bx +γ dx =  sinγ− +cos γ− Re erf ax + + ∫ ( ) 42aa22  44aa2    2   2    b   b  1 + i  b   + sin γ −  − cos  γ −  Im erf   ax +   .   4a 2   4a 2   2  2a  

2πβ 2 2. sin α22z +β z +γ dz =(1 +i) exp  i−γ × ∫ ( ) 8α 2  4α

11+−iiβ   ββ2  ×erf  αz +   +(1 − ii) exp  γ− erf  αz + . 22αα2 22  4α 

 2 22 πβ β 3. sinh α+β+γ=z z dz exp γ− erfi α+z − ∫ ( ) αα2 42 4α 

19 ββ2  −exp −γ erf  αz +  . 2 α 4α 2  1.13.2.

2π  bb22 1. 22+ +γ = γ− − γ− × ∫cos(a x bx) dx  cossin 4a  44aa22   11++i b   b22 b ib × + + γ− + γ− + . Reerf a x  sin 22cos Im erf ax  2 22aa  44aa2 

21πβ 2 + i  β 2. cos α22z++ βγ z dz =1 −i exp i −γerf αz + + ∫ ( ) ( ) 2  84αα 2  2 α

  2    β  1− i  β   + (1+ i )exp i γ − erf   αz +   .   4α 2   2  2α  

 2 22 πβ β 3. cosh α+β+γ=z z dz exp γ− erfi α+z + ∫ ( ) αα2 42 4α 

ββ2  +exp −γ erf  αz +  . 2 α 4α 2  1.13.3.

n!   b 2  n 2 2 + + γ =  γ −  (13) − 1. ∫ x sin (a x bx ) dx sin  Re V1 (n,1, a,b, x) 2n   4a 2 

 b 2  −  γ −  (13) − 2 2 + + γ (13) + cos  Im V1 (n,1, a,b, x) sin (a x bx )ReV2 (n,1, a,b, x)  4a 2 

 + 2 2 + + γ (13)  cos(a x bx )ImV2 (n,1, a,b, x) . 

n!  β2 2. zn sin α22 z +β z +γ dz = iexp  i−γ V(13) ( n ,1, α , β , z ) − ∫ ( ) n+12 1 24 α

β2 −exp i γ− V(13) ( n ,− 1, α , β , z ) + exp  iz α22 +β z +γ × 2 1 ( ) 4α

  ×(13) − αβ − − α22 +β +γ(13) αβ Vn22( , 1, , , z ) exp izz ( ) Vn ( ,1, , , z )  .  

20 n!  β2 3. znsinh α22 z +β z +γ dz =exp γ− V(13) ( n ,1,β ) + ∫ ( ) n+123 24 α

β2  +Vn(13) ( ,1, β ) − Vn(13) ( , − 1, β ) − exp  −γVn(13) ( ,1, β )  . 44 2 5 4α  1.13.4.

n!   b2  n 2 2 + + γ =  γ −  (13) + 1. ∫ x cos(a x bx ) dx sin   Im V1 (n,1,a,b, x) 2n   4a 2 

 b 2  +  γ −  (13) − 2 2 + + γ (13) − cos  ReV1 (n,1,a,b, x) sin(a x bx ) ImV2 (n,1,a,b, x)  4a 2 

−cos(a 2 x 2 + bx + γ )ReV (13) (n,1,a,b, x) . 2 

2 n!    β   (13) 2. z n cos α 2 z 2 + βz + γ dz = exp i − γ   V (n,1,α,β, z) + ∫ ( ) +    1 2 n 1    4α 2  

  β2   +  γ −  (13) − α β − α 2 2 + β + γ (13) − α β − exp i  V1 (n, 1, , , z) exp[i( z z )]V2 (n, 1, , , z)   4α 2  

 − − α 2 2 + β + γ (13) α β . exp [ i( z z )]V2 (n,1, , , z) 

n!  β 2 3. zncosh α2 z 2 ++ βγ z dz =exp γ − V(13) ( n ,1,β ) + ∫ ( ) n+12 3 24 α

β 2  +(13) β +(13) −+ β − γβ(13) Vn44( ,1, ) Vn ( , 1, ) exp 2 Vn5( ,1, ) . 4α 

1.13.5.

(2mx )!nk+1 n !(2 m )!m (− 1) 1. xnmsin2 a 22 x+ bx +γ dx = + × ∫ ( ) m 2nm−+ 12 ∑ 4 (nm+ 1)( !) 2 k=1 (mk−+ )!( mk )!

 bb22 ×sin 2k γ− ImV(13) ( n ,2 kabx , , , )+ cos 2 k γ− ×  221   44aa

× (13) − 22+ +γ (13) − ReV12 ( n ,2 kabx , , , ) sin 2 ka ( x bx) Im V ( n ,2 kabx , , , )

21   − 22+ +γ (13) cos 2k ( a x bx) Re V2 ( n ,2 k , a , b , x ) .  

n!(2m +1)! m (−1) k 2. x n sin 2m+1 (a 2 x 2 + bx + γ )dx = × ∫ n+2m ∑ 2 k =0 (m − k )!(m +1+ k )!

 bb22  ×sin(21)k + γ− Re(,21,,,)cos(21)V(13) n k+ abx − k + γ−  ×  221   44aa  (13) 22 (13) ×ImV12 ( n ,2 k +−+++γ++ 1, abx , , ) sin[(2 k 1)( a x bx)]Re V ( n ,2 k 1, abx , , )

 22 (13)  +cos[(2k + 1)( a x + bx +γ)] Im V2 ( n ,2 k+ 1, a , b , x ) . 

(2m)!z n+1 n!(2m)! m (−1) k 3. z n sin 2m (α 2 z 2 + βz + γ )dz = + × ∫ m 2 n+2m ∑ 4 (n +1)(m!) 2 k =1(m − k )!(m + k )!

 ββ22   × exp 2k i−γ V(13) (,2, n kαβ ,,) z + exp2  ki γ− ×  221   44αα   ×Vnk(13) (, − 2, αβ ,,) z − exp2 kizz α22 +β +γ Vnk(13) (, − 2, αβ ,,) z − 12( )

 −exp − 2ki α22 z +β z +γ V(13) ( n ,2 k ,α , β , z ) . ( ) 2  

n!(2m + 1)!i m (−1) k 4. z n sin 2m+1 (α 2 z 2 + βz + γ )dz = × ∫ n+1+2m ∑ 2 k =0(m − k )!(m + 1 + k )!

 ββ22   ×exp21i( k +) −γ V(13) (,21,,,)exp21 nk+ αβ z −  i( k +) γ−  ×  221   44αα   ×Vnk(13) ( , − 2 − 1, αβ , , z ) + exp ik( 2 + 1) α22 zzVnk +β +γ(13) ( , − 2 − 1, αβ , , z ) − 12( )  −exp21 −i( k +) α22 z +β z +γ V(13) (,21,,,) nk+ α β z . ( ) 2  

(2mz )!n+1 n !(2 m )! 5. ∫ znmsinh2(α 22z +β z +γ) dz = + × (−+ 4)m (nm 1)( !)22 2nm+

22 m mk−  2 (−β 1)  (13) (13) ×∑ exp 2kγ− V( nk ,2 ,β+ ) V ( nk ,2 , β+ ) −+ 2 34 k=1 (mk )!( mk )!  4α

β2  +Vnk(13) (, − 2,) β + exp2 k−γ Vnk(13) (,2,)β . 4 2 5  4α 

nm!(2+− 1)!m ( 1)mk− 6. znmsinh2+ 1α 22z +β z +γ dz = × ∫ ( ) nm++12 ∑ 2 k=0 (mk− )!( m ++ 1 k )!

 β2 ×exp21( k +) γ− V(13) (,21,) nk+ β+ V(13) (,21,) nk + β−  2 34  4α

β2  −Vnk(13) ( , − 2 − 1, β ) − exp( 2 k + 1) −γ Vnk(13) ( , 2+ 1, β ) . 4 2 5  4α  1.13.6. + (2m)!x n 1 n!(2m)! m 1 1. x n cos 2m (a 2 x 2 + bx + γ ) dx = + × ∫ m 2 n−1+2m ∑ 4 (n +1)(m!) 2 k =1(m − k )!(m + k )!

 bb22  ×sin 2k γ− ImV(13) ( n ,2 kabx , , , )+ cos 2 k γ−  ×  221   44aa 

×ReV(13) ( n ,2 kabx , , , )− sin 2 k a22 x+ bx +γ Im V(13) ( n ,2 kabx , , , )− 12( )

 −cos 2k a22 x+ bx +γ Re V(13) ( n ,2 k , a , b , x ) . ( ) 2  

n!(2m +1) ! m 1 2. x n cos 2m+1 (a 2 x 2 + bx + γ ) dx = × ∫ n+2m ∑ 2 k=0(m − k )!(m +1+ k )!

 bb22 ×sin21( k +) γ− Im(,21,,,)cos(21)V(13) n k+ abx + k + γ− ×  221   44aa ×Re(,21,,,)sin(21)V(13) n k +−+ abx k a22 x ++γ bxIm(,21,,,) V(13) n k +− abx 12( )

 −cos(21)k + a22 x + bx +γ Re(,21,,,) V(13) n k+ a b x . ( ) 2  

(2mz )!n+1 n !(2 m )! 3. ∫ znmcos2(α 22 z +β z +γ) dz = + × 4m (nm+ 1)( !)22 2nm+

23 m  2 1  β (13) ×∑ exp 2ki−γ V( n ,2 k ,αβ , , z ) + −+ 2 1 k=1 (mk )!( mk )!  4α β2 +exp 2ki  γ− V(13) (, n− 2,,,) k α β z − exp2 k i α22 z +β z +γ × 2 1 ( ) 4α

  ×(13) − αβ − − α22 +β +γ (13) αβ Vnkz22(, 2, ,,) exp2 kizz( ) Vnkz(,2, ,,) .  

n!(2m +1)! m 1 4. z n cos 2m+1 (α 2 z 2 + βz + γ ) dz = × ∫ n+1+2m ∑ 2 k=0(m − k )!(m +1+ k )!

 ββ22  ×exp(21)ik + −γ V(13) (,21,,,)exp(21) nk+ αβ z +  ik + γ− ×  221   44αα  ×Vnk(13) ( , − 2 − 1, αβ , , z ) − exp ik( 2 + 1) α22 zzVnk +β +γ(13) ( , − 2 − 1, αβ , , z ) − 12( )

 −exp(21) −ik + α22 z +β z +γ V(13) (,21,,,) nk+ α β z . ( ) 2  

(2mz )!n+1 n !(2 m )!m 1 5. znmcosh 2α 22 z++ βγ z dz = + × ∫ ( ) m 22nm+ ∑ 4 (n+ 1)( m !) 2k =1 (mk−+ )!( mk )!

2    β   (13) (13) (13) × exp 2k  γ −   V (n, 2k ,β) +V (n, 2k ,β) +V (n, − 2k ,β) +    2   3 4 4    4α     β2    +  − γ  (13) β exp 2k    V5 (n,2k , ) .   4α 2   

nm!( 2+ 1)! m 1 6. znmcosh2+ 1α 22z +β z +γ dz = × ∫ ( ) nm++12 ∑ 2 k=0 (mk− )!( m ++ 1 k )!

 β2 ×exp(21)k + γ− V(13) (,21,) nk+ β+ V(13) (,21,) nk + β+  2 34  4α β2  +Vnk(13) ( , − 2 − 1, β ) + exp (2 k + 1)  −γ Vnk(13) ( , 2+ 1, β ) . 4 2 5  4α  1.13.7.

(2mz )!nk+1 n ! (2 m )!m (− 1) 1. znmsin2 β z +γ dz = + V(13) ( n ,2 k ) ∫ ( ) mm2 21− ∑ 6 4 (nm+ 1)( !) 2 k=1 (mk−+ )!( mk )! {β≠0 }.

24 nm!(2+− 1)!m ( 1) k+1 2. znmsin21+ (β z +γ ) dz = V(13) ( n , 2 k + 1) ∫ m ∑ 7 4 k=0 (mk− )!( m ++ 1 k )!

{β≠0 }.

(2mz )!n+−1 n !(2 m )!m (− 1)mk 3. znmsinh2 (βγ z+= ) dz + × ∫ mm2 21+ ∑ (−+ 4) (n 1)( m !) 2β k =1 (mk− )!( mkk + )!

× (13) − (13) − [V8 (n,2k ) V8 (n, 2k )].

nm!(2+− 1)! m ( 1) mk− 4. znmsinh21+ (βγ z+= ) dz × ∫ 21m+ ∑ 2β k =0 (mk− )!( m ++ 1 k )!(2 k + 1)

× (13) + + (13) − − [V8 (n,2k 1) V8 (n, 2k 1)].

1.13.8.

+ (2mz )!n 1 n !(2 m )! m 1 1. znmcos2 (β z +γ ) dz = + V(13) ( n ,2 k ) ∫ mm2 21− ∑ 6 4 (nm+ 1)( !) 2 k=1 (mk−+ )!( mk )!

{β ≠ 0} .

nm!(2+ 1)! m 1 2. znmcos21+ (β z +γ ) dz = V(13) ( n , 2 k + 1) ∫ m ∑ 6 4 k=0 (mk− )!( m ++ 1 k )!

{β ≠ 0} .

(2mz )!n+1 n !(2 m )!m 1 3. znmcosh2 (βγ z+= ) dz + × ∫ mm2 21+ ∑ 4 (n+ 1)( m !) 2β k =1 (mk−+ )!( mkk )!

  × (13) − (13) − V8 (n,2k ) V8 (n, 2k )  .  

nm!(2+ 1)! m 1 4. znmcosh21+ (βγ z+= ) dz × ∫ 21m+ ∑ 2β k =0 (mk− )!( m ++ 1 k )!(2 k + 1)

  × (13) + − (13) − − V8 (n,2k 1) V8 (n, 2k 1)  .  

25 Introduced notations:

(13) πβ(1 is )  1) V1 ( ns ,± , αβ , , z ) = erf (1±i )  α z + × 22sα 22α

l En( /2) ()±β nl−2 i × ∑  (s > 0), 2 nl− s l=0 ln!(−α 2 l )!( )

n1 (13) π±(1 ii )  1 i V(2 n1 ,±α s , , 0, z ) =  erf szα (s > 0) , 1 21n1+ ns1!8α s 2

(13) + α = (13) + − α = V1 (2n1 1, s, , 0, z) V1 (2n1 1, s, , 0, z) 0 ; − E (n / 2) n−2l l 2 2r 1 l+1−r (13) (−β) r!(2α z + β)  i  2) V (n, s, α, β, z) =  −  + 2 ∑ ∑ 2n−2l+2r l=1 l!(n − 2l )! r=1 (2r )!α  s 

n−E (n / 2) n+1−2l − 2r−2 + − (l −1)!(−β) l 4l r (2α 2 z + β)  i l 1 r +  −  , ∑ ∑ 2n−2l+2r l=1 (2l −1)!(n +1− 2l )! r=1 (r −1)!α  s 

n − n +1−l 1 1 l! (2 z) 2l 1  i  1 V (13) (2n , s, α, 0, z) =  −  , 2 1 ∑  2  n1 ! l=1 (2l )!  sα 

n n n +1−l 4 1 n ! 1 z 2l  i  1 V (13) (2n +1, s, α, 0, z) = 1  −  ; 2 1 ∑  2  (2n1 +1)! l=0 l!  sα 

E (n / 2) n−l n−2l (13) π   β   (−1) β 3) V (n, s, β) = erfi s  αz +  , 3   ∑ l 2n−2l 2 sα   2α   l=0 l!(n − 2l )!s α

π erfi ( sα z) (13) = ⋅ (13) V3 (2n1 , s, 0) , V (2n1 + 1, s, 0) = 0 ; n1 2n1 +1 3 n1!(−s) α 2 s

4) V(13) ( ns , ,β ) = exp  s α22 z +β z +γ × 4 ( )

En( /2) βnl−−2 l rz!(2α2 +β ) 21r ×− ∑∑l+−12 r nlr −+  lr=11ln!(− 2 l )! = (2rs )! (−α )

nEn− ( /2) (l −β 1)! nl+−12 l 4lr−− (2α2z +β ) 22r  − ∑∑  , − +− l+−12 r nlr −+ lr=11(2ln 1)!( 1 2 l )! = (rs− 1)! ( −α ) 

− − 1 n1 (−1)n1 l l!(2z)2l 1 V (13) (2n , s, 0) = exp s(α 2 z 2 + γ) , 4 1 [ ] ∑ n +1−l 2n +2−2l n1! l=1 (2l )!s 1 α 1

26 nn112l (13) 4!n1 2 2 z V41(2 n+=− 1, s , 0) exp szαγ+ ; ( ) ∑ 2 nl1 +−1 (2n1 +− 1) ! l=0 ls!(α )

E (n / 2) n−2l (13) π   β   (−β) 5) V (n, s, β) = erf s  αz +  , 5   ∑ l 2n−2l 2 sα   2α   l=0 l!(n − 2l )!s α

π erf ( s α z) (13) = ⋅ (13) + = V5 (2n1 , s, 0) , V5 (2n1 1, s, 0) 0 ; n1 2n1 +1 n1!s α 2 s

En( /2) (− 1)lnz −2 l 6) V(13) ( ns , )= sin s ( β z +γ ) −coss ( β z +γ ) × 6 [ ] ∑ 21l+ [ ] l=0 (n−β 2 ls )!( ) +− n− En( /2) (− 1)lnz 12 l 1 × , V (13) (0, s) = sin[s(βz + γ) ]; ∑ 2l 6 l=1 (n+− 1 2 ls )!( β ) sβ

En( /2) (− 1)lnz −2 l 7) V(13) ( ns , )= cos sz ( β +γ ) +sinsz ( β +γ ) × 7 [ ] ∑ 21l+ [ ] l=0 (n−β 2 ls )!( )

+− n− En( /2) (− 1)lnz 12 l 1 × , V (13) (0, s) = cos [s(βz + γ)]; ∑ 2l 7 l=1 (n+− 1 2 ls )!( β ) sβ

n zl 8) V(13) ( ns , )= exp[ s ( β z +γ )] . 8 ∑ nl− l=0 ls!(−β )

n 2 2 1.14. Integrals of the form ∫ z sin(α z + βz + γ ) exp(β1z ) dz

1.14.1.

2πbb  1. sin a22 x+ bx +γ exp b x dx =exp −1 × ∫ ( ) ( 1 ) 2 4a 2a  22 22  bb−−11 bb 1+ i bib + 1 × sin γ− +cos γ− Re erf ax + + 22 2a  44aa2 

22 22  bb−−11 bb 1+ i bib + 1 +sin  γ− −cos γ− Im erf ax +  . 22 2a 44aa2 

  2  2 2 2π  (β1 − i β) 2. ∫sin (α z + β z + γ ) exp (β1z ) dz = (i +1)exp  − i γ × 8α   α 2    4i 

27 ii+−11β+i β ()β + ii β 2 β− β  ×erf α+z11 +(1 − ii )exp  γ− erf α+z 1 . αα  2  2222 4iα  1.14.2.

2πbb  1. xsin a22 x+ bx +γ exp ( b x ) dx = exp −1 × ∫ ( ) 1 32 82aa

 22 22  bb−−11bb 1+ i bib + 1 × (b11 + b )sin −γ +(b − b )cos −γ Re erf ax + + 22  2a  44aa 2 

22 22  bb−−11bb 1+ i bib + 1 +(b − b11 )sin −γ +(b + b )cos −γ Im erf ax + − 22  2a 44aa 2  1 22 − cos (a x+ bx +γ) exp( b1 x ) . 2a2

  2  2 2 2π  (β1 − iβ) 2. ∫ z sin (α z + β z + γ )exp (β1z) dz = (1− i)(β1 − iβ)exp  − i γ × 16α3   4iα 2    

i +1 β+βii()β+β2 ×erf αz +11 +(1 + ii ) ( β + β )exp  i γ− × 1 2 2 2α 4iα 1− i β−i β  1 × α+1 − α22 +β +γ β . erf z  2 cos ( zz)exp(1 z ) 2 2α  2α

1.14.3.

  n!   1. xn sin a22 x+ bx +γexp( b x ) dx = exp (b x ) cos a22 x+ bx +γ × ∫ ( ) 11n   ( ) 2    

bb ×ImV(14) ( nabbx ,1, , , , )− sin ax22 + bx +γ Re V(14) ( nabbx ,1, , , , ) − exp −1 × 1111( )  2 2a

 22 bb− 1 (14) ×sin −γ ReV2 ( n ,1, abb , ,1 , x ) +  4a2  

 2 − 2     b b1  (14)  + cos − γ ImV (n,1, a,b,b , x)  .  2  2 1   4a   

28  ni!  2. n α22 +β+γ β = β+α22 +β+γ× ∫ zsin ( z z ) exp (11z ) dz +  exp z i( z z ) 2n 1   

×Vn(14) ( , − 1, αββ , , , z ) − exp  β zizz − α22 +β +γ Vn(14) ( ,1,αββ , , , z ) + 1111( ) 1

()β−βii22 ()β+ β +exp 11−iV γ(14) (,1, n αββ ,, ,) z − exp  i γ− × 222 1 44iiαα 

 (14)  ×Vn2 ( , − 1, αββ , ,1 , z )  .   1.14.4.

n+1 n+1−l n l!z 1. ∫ z sin(β z + γ)exp(β1 z) dz = n! exp (β1 z) ∑ × + − β 2 + β 2 l l=1(n 1 l )!( 1 )

El( /2) (−− 1) lr+−12ββ rlr − 2 l− El( /2) ( 1) lr+−12112β r − β l +− r ×sin (βzz + γ ) ∑∑11++cos (βγ ) = rr=01(2rl )!(− 2 r )! = (2r− 1)!( l +− 1 2 r )! nz!n (− 1) nk− kexp (β+β+γzizi) exp ( β−β−γ zizi) = 11− . ∑ nk+−11nk+− 2!ikk=0 ()β+β11ii ()β−β

izn+1 2. zn sin(β z +γ )exp ( ± i β z ) dz =± exp(i γ ) − ∫ 22n +

n! n ()±iznl− l −exp ±iz (2 β +γ ) . [ ] ∑ nl+−1 2 l=0 l!(2β )

Introduced notations:

2r−1 E (n / 2) (β − isβ)n−2l l r! [i s(2α 2 z + β) − β ] 1) V (14) (n, s, α, β, β , z) = 1 1 + 1 1 ∑ ∑ 2 n−l+r l=1 l!(n − 2l )! r=1 (2r )!(isα )

−− − nl+−12 lrα2 +β −β 22r nEn( /2) (l− 1)!( β− is β ) l 4is (2 z ) 1 + 1 , ∑∑2 nlr−+ lr=11(2lnl− 1)! ( +− 1 2 )! = (r−α 1)!( is )

− 1 n1 l!(2z)2l 1 V (14) (2n , s, α, β, i sβ, z) = , 1 1 ∑ 2 n +1−l n1!l=1 (2l )! (isα ) 1

29 n n n !4 1 1 z 2l V (14) (2n +1, s, α, β, i sβ, z) = 1 ; 1 1 ∑ 2 n +1−l (2n1 +1)! l=0 l!(i s α ) 1

(14) 2π− (1is ) 1 + is β+is β1 2) V2 (,,,,,) nsαββ1 z = erf αz + × 42αα2 

En( /2) ()β−is βnl−2 × 1 , ∑ 2 nl− l=0 l!( n−α 2 l )!( is )

2π (1− is)  1+ i s  (14) α β β = α V2 (2n1 , s, , , i s , z) erf  z  , 2 n1   n1!4α(i s α ) 2

(14) + α β β = V2 (2n1 1, s, , , i s , z) 0 .

n 22 1.15. Integrals of the form ∫ zexp (−α z +β z)sin ( β1 z + γ) dz

1.15.1.

πb22− b  bb 1. exp −a22 x + bxsin ( b x +γ) dx = exp11 sin +γ × ∫ ( ) 1 22  2a 42aa 

b++ ib11 bb b ib1 ×Reerf ax − +cos +γ Imerf ax −  . 22aa2a2 

22 22 πb11− b  bb 2. ∫exp(a x+ b x)sin( b1 x +γ) dx = exp cos−γ × 2a 42aa22  

b++ ib11  bb b ib1 ×Imerfia x +  −sin −γ Reerfi ax +  . 22aa 2a2 

 2 π i β−i β 22  ( 1) 3. ∫exp (−αz + β z)sin ( β1 z + γ) dz = exp −i γ × 4α  4α2   2 β−ii β (β+i β1) β+ β  ×erf  α−z11 −exp +γizerf  α−  . 22αα2 4α  1.15.2.

π bb22− 1. xexp − a22 x + bxsin ( b x +γ) dx = exp 1 × ∫ ( ) 1 32 44aa

30  bb bb b+ ib × bsin 11+γ +b cos +γ Reerf ax − 1 +  221   22aa2a

bb bb b+ ib  +bcos 11 +γ −b sin +γ Imerf ax − 1 − 221  22aa2a 

sin (b x + γ) − 1 exp (− a 2 x 2 + bx). 2a 2 π bb22− 2. xexp a22 x+ bx sin( b x +γ) dx = exp 1 × ∫ ( ) 1 32 44aa

 bb bb b+ ib × bsin 11−γ −b cos −γ Reerfi ax + 1 −  221   22aa2a

bb bb b+ ib  −b sin 11 −γ +bcos −γ Imerfi ax + 1 + 1 22 22aa2a 

sin (b x + γ) + 1 exp (a 2 x 2 + bx). 2a 2

π i  ()β−i β 2 3. zexp −α22 z +β zsin ( β+γ z ) dz = ( β−βi )exp 1 −i γ × ∫ ( ) 1132 84αα 

β−i β  ()β+ ii β 2 β+ β  ×erf α−z1 −β+β( i )exp  11+γ izerf α− − αα 1 2  22  4α  sin (βz +γ ) − 1 exp (−α22zz + β ) . 2α2 1.15.3.

n! πb22− b  bb 1. xn exp − a22 x + bxsin ( b x +γ ) dx = exp 11sin +γ × ∫ ( ) 1 n+12  2 242aa  a

bib++11(15) 22bib (15) ×Reerf ax −ReV11 ( n , a , b , b11 )−− Imerf  ax ImV ( n , a , b , b ) + 22aa

bb11 b++ ib (15) 2 b ib1 +cos +γ  Reerf ax − ImV1 ( n , a , b , b1 )+ Imerf  ax − × 2a2  22aa    n! × (15) 2  − −22 +× ReV1 ( n , a , b , b1 ) exp ( a x bx)   2n   ×sin (bx +γ )Re V(15) ( na ,22 , b , b , x )+ cos( bx +γ )Im V(15) ( na , , b , b , x ) . 12211 1

31 n! π b22− b  bb 2. xn exp a22 x+ b xsin( b x +γ) dx = exp11 sin−γ × ∫ ( ) 1 n+12  2 24aa  2 a  b++ ib (15) b ib × +11 −2 − +× Imerfia x ImV1 ( n , a , b , b1) Reerfi ax  22aa    (15) 22bb11 b+ ib (15) ×ReV n , − a , bb , + cos −γ  Reerfiax+ ImV n ,− a , bb , + 11( 11) 2 2a ( )  2a   b+ ib (15)   n! + + 1 −2 −22 +× Imerfiax ReV1 ( n , a , b , b1)  exp (a x bx) 2a   2n

×sin (bx +γ )Re V(15) ( n , − a22 , b , b , x ) + cos( bx +γ )Im V(15) ( n , − a , b , b , x ) . 12211 1

π n!  ()β+ii β 2 β+ β 3. zn exp −α22 z + β zsin ( β z + γ ) dz = exp 11+i γerf α z − × ∫ ( ) 1 n+22α 24iαα 2

2  (15) ()β−ii β β− β (15)  ×Vn( , αββ−22 , , ) exp 11−γierf α− z Vn(,,,)αβ−β+ 11112 α 4α 2 

n!  + −α+β22 −β−γ(15) αβ−β−2 + exp ( z z) exp( izi11 ) V2 (,,, n ,) z 2n 1i 

(15) 2  −exp(izi β11 + γ ) V2 (,,,,) n α ββ z .  Introduced notations:

E (n / 2) (β + iβ ) n−2l 1) V (15) (n,α 2 , β, β ) = 1 , 1 1 ∑ n−l l=0 l!(n − 2l )!( α 2 ) 1 (15) α 2 β β = (15) + α 2 β β = V1 (2n1 , , , i ) , V1 (2n1 1, , , i ) 0 ; 2 n1 n1 ! (α )

En( /2) (β+i β )nl−−2l r ! (2α 2 zi −β− β ) 21r 2) Vn(15) (,α2 , ββ , ,) z = 11+ 2 1 ∑∑2 nlr−+ lr=11ln! (− 2 l )! = (2r )! (α )

n− En( /2) (l− 1)! ( β+ i β )n+−12 ll 4 lr − (2α2zi −β− β ) 2r− 2 + 11, ∑∑2 nlr−+ lr=11(2ln− 1)!( +− 1 2 l )! = (r −α 1)!( )

n − 1 1 l!(2 z) 2l 1 V (15) (2n ,α 2 , β, iβ, z) = , 2 1 ∑ 2 n +1−l n1 ! l=1 (2l )! (α ) 1

n n n !4 1 1 z 2l V (15) (2n +1,α 2 , β, iβ, z) = 1 . 2 1 ∑ 2 n +1−l (2n1 +1)! l=0 l!(α ) 1

32 n 2 2 1.16. Integrals of the form ∫ z exp (− αz + β z )sin (α1z + β1z + γ ) dz

1.16.1.

 2 − 2 −  2 2 π  a b a b1 2a1bb1  1. ∫ exp (− ax + bx)sin (a1 x + b1 x + γ ) dx = exp × 2  2 + 2   4a 4a1 

 ab22−+ ab2 abb −  1111 1 1 b ib ×sin +γ Re erf a+ ia1 x − − 22+ a++ ia 2 a ia  44aa1 11

ab22−+ ab2 abb −  1111 1 1 b ib  −cos +γ Im erf a+ ia1 x −  22+ a++ ia 2 a ia 44aa1 11

{ a + a1 > 0} .

π i 2. exp −α+βz22 zsin α z +β+γ z dz = × ∫ ( ) ( 11) 4

2  (β−i β ) β− β  111 i 1 × exp −i γerf  α+ iz α1 − − × α+i α 44α+i α 2 α+ii α α− α  11 11

2  ()β+ii β11β+ β  2 2 ×exp +i γerf  α− iz α −  {α ≠ −α }. 44α−i α 1 1 1 2 α−i α1   2  2 2 π i (β  iβ1 ) 3. ∫ exp(− α z + βz )sin ( i αz + β1 z + γ )dz = ± exp   i γ × 4 2α  8α 

 β  iβ1  1 × erf  2αz −  − exp[β z ± i (β1 z + γ)] {β1 ≠ ±iβ} .  2 2α  2β1  2iβ

π i  β2  − α 2 + β α 2 ± β + γ = ±  γ  × 4. ∫ exp( z z )sin ( i z i z )dz exp  i  4 2α  2α 

 β  i z × erf  2αz −   exp (±iγ) .  2α  2 1.16.2.

 2 − 2 −  2 2 π  ab ab1 2a1bb1  1. ∫ x exp (− ax + bx)sin (a1 x + b1 x + γ )dx = exp × 4  2 + 2   4a 4a1 

33  ab22−+ ab2 abb b− ib b− ib ×sin 1 11 1+γ Re 1 erf a+ ia x − 1 − 22 ++1 +  44aa+ 1 ()aiaaia112aia1 ab22−+ ab2 abb b− ib b− ib  −cos 1 11 1+γ Im 1 erf a+ ia x − 1  − 22 ++1 + 44aa+ 1 ()aiaaia112aia1

2 exp (− ax + bx) 2 2 − [a sin (a1x + b1x + γ )+ a1 cos (a1x + b1x + γ ) ] 2 + 2 2a 2a1

{ a + a1 > 0}.

2 2 π i  β − iβ1 2. ∫ z exp (− αz + βz )sin (α1z + β1z + γ ) dz =  × 8  (α + iα1 ) α + iα1

()β−i β 2 β−ii β β+ β × 1− γ α+ α −11 − × exp ierf  iz1 44α+i α1 2α+i α1 () α− ii α 11 α− α

2  exp −αzz2 + β (β+i β1) β+i β  ( ) ×exp +i γerf  α− iz α − 1  − × 44α−i α 1 α− α 22 1 2 i 1  22α+α1

×αsin αzz22 +β+γ+αcos α zz +β+γ {α 2 ≠ −α 2 }. ( 11) 1( 11) 1

22 πβ±β()1 i 3. ∫ zexp(−α z +β z)sin ( i α z +β1 z +γ) dz = × 16αα 2

()ββi 2 ββi() β izi β± ×exp 1iγerf 2 α z −11 + exp[βzi ± ( β z +γ ) ] α 2 1 8 22α 2(β±i β1 )

i 2 exp− 2 αz +β zi ( β z +γ ) {β ≠ ±iβ} . 8α 1 1

πβi β2 4. zexp −α+β z22 zsin i α±β+γ=± z i z dz exp i γ× ∫ ( ) ()  82αα 2α

2 β i 2 iz ×erf 2 αz − exp(−α 2z + 2 β zi γ) exp (±γi ) . 2α 84α 1.16.3.

  2 − 2 −  n 2 2 n!   ab ab1 2a1bb1  1. ∫ x exp (− ax + bx)sin (a1 x + b1 x + γ ) dx = exp × n  2 + 2  2   4a 4a1 

 a b22−+ a b2 abb ×sin1 11 1+γ ReV(16) ( naa , , , bb , , x ) + 22 1 11  44aa+ 1

34 a b22−+ a b2 abb +cos 1 11 1+γ ImV(16) ( naa , , , bb , , x ) − 22 1 11 44aa+ 1

−exp −axbx22 +  sin axbx+ +γ Re V(16) ( naabbx , , , , , ) + ( )  ( 1 1 ) 2 11

 + 2 + + γ (16) + > . cos (a1x b1x ) ImV2 (n, a, a1 , b, b1 , x)]  { a a1 0} 

  2  n 2 2 n!i  (β − iβ1 ) 2. z exp(− α z + β z ) sin (α z + β z + γ ) dz = exp  − i γ × ∫ 1 1 n+1 2   4α + 4iα1 

 (β + iβ )2  × (16) α − α β − β − 1 + γ (16) α α β β + V1 (n, , 1 , , 1 , z) exp  i  V1 (n, , 1 , , 1 , z)  4α − 4iα1 

+ − α − α 2 + β + β + γ (16) α α β β − exp[ ( i 1 ) z ( i 1 ) z i ]V2 (n, , 1 , , 1 , z)

 − − α + α 2 + β − β − γ (16) α − α β − β exp [ ( i 1 )z ( i 1 ) z i ]V2 (n, , 1 , , 1 , z) 

α 2 ≠ −α 2 { 1 }.

  2  n 2 2 n!i  (β  i β ) 3. z exp(− αz + β z ) sin ( i α z + β z + γ )dz = ± exp  1  i γ × ∫ 1 n+1 2   8α 

 × (16) α α β β − − α 2 + β β γ (16) α α β β ± V1 (n, , i , ,  1 , z) exp [ 2 z (  i 1 ) z  i ]V2 (n, , i , ,  1 , z) 

− n! n (−1) n k z k ± exp [β z ± i(β z + γ)] ∑ {β1 ≠ ±iβ} . 2i 1 n+1−k k =0 k!(β ± iβ1 )

n!i   β2  4. z n exp − αz 2 + βz sin iαz 2 ± iβz + γ dz = ± exp  i γ × ∫ ( ) ( ) +     2n 1   2α 

 ×(16) α αβ−β − −α2 + β γ(16) α αβ−β  V12(, ni , , , iz , ) exp( 2 z 2 ziV) (, ni , , , iz , ) 

izn+1  exp (±γi ) . 22n +

35 Introduced notations:

π β+i β 1) (16) α α β β = α− α −1 × V1 (,,,,,) n11 z erf iz1 22α−ii α11α− α

En( /2) ()β+i β nl−2 × ∑ 1 , − α− α nl− l=0 ln!( 2 l )!( i1 ) π (16) α α β β = α− α V1 (2 n11 , , , , iz , ) erf ( i1 z) , n1 2 ni11!2(α−α ) α −α i

(16) + α α β β = V1 (2n1 1, , 1 , , i , z) 0 ;

E (n / 2) (β + iβ ) n−2l l r!(2α z − 2i α z − β − iβ ) 2r−1 2) (16) α α β β = 1 1 1 + V2 (n, , 1 , , 1 , z) ∑ ∑ l!(n − 2l )! α − α n−l+r l=1 r=1 (2r )!( i 1 ) n−E ( n / 2) (l −1)!(β + iβ ) n+1−2l l 4l−r (2α z − 2i α z − β − iβ ) 2r−2 + ∑ 1 ∑ 1 1 , (2l −1)!(n +1 − 2l )! n−l+r l=1 r=1 (r −1)!(α − iα1 )

− 1 n1 l!(2 z) 2l 1 (16) α α β β = V2 (2n1 , , 1 , , i , z) ∑ , n ! n1 +1−l 1 l=1 (2l )!(α − iα1 )

n n !41 n1 z2l (16) + αα β β = 1 V2 (2 n11 1, , , , iz , ) ∑ . (2n + 1)! nl1 +−1 1 l=0 li!(α− α1 )

n 1.17. Integrals of the form ∫ z erf (α z + β) exp (β1z ) sin (β 2 z + γ ) dz

1.17.1. erf ( a x + b ) 1. ∫ erf ( a x + b ) exp (b1x)sin( b2 x + γ ) dx = exp (b1 x )× b 2 + b 2 1 2  2 − 2 −  1  b1 b2 4a bb1  ×[ b1 sin (b2 x + γ ) − b2 cos (b2 x + γ )] + exp × 2 + 2  2  b1 b2  4 a          b b − 2 a b b2   b + i b  ×  cos 1 2 + γ b Re erf a x + b − 1 2 −  2   2  2 a    2a          b + ib   b b − 2 a b b2  − b Im erf a x + b − 1 2  − sin 1 2 + γ × 1  2a   2     2a 

36 ++ b12 ib b12 ib  ×bRe erf  ax+− b +bIm erf ax+− b . 1222aa 

erf i (a x + b) 2. ∫ erf i(a x + b) exp(b1 x) sin (b2 x + γ ) dx = exp(b1 x)[b1 sin (b2 x + γ )− 2 + 2 b1 b2

 b2 − b2 − 4 a b b     1  2 1 1    b1b2 + 2 a b b2  − b2 cos (b2 x + γ )] + exp  cos − γ × 2 + 2  2    2  b1 b2  4 a    2 a 

  b1 + i b2   b1 + i b2   × b2 Re erfi  a x + b +  − b1 Im erfi  a x + b +   +   2 a   2 a  

 b b + 2 a b b    b + i b  +  1 2 2 − γ  + + 1 2 + sin   b1 Re erfi  a x b   2 a 2    2 a 

 b1 + i b2    + b2 Im erfi  a x + b +    .  2 a   

2 1  b    bb   2ab − ib  3. erf (ax + b)sin (b x + γ )dx = exp − 1  cos  1 − γ Reerf  ax + 1  + ∫ 1 b  2   a 2a 1  4a      

 bb1   2ab − ib1  1 + sin  − γ  Imerf  ax +  − erf (ax + b)cos(b1 x + γ ) .  a   2a  b1

2 1  b    bb   2ab + i b  4. erf i (ax + b)sin (b x + γ ) dx = exp  1  cos 1 − γ  Re erfi  ax + 1  + ∫ 1  2   b1  4a    a   2a 

 bb1   2ab + ib1   1 + sin  − γ Imerfi  ax +   − erfi (ax + b)cos (b1x + γ) .  a   2a   b1

1  1 5. ∫ erf (α z + β) exp( β1z ) sin ( β2 z + γ ) dz = erf (α z + β)  × 2  iβ1 − β2

1  × exp[ β1 z + i (β 2 z + γ ) ]− exp[ β1 z − i (β 2 z + γ ) ]  + iβ1 + β 2 

   1  1 (β1 − iβ 2 )(β1 − 4αβ − iβ 2 )  β1 − iβ 2  +  exp  −i γ erf  α z + β − − 2 2  iβ1 + β 2  4α   2α 

37    1 (β1 + i β 2 )(β1 − 4 α β + i β 2 )  β1 + i β 2   − exp  + i γ erf  α z + β −   2 i β1 − β 2  4 α   2 α  

β22 +β ≠ { 120 }.

  2  1 4 i αββ1 − β  iβ  6. erf (α z + β)sin (β z + γ)dz = exp  1 − i γ  erf  α z + β + 1  + ∫ 1 β  2  α 2 1   4α   2 

 2   β + 4i αββ1  iβ  1 + exp  i γ − 1  erf  αz + β − 1  − erf (αz + β) cos (β z + γ) .  2  α β 1  4α   2  1

iiexp(  γ)  β 1.17.2. ∫erf(αz +β) exp( ± i β11 z) sin( β z +γ) dz =±  z+erf ( α z +β) + 2  α

1 2  1  + exp [ − (α z + β) ]  − erf (α z + β) exp[ ± i (2β1z + γ ) ] − π α  4β1 

β2 ±2ii αββ β  −exp − 11±iz γerf α +β 1 . 2   α α  1.17.3.  2 2  b − b − 4abb1 1. x n erf (ax + b)exp(b x)sin (b x + γ )dx = exp 1 2  × ∫ 1 2  2   4a 

  b b − 2a bb    b + i b   × 1 2 2 + γ + − 1 2 (17) + sin   Re erf  ax b  V1 (a, b, b1 , b2 )   2a 2    2a  

 b b − 2abb    b + ib    +  1 2 2 + γ  + − 1 2 (17) − × cos   Im erf  ax b  V1 (a, b, b1 , b2 )  exp (b1 x)  2a 2    2a   

  (17) 2a (17)  × sin (b2 x + γ ) erf (ax + b) Re V (b1 , b2 , x) + Re V (a, b, b1 , b2 , x) +   2 π 3 

 (17) 2a (17)   + cos (b2 x + γ )erf (ax + b) ImV (b1 , b2 , x) + ImV (a, b, b1 , b2 , x)   2 π 3  

{ b1 + b2 > 0} .  2 2  b − b − 4abb1 2. x n erf i (ax + b)exp (b x) sin (b x + γ) dx = exp  2 1  × ∫ 1 2  2   4a 

38   2abb + b b    b + ib   ×  2 1 2 − γ  + + 1 2 (17) − cos   Im erfi  ax b V1 (i a, ib, b1 , b2 )   2a 2    2a   2abb++ b b b ib   − 2 12−γ ++1 2 (17) − × sin 2 Re erfi ax b  V1 ( i a , ib , b12 , b ) exp ( b1 x ) 22aa   

  (17) 2a (17)  × sin (b2 x + γ ) erfi (ax + b) ReV (b1 , b2 , x) + ReV (i a, i b, b1 , b2 , x) +   2 π 3 

 (17) 2a (17)   + cos (b2 x + γ ) erfi (ax + b)ImV (b1 , b2 , x) + Im V (i a, ib, b1 , b2 , x)   2 π 3  

{ b1 + b2 > 0} .

 2 2  1 β − β − 4αββ1 3. z n erf (α z + β)exp(β z )sin (β z + γ ) dz = exp  1 2  × ∫ 1 2 2i  2   4α 

   β β − 2αββ    β + i β  × 1 2 2 + γ α + β − 1 2 (17) α β β β − exp i    erf  z  V1 ( , , 1 , 2 )    2α 2    2α 

2αββ − β β β −i β  − 2 12−γ α+β−1 2 (17) αββ−β+ exp ierf zV1 (,,,)12 2α2 2α 

exp (β z )  2α + 1 −β+γ α+β(17) β−β +(17) αββ−β − exp iz( 2 ) erf ( z ) V23 (12 , , z ) V(,,,,)12z 2i  π

 (17) 2α (17)   − exp [i (β2 z + γ ) ] erf (α z + β) V (β1 , β2 , z) + V (α, β, β1 , β2 , z)   2 π 3  

β2 + β2 ≠ { 1 2 0}.

  β2 ± αββ  n 1   1 2i 1  1.17.4. z erf (α z + β)exp (±iβ z)sin (β z + γ )dz = ± exp − ± i γ × ∫ 1 1  2  2i   α 

i β1 (17) ×erf  αz +β V(,,αβ±β±β− i11 , )exp[ ±iz (2 β+γ×1 )] α 1 2α  × α+β(17) ±β±β +(17) αβ±β±β ± erf (zV )23 ( i11 , , z ) V ( , , i11 , , z )  π  nEn− ( /2) +− iz n+1 (− 1)n n ! βnk12 ±exp (iz γ ) erf ( α +β )  + ∑ + 21n + nk+1  α k=0 4kn !(+− 1 2 k )! (−1) n n!  E (n / 2) k!β n−2k k (αz + β) 2l + exp [− (αz + β) 2 ]  − n+1 ∑ ∑ πα  k =0 (2k +1)!(n − 2k )! l=0 l!

39 − − n E (n / 2) β n+1−2k k l! (αz + β) 2l 1   − ∑ ∑   {β1 ≠ 0} . + − k −l k =1 k!(n 1 2k )!l=1 4 (2l )!  

Introduced notations:

nk+−1 − n n!1Ek( /2) (2β − αβ +i β )kl2 1) V (17) (,,αββ , β ) = − 12, 1 12 ∑∑k 22kl− kl=002 β12 +βi = lk!(−α 2 l )!

n! E (n / 2) 1 V (17) (α,β, β , iβ − 2i αβ) = ; 1 1 1 n+1 ∑ n+1−2k (2α) k=0 k!(−β)

n+1−k n n!z k  1  2) (17) β β =  −  ; V2 ( 1 , 2 , z) ∑   k=0 k!  β1 + iβ2 

n+1−k n n!  1  3) V (17) (α,β, β , β , z) = exp [− (αz + β) 2 ]  −  × 3 1 2 ∑ k   k=12  β1 + iβ2 

 E (k / 2) (β − 2αβ + iβ ) k −2l l r!(2α 2 z + 2αβ − β − iβ ) 2r−1 ×  ∑ 1 2 ∑ 1 2 + − 2k −2l+2r  l=1 l!(k 2l )! r=1 (2r )!α

k− Ek( /2) (l− 1)!( β − 2 αβ + i β )k+−12 ll 4 lr − (2α2 zi + 2 αβ − β − β ) 2r− 2 + 1 2 12  , ∑∑2klr−+ 22 lr=11(2lk− 1)!( +− 1 2 l )! = (r −α 1)! 

(17) α β β β − αβ = − α +β2 × V3 (,,,11 i 2 iz ,)exp( z )

En( /2) n!!k−1 lz21l+ ×+ ∑∑nk+−12 nl+−12  kl=10kl!(−β )= (2+ 1)!(2 α )

− n E (n / 2) n!k! k−1 z 2l  +  . ∑ n+2−2k ∑ n+2−2l k=1 (2k )!(−2β) l=0 l!α 

21n+ 2 2 1.18. Integrals of the form ∫ zerf (α z +β )exp( α12z) sin ( α z +γ) dz

1.18.1. 2 2 2 erf (ax + b)exp(a1 x ) 1. ∫ x erf (ax + b)exp (a1 x )sin (a2 x + γ )dx = × 2 + 2 2a1 2a2

40  2 2 − 2 − 2  2 2 a b (a a1 a1 a2 ) × [a1 sin (a2 x + γ )− a2 cos(a2 x + γ ) ]− exp   × 2 + 2  4 + 2 + 2 − 2  2a1 2a2  a a1 a2 2a a1 

 aab22 × sin2 +γ ×  422 2  aaa++−122 aa 1

 a12− ia 2 ab ×Re erf a−− a12 ia x + + 22 a−− a12 ia a−− a12 ia

aab22 +cos 2 +γ × 422 2 aaa++−122 aa 1

 a− ia ab  ×Im 12erf a2 −− a ia x + 12  22−− −−  a a12 ia a a12 ia 

2 { a1 + a2 > 0, a − a1 + a2 > 0}.

2 2 2 erfi (ax + b)exp (a1 x ) 2. ∫ x erfi (ax + b)exp(a1 x ) sin (a2 x + γ )dx = × 2 + 2 2a1 2a2

 2 2 + 2 + 2  2 2 a b (a a1 a1 a2 ) × [a1 sin (a2 x + γ )− a2 cos (a2 x + γ ) ]− exp  × 2 + 2  4 + 2 + 2 + 2  2a1 2a2  a a1 a2 2a a1 

   a− ia ab ×Re 12erfia2 ++ a ia x + ×  12  22++ ++  a a12 ia a a12 ia

aab22 aab22 ×sin22+γ +cos+γ × 422 2 422 2 aaa+++1222 aa 1  aaa+++12 aa 1  a− ia ab  ×Im 12erfia2 ++ a ia x + 12  22++ ++  a a12 ia a a12 ia 

2 { a1 + a2 > 0, a + a1 + a2 > 0}.

 2 2    2 2  2 a  a1 b    a a1b  3. ∫ x erf (ax + b)sin (a1 x + γ))dx = exp − cos + γ × 2a  4 + 2   4 + 2  1  a a1    a a1 

22 1 ab a ab ×Re erf a2 − ia x + −sin 1 +γ × 1 42 22aa+ a−− ia11a ia 1

41  1 ab  erf (ax+ b ) ×Im erf a22− ia x + − cos a x +γ 11 ( ) 22−− 2a1 a ia11a ia 

{ a1 > 0}.

 2 2    2 2  2 a  a1 b    a a1b  4. ∫ x erfi (ax + b)sin (a1 x + γ ) dx = exp cos + γ × 2a  4 + 2   4 + 2  1  a a1    a a1 

     2 2  1  ab  a a b × Re erfi a 2 + ia x +  − sin  1 + γ ×  1     2 2  a 4 + a 2  a + ia1  a + ia1    1 

     +  1  2 ab    erfi (ax b) 2 × Im erfi  a + ia1 x +   − cos (a1x + γ )  2 2  2a1  a + ia1  a + ia1   

{ a1 > 0}.

erf (αzz +β )exp α 2 22 ( 1 ) 5. ∫ zerf (α z +β )exp( α12z) sin ( α z +γ ) dz = × α+α22 2212

2 2 α × [ α1 sin (α 2 z + γ )− α 2 cos (α 2 z + γ ) ]+ × 2 4(α 2 + iα1 ) α − α1 + iα 2  β2 () α −αi αβ ×exp 12−i γerf  α2 −α +iz α + + 2 12 α −α +i α 2 12 α −α12 +i α

α  β2 (α + iα )  + exp 1 2 + i γ × 2  α 2 − α − iα  4(α 2 − iα1 ) α − α1 − iα 2  1 2     2 αβ  × erf α − α1 − iα 2 z +  2   α − α1 − iα 2 

α 2 ≠ −α 2 α 2 − α 2 ≠ −α 2 { 2 1 , ( 1 ) 2 } .

 2 α 1  α β  6. z erf (α z + β)sin (α z 2 + γ )dz =  exp  1 − i γ × ∫ 1  2  4α1  2 i α − α  α + iα1  1   αβ 1 αβ2 ×erf  α2 +iz α + + exp iγ−1 × 1 2 22α +αi α+αii11 α−α 1   αβ erf (αz + β) ×  α 2 − α +  − α 2 + γ α 2 ≠ −α 4 erf  i 1 z  cos ( 1z ) { 1 }. 2  2α1  α − iα1 

42 1.18.2.

1  1  β2  ± α + β α 2 2 + γ =  − γ  × 1. ∫ z erf [(1 i ) z ]sin (2 z ) dz  exp  i  8α 2  2  2 

 β  1 2 × erf (1 ± i ) 2 α z +  − exp[− 2(1 ± i )αβz − β ± iγ ]−  2  π β

− exp[± i(2α 2 z 2 + γ )]erf [(1 ± i )αz + β] − exp[ i(2α 2 z 2 + γ )]×

 × erf [(1± i )αz + β] . 

(1 ± i )exp(± iγ ) exp( iγ ) 2. ∫ z erf [(1 ± i )αz]sin(2α 2 z 2 + γ ) dz = z + × 4 πα 8 2α 2

1 × erf [(1 ± i ) 2 αz ] − erf [(1 ± i )αz]× 8α 2

   2 2 2 2  × exp[± i(2α z + γ )]+ exp[ i(2α z + γ )]  .  

 2 2 1  α 3. ∫ z erf (αz + β)exp(± iα1z )sin (α1z + γ ) dz =  × 8α1 2  α  2iα1

2     2α β   αβ  × ±  1 + γ  α 2 α + − exp i  erf   2i 1 z   α 2 2iα   2     1   α  2iα1 

 2 2 2 2  i  2α z − 2β −1 − exp[± i(2α z + γ )]erf (αz + β) ±  × 1 2  2  4α   αz − β 2  ×exp( iγ )erf (αz + β) + exp[ iγ − (αz + β) ]  . π  (1 ± i )αz − β 4. ∫ z erf [(1 ± i )αz + β]exp(± iα 2 z 2 )sin (α 2 z 2 + γ ) dz = × 8 πα 2

 2  exp(± iγ ) × exp iγ −[(1 ± i )αz + β]  − ×   8α 2

43  1  × erf [(1 ± i )αz + β]exp(± 2iα 2 z 2 )+ exp[− 2αβz(1 ± i ) − β 2 ] −  π β 

exp( iγ ) − (1 + 2β 2  4iα 2 z 2 ) erf [(1 ± i )αz + β]. 16α 2

(1 ± i )z 5. ∫ z erf [(1 ± i )αz]exp(± iα 2 z 2 )sin (α 2 z 2 + γ ) dz = × 4 πα

 1 2 2  1 × exp(± iγ ) + exp[ i(2α z + γ ) ]  − erf [(1 ± i )αz]×  2  8α 2

 exp( iγ )  × exp[± i(2α 2 z 2 + γ )]+ (1  4iα 2 z 2 ) .  2 

2 2 2 i exp( iγ ) 6. ∫ z erf (αz + β)exp[(α ± iα1 )z ]sin (α1z + γ ) dz = ± × 4α 2

 1  ×  exp(− 2αβz − β 2 )+ erf (αz + β)exp(α 2 z 2 ) −  π β 

erf (αz + β) (1  i )α − exp (α 2 ± 2iα )z 2 ± iγ − × 2 [ 1 ] 2 4(2α1  iα ) 8 α1 (α ± 2iα1 )

  α 2 ± 2iα   αβ  × exp± i β 2 1 + γ  erf (1  i ) α z +  .  α  1   2 1   (1  i ) α1 

2 2 2 i exp( iγ ) 7. ∫ z erf (αz )exp[(α ± iα1 )z ]sin (α1z + γ ) dz = ± × 2α

 erf (αz ) 2 2 z  exp(± iγ ) ×  exp(α z )−  − ×  2α π  4

   erf (αz ) 2 2 (1  i )α  ×  exp (α ± 2iα )z + erf [(1  i ) α z ] . 2 [ 1 ] 2 1  2α1  iα 2 α1 (α ± 2iα1 ) 

1.18.3.

 2 2 − 2 − 2  2n+1 2 2 n!a b (a a1 a1 a2 ) 1. ∫ x erf (ax + b)exp (a1 x )sin (a2 x + γ ) dx = exp   × 2  4 + 2 + 2 − 2   a a1 a2 2a a1 

44  aab22 ×sin 2 +γ ReV(18) ( aa , , a , bx , ) + 422 2 1 12  aaa++−122 aa 1

aab22 +cos 2 +γ × 422 2 aaa++−122 aa 1

 n!   × (18)  − 2 2 + γ + × ImV1 (a, a1 , a2 , b, x) exp (a1x ) sin (a2 x ) erf (ax b)  2  

a  × (18) + (18) +2 +γ × ReV23 (,,) aa12 x Re V (,,,,) aaabx12  cos ( ax2 ) π 

 (18) a (18)   ×+erf (axb ) Im V23 ( aa12 , , x )+ Im V ( aaabx ,12 , , , )   π  

2 { a1 + a2 > 0, a − a1 + a2 > 0}.

 2 2 + 2 + 2  2n+1 2 2 n!a b (a a1 a1 a2 ) 2. ∫ x erfi (ax + b) exp (a1x )sin (a2 x + γ ) dx = exp   × 2  4 + 2 + 2 + 2   a a1 a2 2a a1 

 aab22 ×sin 2 +γ ReV(18) ( i a , a , a , ib , x ) + 422 2 1 12  aaa+++122 aa 1

aab22 +cos 2 +γ × 422 2 aaa+++122 aa 1

 n!   × (18)  − 2 2 + γ + × ImV1 (ia, a1 , a2 , ib, x) exp(a1 x )  sin (a2 x ) erfi (ax b)  2   

(18) a (18)  × + +2 +γ × ReV23( aa12 , , x) Re V( iaaaibx ,12 , , ,) cos( ax2 ) π 

(18) a (18)  ×+erfi(axb) Im V23 (,,) aa12 x+ Im V (,,,,) iaaaibx12  π 

2 { a1 + a2 > 0, a + a1 + a2 > 0} .

  2  2n+1 2 2 n!i α  β (α1 − iα 2 ) 3. z erf (α z + β) exp (α1z )sin (α 2 z + γ ) dz =  exp  − i γ × ∫ 4 2   α − α1 + iα 2   2   (18) β (α1 + i α 2 ) (18)  n!i ×V (α, α1 , − α 2 , β, z) − exp  + i γ V (α, α1 , α 2 , β, z) + × 1 2 1 4  α − α1 − iα 2  

45  2 2  (18) α (18)  × exp [α1z + i(α 2 z + γ)] erf (α z + β) V (α1 , α 2 , z) + V (α, α1 , α 2 , β, z) −   2 π 3 

22(18) α (18)  −exp α1zi − ( α 2 z +γ ) erf ( α z +β ) V23 ( α12 , −α , z ) + V ( α , α12 , −α , β ,z )  π 

α 2 ≠ −α 2 α 2 ≠ − α 2 − α 2 { 2 1 , 2 ( 1 ) } . 1.18.4.

2 2n+1 n! i   β  1. ± α + β α 2 2 + γ = ± ± α  − γ  × ∫ z erf [(1 i) z ] sin (2 z ) dz (1 i) exp   i  4   2 

2α 2α  n!i × (18) α 2 β − ± γ (18) β α 2 2 + γ × V1 ( , 0,  2 , , z) exp ( i ) V4 ( , )  exp [ i (2 z )] 1 i 1 i  4

 (18) 2 (1± i)α (18) 2α 2  × erf [ (1± i)α z + β] V (0,  2α , z) + V ( , 0,  2α , β, z)  2 π 3 1 i  {α ≠ 0}.

 2 21n+ n!  2αβ1 2. zerf (α+β z )exp ±α i z22 sin α+γ=± z dz  αexp  ±γ−i × ∫ ( 11) ( ) 4i 2  2α1 ±αi

×V(18) (, α ± i α , ±α ,,)exp β z − ± i (2 α z2 +γ )erf( α zV +β )(18) ( ± i α , ±α ,) z + 1211 1  11

α (18)   i (18) + V (α, ± i α1 , ± α1 , β, z)  ± exp (i γ)V (α, β) π 3   2 5

iα 2 {α ≠ 0, α1 ≠ 0, α1 ≠  }. 2

2n+1 n! 3. z erf [(1 ± i)α z + β] exp (± iα 2 z 2 )sin (α 2 z 2 + γ ) dz = ± exp (±i γ) × ∫ 4i

(18) 2α i (18) 2α ×V ( , β) ± exp(iγ)V ( , β) {α ≠ 0} . 4 1 i 2 5 1 i

21n+ 4. zerf (α z +β )exp α22 ±i α ) z sin α z 2 +γ dz = ∫ ( 11) ( )

46 n!α α±2 2i α =±exp  ±i β221 +γ V(18) (,,,,) α α ± iz α ±α β ± α 1 11 42i 1 ni!  ±exp α22zi ± (2 α z 2 +γ ) × 4 1 

(18) 22α (18) ×erf ( αzV +β ) ( α ± i α11 , ±α , z ) + V ( α , α ± i α11 , ±α , β , z ) + 23π 2 (18)  iα +exp (iV γ )4 ( αβ , ) {α ≠ 0, α1 ≠ ± }.  2

Introduced notations:

  (18) 1  2 αβ  1) V (α, α1 , α 2 , β, z) = erf α − α1 − i α 2 z + × 1 2  2  α − α1 − iα 2  α − α1 − i α 2 

n+1−k − n (2k )!  1  k (αβ) 2k 2l ×  −  = ∑ ∑ 2k −l k =0 k!  α1 + iα 2  l=0 l 2 4 l!(2k − 2l )!(α − α1 − iα 2 )   1  2 αβ  = erfi α1 − α + iα 2 z − × 2  2  α1 − α + iα 2  α1 − α + iα 2 

n+1−k − n (2k )!  1  k (αβ) 2k 2l ×  −  , ∑ ∑ 2k −l k =0 k!  α1 + iα 2  l=0 l 2 (−4) l!(2k − 2l )! (α1 − α + iα 2 )

(18) 1 2 V(α , α12 , α , 0,z ) = erf α −α1 −iz α 2 × 1 2  α −α12 −i α

n (2k )! ×× ∑ k k=0 k 22 4 (ki !) (α −α12 − α )

n+1−k  1  1  2  × −  = erfi  α1 − α + i α 2 z ×  α1 + iα 2  2   α1 − α + iα 2

n+1−k n (2k )!  1  ×  −  ; ∑ k k =0 k 2 2  α1 + iα 2  (−4) (k!) (α1 − α + iα 2 )

n+1−k n z 2k  1  2) (18) α α = − ; V2 ( 1 , 2 , z) ∑   k =0 k!  α1 + iα 2 

47 n+1−k n (2k )!  1  3) (18) α α α β = − α + β 2  −  × V3 ( , 1 , 2 , , z) exp[ ( z ) ] ∑   k=1 k!  α1 + iα 2   2r−1 k (αβ) 2k −2l l r!(α 2 z + αβ − α z − iα z ) ×  1 2 − ∑ ∑ 2k −l+r l=1 l!(2k − 2l )! r=1 l−r 2  4 (2r )!(α − α1 − iα 2 ) 2r−2  k (l −1)!(αβ) 2k+1−2l l (α 2 z + αβ − α z − iα z)) − 1 2  , ∑ ∑ 2k−l+r  l=1 (2l −1)!(2k +1− 2l )! r=1 2 (r −1)! (α − α1 − iα 2 ) 

n+1−k n (2k )!  1  V (18) (α,α , α , 0, z) = exp (− α 2 z 2 )  −  × 3 1 2 ∑ 2 k =1 (k!)  α1 + i α 2 

k l!z 2l−1 × ; ∑ k +1−l l=1 k −l 2 4 (2l )! (α − α1 − iα 2 )  1 n z 2k 4) V (18) (α, β)= erf (αz + β)exp (α 2 z 2 ) + 4 2  ∑ n−k α  k =0 k! (− α 2 )

2 exp(−− 2αβz β ) nk(2kz )! 2 l  +  , ∑∑−α 22nk−−αβ kl πβ kl=00kl!( )= !(2 ) 

n 2k (18) 1 z  erf (α z) 2 2 2 z  V (α,0)= ∑  exp (α z )−  ; 4 α n−k α k =0 k!(− α 2 )  (2k + 1) π 

2n+2 n+1 2n+2−2k (18)  z (2n + 1)! β  5) V (α, β)= erf (α z + β)  −  + 5 2n+2 ∑ k  2n + 2 α k =0 4 k!(2n + 2 − 2k )!

(2n +1)!  n β2n−2k k (l +1)! (α z + β) 2l+1 + exp − (αz + β)2  − 2n+2 [ ] ∑ ∑ k−l πα k=0 (k +1)!( 2n − 2k )! l=0 4 (2l + 2)!

n k! β 2n+1−2k k (α z + β) 2l  − ∑ ∑  , k =0 (2k + 1)! (2n +1 − 2k )! l=0 l! 

2n+2 (18)  z (2n + 1)!  V (α, 0)= erf (α z)  −  + 5 +  2n + 2 (n + 1)!(4α 2 ) n 1 

(2n + 1)! n (k + 1)!z 2k +1 + exp(− α 2 z 2 ) . ∑ 2 n−k (n + 1)! πα k =0 (2k + 2)! (4α )

48 PART 2 DEFINITE INTEGRALS

2 zzn exp α +β 2.1. Integrals of  ( ) 2.1.1. +∞ 2 π 1. exp −a z +β dz = 1 − erf β  { a > 0 }. ∫ ( ) ( ) 0 2a

+∞ 2 π 2. exp −(a z +β) dz = { a > 0 }. ∫ a −∞ ∞ π 3. exp[− (α z + β)2 ] dz = − [erf (β) 1] ∫ 2α 0

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re ( α=±∞z) }. zz→∞ ( ) →∞

∞ π 4. exp[(α z + β)2 ] dz = − [erfi (β)  i] ∫ 2α 0

{ lim Reα22z + 2 αβ zz − ln = −∞ , lim Im (αz) = ±∞ }. z→∞ ( ) z→∞

2.1.2. +∞ exp −β2 2 πβ ( ) 1.z exp −( a z +β) dz = erf( β) − 1 + { a > 0 }. ∫ 22 0 22aa

+∞ 2 πβ 2.z exp −( a z +β) dz =− { a > 0 }. ∫ 2 −∞ a

∞ π β exp(− β 2 ) 3. z exp[− (α z + β)2 ] dz = [erf (β) 1]+ ∫ 2 2 0 2α 2α

{ lim Re (α 2 z 2 + 2αβ z )= +∞, lim Re (α z ) = ±∞ }. z→∞ z→∞

∞ π β exp (β 2 ) 4. z exp [(α z + β) 2 ] dz = [erf i (β)  i] − ∫ 2 2 0 2α 2α

{ lim Re(α 2 z 2 + 2αβ z ) = −∞, lim Im(α z ) = ±∞ }. z →∞ z →∞

49 2.1.3. +∞ π β22 + β −β 2 (2 1) exp( ) 1.z2 exp −( a z +β) dz = 1 − erf ( β) − { a > 0 }. ∫  33 0 42aa

+∞ π21 β+2 2 ( ) 2.z2 exp −( a z +β) dz = { a > 0 }. ∫  3 −∞ 2a

∞ π (2β 2 +1) βexp (− β 2 ) 3. z 2 exp [ − (α z + β) 2 ] dz = − [ erf (β) 1] − ∫ 3 3 0 4α 2α

{ lim [Re (α 2 z 2 + 2αβ z )− ln z ] = +∞ , lim Re (α z ) = ±∞ }. z→∞ z→∞

∞ π (1 − 2β 2 ) β exp (β 2 ) 4. z 2 exp [(α z + β) 2 ] dz = [erf i (β)  i] + ∫ 3 3 0 4α 2α

{ lim [Re(α 2 z 2 + 2αβ z )+ ln z ] = −∞, lim Im (α z ) = ±∞ }. z→∞ z→∞

2.1.4.

+∞ 2 1 (1) (1) 1.zn exp − a z +β dz = W n, a ,β  1 − erf β + W na,,β ∫ ( ) 1 ( )( ) 2 ( ) 0 a { a > 0 }. +∞ 2 2 (1) 2.zn exp − a z +β dz = W n,, a β > ∫ ( ) 1 ( ) { a 0 }. −∞ a

∞ 2 (11) 1 ( ) 3.zn exp −α( z +β) dzWn =( , αβ ,) −  erf( β)  1 Wn( , αβ , ) ∫ 21α  0

{ lim Reα22z +αβ−− 2 zn( 1) ln z =+∞ , lim Re ( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 (11) 1 ( ) 4.zn exp (α+β z) dz = W( ni, αβ− , i )  erf i ( β)  iW ( ni,, αβ i ) ∫ 21α  0

{ lim Reα22z +αβ+− 2 zn( 1) ln z =−∞ , lim Im ( α=±∞z) }. zz→∞ ( ) →∞

50 Introduced notations:

En( 2) nk−2 (1) n! π β 1) Wn( ,,αβ) = , 1 nk∑ 2(−α) k=0 4kn !( − 2! k)

(1) (2!m) π (1) Wm1 (2 ,α= ,0) , Wm1 (2+α 1, ,0) = 0 ; 2!21mm+ m α 2

n!exp −β2 n− En( 2) (1) ( ) (k −1!) 2) Wn( ,,αβ) =  ∑ × 2 n+1 − +− 2(−α)  k=1 (2kn 1!) ( 1 2 k) !

− − + ( ) n−1−2k + 2l k β n 1 2k 2l E n 2 1 k l! β  × ∑ − ∑ ∑  , − − k −l l =1 (l 1)! k =1 k ! (n 2k )! l =1 4 (2l )! 

(1) (1) m! Wm2 (2 ,α= ,0) 0, Wm2 (2+α 1, ,0) = . 2 α22m+

2.2. Integrals of zn exp (α22 zz +β +γ)

2.2.1. +∞ π  β 2    β  1. exp(− a 2 z 2 + β z + γ ) dz = exp + γ  1+ erf   . ∫ 2a  2    2a  0  4a   

+∞ π  β 2  2. exp (− a 2 z 2 + β z + γ ) dz = exp  + γ  . ∫  2  −∞ a  4a  ∞ 2 22 π ββ 3. exp −αz +β z +γ dz = exp +γerf ± 1 ∫ ( ) 22αα2 0 4α 

{ lim Re α22zz − β +ln z = +∞ , lim Re (αz) = ±∞ }. z→∞ ( ) z→∞ ∞ 2 22 π ββ 4. exp αz +β z +γ dz =−exp  γ− erfi  i ∫ ( ) 22αα2 0 4α 

{ lim Re α22zz + β −ln z = −∞ , lim Im(αz) = ±∞ }. z→∞ ( ) z→∞

51 2.2.2. +∞ πβ ββ2 exp(γ) 1.z exp − a22 z +β z +γ dz = exp +γ1 + erf + . ∫ ( ) 32 2 0 44aa2a 2a

+∞ π β  β 2  2. zexp(− a 2 z 2 + β z + γ ) dz = exp + γ  . ∫ 3  2  −∞ 2a  4a 

∞ π β  β 2    β   3. z exp (− α 2 z 2 + β z + γ ) dz = exp + γ  erf   ±1 + ∫ 3  2   2α  0 4α  4α      exp(γ ) + { lim Re (α 2 z 2 − β z )= +∞, lim Re (α z ) = ±∞ }. 2α 2 z→∞ z→∞ ∞ 2 22 πβ ββ 4.z exp α z +β z +γ dz =exp γ− erfi  i − ∫ ( ) 322α 0 44αα exp(γ ) − { lim Re(α22zz + β) = −∞, lim Im( αz) = ±∞ }. 2α 2 zz→∞ →∞

2.2.3. +∞ π (2a 2 + β 2 )  β 2  1. z 2 exp(− a 2 z 2 + β z + γ ) dz = exp + γ × ∫ 5  2  0 8a  4a    β  β × 1+ erf   + exp(γ ).   2a  4a 4 +∞ π (2a 2 + β 2 )  β 2  2. z 2 exp (− a 2 z 2 + β z + γ ) dz = exp + γ  . ∫ 5  2  −∞ 4a  4a  ∞ π (2α 2 + β 2 )  β 2  3. z2 exp(− α 2 z2 + β z + γ ) dz = exp + γ  × ∫ 5  2  0 8α  4α    β   β × erf   ±1 + exp (γ )   2α   4α 4

{ lim Re α22zz −β−ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ π (2α 2 − β 2 )  β 2  4. z 2 exp (α 2 z 2 + β z + γ ) dz = exp  γ −  × ∫ 5  2  0 8α  4α  ββ ×erfi i +γexp( ) 2α 4α4

52 { lim Re α22zz +β+ln z =−∞ , lim Im ( α=±∞z) }. zz→∞ ( ) →∞ 2.2.4.

+∞ n 22 1 β (22) 2 ( ) 2 1.z exp − a z +β z +γ dz =1 + erf W na,, β + W na,,. β ∫ ( ) aa2 12( ) ( ) 0 

+∞ n 22 2 (2) 2 2.∫ z exp(− a z +β z +γ) dz = W1 ( n,, a β) . −∞ a

∞ 1 β (2) 3.zn exp −α22 z +β z + γ dz = erf± 1W n , α2 , β + ∫ ( ) αα 1 ( ) 0 2

(2) 2 +Wn2 ( ,, αβ)

{ lim Re α22z −β−− zn( 1) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ (2) 1 β 4.zn exp α22 z +β z + γ dz = W n, −α2 , β − erf i  i × ∫ ( ) 2 ( ) αα 0 2

(2) 2 ×Wn1 ( ,, −α β)

{ lim Re α22z +β+− zn( 1) ln z =−∞ , lim Im( α=±∞z) }. zz→∞ ( ) →∞

2.2.5. +∞ 0 n n! 1.znn exp(− b z +γ) dz =( −1) z exp( b z+γ) dz =exp( γ) { b > 0 }. ∫∫n+1 0 −∞ b

∞ n! 2.zn exp(β z +γ) dz = exp(γ) { lim [Re(β z ) + nln z ] = −∞ }. ∫ n+1 →∞ 0 (−β) z

Introduced notations:

22En( 2) nk− (2) n! π ββ 1) Wn ,α2 , β = exp+γ , 1 ( ) n+−12∑ nk 24α k=0 kn!( −α 2! k) ( 2 )

53 (2) (2!m) π (2) Wm2 ,α=2 ,0 exp(γ) , Wm2+α 1,2 ,0 = 0 ; 1 ( ) m 1 ( ) 2!21m+ m (α 2)

n− En( 2) (2) nk!exp(γ−) ( 1) ! 2) Wn ,,α2 β=  ∑ × 2 ( ) n − +− 2  k=1 (2kn 1!) ( 1 2 k) !

k−l n−1−2 k+2 l E ( n 2 ) n−1−2 k+2 l  k 4 β 1 k l !β × ∑ − ∑ ∑  , 2 n−k+l k! ( n − 2 k )! 2 n−k+l  l=1 ( l − 1 )! (α ) k=1 l=1 ( 2 l )! (α ) 

(2) (2) m! Wm2 ,α=2 ,0 0, Wm2+α 1,2 ,0 = exp(γ) . 2 ( ) 2 ( ) m+1 2(α2 )

2.3. Integrals of erf n (α z + β) exp[− (α z + β)2 ]

2.3.1. +∞ 2 π 1. erfaz+β exp  −az +β dz =1 − erf 2 β { a > 0 }. ∫ ( ) ( ) ( ) 0 4a

+∞ 2 2. erfaz+β exp  −az +β dz =0 ≠ ∫ ( ) ( ) { a 0 }. −∞

∞ 2 π 3. erf(αz +β) exp  −( αz +β) dz =1 − erf 2 ( β) ∫ α  0 4

{ lim Reα22z + 2 αβ zz + ln = +∞ }. z→∞ ( ) 2.3.2. +∞ 2 π 1. erf2 az+β exp  −az +β dz = −β3 { a > 0 }. ∫ ( ) ( ) 1 erf ( ) 0 6a

+∞ 2 2 π 2. erfaz+β exp  −az +β dz = > ∫ ( ) ( ) { a 0 }. −∞ 3a

∞ 2 π 3. erf23(αz +β) exp  −( αz +β) dz =−erf( β)  1 ∫ α  0 6

{ lim Reα22z + 2 αβ zz + ln = +∞ , lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

54 2.3.3. +∞ 2 π + 1.∫ erf2mm(az+β) exp  −( az +β) dz = 1− erf 21( β) { a > 0 }. (42ma+ )  0 +∞ ++2 π 2. erf 21mm(az+β) exp  −( az +β) dz = 1− erf 22( β) { a > 0 }. ∫ 44ma+  0 ( )

+∞ 2 π 3.∫ erf2m (az+β) exp  −( az +β) dz = { a > 0 }. (21ma+ ) −∞

+∞ 2 4. erf 21m+ az+βexp  − az +β dz =0 ≠ ∫ ( ) ( ) { a 0 }. −∞

∞ 21π n+ 5. erfnn(αz +β) exp  −( αz +β) dz = (±1) − erf +1 ( β)  ∫ +α   0 (22n )

{ lim Reα22z + 2 αβ zz + ln = +∞ , lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

2.4. Integrals of z n erf (α z + β) exp[− (α z + β)2 ]

2.4.1. +∞ 2 πβ 1.z erf( az+β) exp  −(az +β) dz =erf2 ( β) − 1 + ∫ 2  0 4a

erf (β) 2 +exp( −β2 ) − erf( 2β) − 1 { a > 0 }. 24aa22 +∞ 2 1 2.z erf( az+β) exp  −( az +β) dz = { a > 0 }. ∫ 2 −∞ 2 a

∞ 2 πβ erf (β) 3.z erf(α+β z ) exp  −α+β( z) dz =erf22( β−+) 1 exp −β− ∫ 22 ( ) 0 42αα

2 −βerf( 2)  1 { lim Re(α22zz +αβ=+∞ 2) , lim Re( α z) =±∞ }. 4α2 zz→∞ →∞

55 2.4.2. +∞ 2 π 1 1.z2 erf( az+β) exp  −+β( az) dz = β+221 − erf ( β+) ∫ 3  0 4a 2

2  exp(−β 2 ) β +  − 2 1− erf 2 β +erf( β) exp −β2 { a > 0 }. 3 ( ) ( ) π  2a { } 

+∞ 2 2 β 2.z2 erf( az+β) exp  −( az +β) dz =− { a > 0 }. ∫ 3 −∞ a

∞ 2 2 π  2 1  2 3. z erf (α z + β) exp [− (α z + β) ] dz =  β + [1− erf (β)]+ ∫ 3  2  0 4α  2  exp(− 2β ) β  2  +  +  2 [erf ( 2 β)1]− erf (β)exp(− β )  π  2α 3  

{ lim [Re (α 2 z 2 + 2αβ z )− ln z ]= +∞, lim Re (α z ) = ±∞ }. z→∞ z→∞

2.4.3. +∞ 2 1.zn erf az+β exp  −az +β dz =erf 2 β − 1 × ∫ ( ) ( ) ( ) 0

(4) 1 (44) ( ) ×W( na,, β+)  1erf −2 ( β) W( na,, β+) W( na ,, β) { a > 0 }. 1a { 23}

+∞ 2 (4) 2.zn erf az+β exp  − az +β dz =−2 W n , a , β > ∫ ( ) ( ) 1 ( ) { a 0 }. −∞

∞ 2 (4) 3.zn erfα z +β exp  − αz +β dz =erf 2 β 1W n ,α , β + ∫ ( ) ( ) ( )  1 ( ) 0

1 (44) ( ) + 1− erf 2 ( β) Wn( ,,,, αβ) + Wn( αβ) α {23}

{ lim Reα22z +αβ−− 2 zn( 1) ln z =+∞ , lim Re ( α=±∞z) }. zz→∞ ( ) →∞

56 Introduced notations:

n n− En( 2) nk+−12 k−1 (4) (−1) nk ! ( −β1!) (2 l) ! 1)Wn( ,,αβ) = , 1 n+12∑∑l 22α kl=10(2kn− 1!) ( +− 1 2 k) ! = 8!(l )

m (4) (4) m! (2!k ) Wm(2 ,α= ,0) 0, Wm(2+α 1, ,0) =− ; 1 1 22m+ ∑ k 2 22α k=0 8!(k )

En( 2) nk−2 (4) n! π β 2) Wn( ,,αβ) = , 2 nk∑ +1 (−α) k=0 4kn !( − 2! k)

(4) (2!m) π (4) Wm2 (2 ,α= ,0) , Wm2 (2+α 1, ,0) = 0 ; 4!mm+12m α

En( 2) nk−2 (4) n!  β  3) Wn( ,α , β) = erf(β) exp −β2 × 3 nk ∑  ( ) (−α)  k=1 4kn !( − 2! k) 

+ k −1 4l l ! β 2l 1 exp(− 2β 2 ) k −1 (l ! )2 l 2l +r β 2r  × ∑ + ∑ ∑  − l =0 (2l + 1)! 2 π l =0 (2l + 1)! r =0 r ! 

− ( ) + − n E n 2 (k −1)! β n 1 2k  erf (β) k −1 β 2l − ∑  exp(− β 2 )∑ + k =1 (2k −1)! (n + 1 − 2k )!  2 l =0 l !

+ exp(− 2β 2 ) k −1 (2l )! l −1 r ! β 2r 1  +  , ∑ 2 ∑ l −r π l =1 (l ! ) r =0 8 (2r + 1)! 

m−1 2 (4) (2!mk) ( !) (4) Wm(2 ,α= ,0) , Wm(2+α 1, ,0) = 0 . 3 2m∑ 21 mk+− 3 mk!πα k=0 2( 2+ 1!)

57

n 2.5. Integrals of z erf (α z + β)exp(β1z + γ )

2.5.1. +∞ 0 erf (β) 1 1.∫∫ erf(a z+β) exp( − b z +γ) dz =−erf( a z −β) exp( b z +γ) dz =exp( γ) − × 0 −∞ bb

bb2 βb  × γ+ + β+ − > > exp erf 1 { a 0, b 0 }. 4a2 aa2

∞ 2 1 β11 ββ β1 2. erf(αz +β) exp( β1 z +γ) dz = exp − +γerf  β−1 − ∫ βα2 α 0 1 4α 2 erf (β) − (γ ) { lim Reα22z + 2 αβ zz − β +2ln z = +∞ , exp ( 1 ) β1 z→∞

lim Re (β1 z ) = −∞, lim Re (αz ) = ±∞ }. z→∞ z→∞

2.5.2. +∞ 0 1.∫∫z erf( a z+β) exp ( − b z +γ) dz = zerf( a z −β) exp( b z +γ) dz = 0 −∞

erf (β) 22a22−−β b ab =exp ( γ−) × b2 2ab22

2 bb2 βb exp(γ−β ) ×exp  γ+ +erf β+ − 1 + { a > 0, b > 0 }. 2  4a aa2 π ab

∞ erf (β) 22α22 −β + αββ 2.z erf(α z +β) exp( β z +γ) dz =exp( γ) − 11× ∫ 1 2 22 0 β112αβ

2 exp γ−β2 β11 ββ β1 ( ) ×exp − +γerf β− 1 − 2 αα 4α 2 παβ1

22 { lim Reαz + 2 αβ zz − β1 +ln z = +∞ , z→∞ ( )

lim [Re(β1z ) + ln z ] = −∞ , lim Re(αz) = ±∞ }. z→∞ z→∞

58 2.5.3. +∞ 0 n+1 1.∫∫znn erf( a z+β) exp( − b z +γ) dz =( −1) z erf( a z−β) exp( b z +γ) dz = 0 −∞

n!exp(γ)  erf ( β) b =  −erf β+ − 1 × ba bn 2

(55) 2a ( )  ×Wa12( ,, β− b) − Wa( ,, β− b) { a > 0 , b > 0 }. π 

n+1 ∞ n!exp(γ−) ( 1) 2.zn erf(α z +β) exp ( β z +γ) dz =  erf (β) + ∫ 1 β n 0 1  β1

 β1 (55) 2α ( )  +erf  β− 1WW(αββ , , 11) +( αββ,, ) 2α 12  π 

22 { lim Reαz +αβ−β 2 z1 zn −−( 2) ln z =+∞ , z→∞ ( )

lim [Re (β1z ) + n ln z ] = −∞ , lim Re(αz) = ±∞ }. z→∞ z→∞

Introduced notations:

− 2 n Ek( 2) kl2 (5) β11 ββ 1 (β1 −2 αβ) 1) W (αββ , ,1 ) = exp  − ∑ ∑ , 1 α2 α k nk− −α22kl− 4 k=0 2 (−β1 ) l=0 lk!( 2! l)

exp −β2 En( /2) (5) ( ) 1 Wn( ,α ,2 αβ) = ; 1 n ∑ nk−2 (2!α) k=0 k (−β)

n Ek( 2) 5 11 ( ) 2  2) W2 (α , β , β1 ) = exp( −β ) ∑∑× k nk−  lk!( − 2! l) kl=112 (−β1 )  =

− − + l r ! ( β − 2 αβ ) k 1 2 l 2 r k−E ( k 2 ) ( l − 1 )! × ∑ 1 − ∑ × 2 k−l+r ( 2 l − 1 )! ( k + 1 − 2 l )! r =1 ( 2 r )! (α ) l=1

l 4 l−r ( β − 2 αβ ) k−1−2 l+2 r  × ∑ 1  , k−l+r  r =1 ( r − 1 )! (α 2 ) 

59 n n− En( /2) (5) (−1) k! W (α, β ,2 αβ) =exp −β2 . 2 n+1 ( ) ∑ nk+−12 α k=1 (2k ) !2( β)

2m+1 2 2.6. Integrals of z erf (αz + β)exp(− α1z )

2.6.1.

+∞ erf (β) a a β2 1. zerf( az+β) exp − a z2 dz = + exp−1 × ∫ ( 1 ) 2 2a1 2 aa+ 0 2aa11+ a 1

    aβ  × 1− erf  {a ≥ 0, a1 > 0}.   2    a + a1 

+∞ a a β2 2 1 2.∫ z erfi( az+β) exp( − a1 z) dz = exp × 2 aa− 2 0 2aa11− a 1

 aβ erfi(β) ×+1 erf + { a≥>0, aa2 }.  1 2 2a1 aa1 −

+∞ 0 3. ∫ z erfi (a z + b)exp(− a 2 z 2 )dz = ∫ z erfi (a z − b)exp(− a 2 z 2 ) dz = 0 −∞

erf i(b) exp(b 2 ) = − {ab><0, 0}. 2a 2 2 πa 2b +∞ a  a β 2  4. ( + β) − 2 =  − 1  { ≥ > }. ∫ z erf az exp( a1 z ) dz exp   a 0, a1 0 2 a 2 + a −∞ a1 a + a1  1 

+∞ a a β2 2 1 > 2 5. ∫ zerfi( az+β) exp( − a1 z) dz = exp { aa1 }. 2 aa− 2 −∞ aa11− a 1

∞ erf (β) α αβ2 6. zerf(α z +β) exp −αz2 dz = − exp −1 × ∫ ( 1 ) 2 2α1 2 α +α 0 2α11 α +α 1

      αβ   22 2 × erf 1 { lim Re(αzz + α1 +2 αβ zz) + ln =   2   z→∞    α + α1  

60 = α2 = +∞ 2 lim Re( 1 z ) , lim Re α + α1 z = ±∞ }. z→∞ z→∞ ( )

∞ 11 7. zerf(α z +β) exp α22z dz = −erf( β) + exp −β2 ∫ ( ) 2 ( ) 0 2α πβ

{ lim Re α22zz = −∞, lim Re( αβ) = +∞ }. zz→∞ ( ) →∞

2.6.2.

+∞  21m+ 2 ma! erf (β) 1. ∫ zerf( az+β) exp( − a1 z) dz = + × 2 am+1 2 0  1 aa+ 1

  aβ (66) ( )  ×1 − erf W( aa,, β+) aW( aa,, β) {a ≥ 0, a > 0}. 1211 1 2 +  aa1 

+∞  21m+ 2 ma! erfi(β) 2. ∫ zerfi( az+β) exp( − a1 z) dz =  + × 2 am+1 2 0  1 aa1 −

  aβ (66) ( )  ×1 + erf W( iaai,, β+) aW( iaai,, β) a≥>0, aa2 . 1211 { 1 } − 2  aa1 

+∞ 0 3. ∫ z 2m+1 erfi (az + b)exp(− a 2 z 2 ) dz = ∫ z 2m+1 erfi (az − b)exp(− a 2 z 2 )dz = 0 −∞ m! 1 =  ( ) − (6 ) 2  erfi b W3 (b ) {ab><0, 0}. 2a 2m+2  b  +∞ 2m+1 2 m!a (6 ) 4. ∫ z erf (az + β)exp(− a1 z )dz = W (a,a1 , β) {a ≥ 0, a1 > 0}. 2 1 −∞ a + a1 +∞ 2m+1 2 m!a (6 ) 2 5. ∫ z erfi (az + β)exp(− a1 z )dz = W (i a,a1 , iβ) { aa1 > }. 2 1 −∞ a1 − a

∞  21m+ 2 m!erf (β) α 6. ∫ zerf(α z +β) exp( −α1z) dz = − × 2  αm+1 2 0  1 α +α1

61      αβ  ×     (6 ) (α α β) + α (6 ) (α α β) erf    1 W1 , 1 , W2 , 1 ,    2      α + α1   

22 2  2  { lim Re α+α+αβ−z11 z2 z( 2 m − 1) ln z = lim Re αz − 2 mz ln =+∞ , zz→∞ ( ) →∞ ( ) 

2 lim Re α + α1 z = ±∞ }. z→∞ 

∞ m+1 (−1!) m 1 (6) 7. z2m+ 1erf(α z +β) exp α22z dz = erf (β) +W −β2 ∫ ( ) 22m+ β 3 ( ) 0 2α 

22 { lim Reαz + 2 mz ln = −∞ , lim Re(αβz) − mz ln = +∞ }. zz→∞ ( ) →∞

Introduced notations:

2 2k −2l ( )  α β  m (2k )! k (αβ) 1) W 6 (α,α , β)= exp − 1  , 1 1  2  ∑ m+1−k ∑ 2k −l  α + α k =0 k!α l=0 l 2 1 1 4 l!(2k − 2l )!(α + α1 )

m (6) (2!k ) W (αα, ,0) = ; 1 1 ∑ k k=0 k2 mk+−12 4!(k ) α11( α +α )

2 −− + exp −β mk l2k 12 lr 2 (6) ( ) (2!k ) 1 (αβ) 2) W (αα,, β) = × 2 1 ∑∑∑m+−12 k klr−+ π klr=11k!α = (2kl− 2!) = 12 1 (α +α1 )

 r! (l −1)!  (6 ) × − , W (α,α , 0) = 0 ;  −  2 1  4l r l!(2r )! (2k +1 − 2l )(2l −1)!(r −1)!

( ) 1 m (2k )! 3) W 6 (β 2 )= exp(β 2 ) . 3 ∑ k π k=0k!(4β 2 )

62 n 2 2.7. Integrals of z exp(− αz + βz ) erf (α 1 z + β 1 ),

n 2 z exp(− αz ) erf (α 1 z + β 1 )erf (α 2 z + β 2 )

2.7.1. +∞ 1 a 1. −=2 1 {a > 0}. ∫ exp( az) erf ( a1 z) dz arctan 0 π aa

+∞ 2 1 a + a1 2 2. ∫ exp(− az )erfi (a1 z )dz = ln { aa> 1 }. 0 2 πa a − a1 +∞ +∞ 1 3. exp−=az22 erf( a z) erf ( a z) dz exp−=az erf( a z) erf ( a z) dz ∫∫( ) 122 ( ) 12 0 −∞ 1 aa = arctan 12 {a > 0}. π 222 a a++ aa12 aa

+∞ +∞ 1 4. exp(− az 2 )erf (a z )erfi (a z )dz = exp(− az 2 ) erf (a z )erfi (a z )dz = ∫ 1 2 2 ∫ 1 2 0 −∞

2 + 2 − 2 + 1 a aa1 aa2 a1a2 2 = ln { aa> 2 }. 2 πa 2 + 2 − 2 − a aa1 aa2 a1a2 +∞ +∞ 1 5. exp(− az 2 )erfi (a z )erfi (a z )dz = exp(− az 2 ) erfi(a z )erfi (a z )dz = ∫ 1 2 2 ∫ 1 2 0 −∞

1 aa12 22 = arctan { aa>+12 a}. π 222 a a−− aa12 aa

  +∞ π  β 2   2aβ + a β  − 2 + β + β =   1 1 { > } 6. ∫ exp( az z ) erf (a1 z 1 )dz exp erf   a 0 . −∞ a  4a   2 + 2   2 a aa1    +∞ π  β 2   2aβ + a β  − 2 + β + β =   1 1 7. ∫ exp( az z )erfi (a1 z 1 )dz exp erfi   −∞ a  4a   2 − 2   2 a aa1 

2 { aa> 1 }. ∞ 2 1 α1 22 8. exp−=ααz erf ( z) dz arctan { α1 ≠ −α, lim Re αzz + ln = ∫ ( ) 1 z→∞ ( ) 0 πα α

2 22 =lim Re αzz + α1 +2 ln z = +∞ }. z→∞ ( )

63 ∞ 2 1 αα12 9. ∫ exp(−αz) erf( α12 z) erf ( α z) dz = ± arctan πα 22 0 α α+α12 +α

2 2 22  { lim Reαz + ln z = lim Re α zz +α1 +2ln z = zz→∞ ( ) →∞ ( ) 

2 22  2 22 22  =lim Re αzz +α2 +2ln z = lim Re α zzz +α12 +α +3ln z =+∞ , zz→∞ ( ) →∞ ( ) 

2 2 22 α1 ≠ −α, α 2 ≠ −α , lim Re α+α12 +αz = ±∞ }. z→∞ ( )

∞(T )   2 π  β 2   2αβ + α β  10. exp(− αz 2 + βz ) erf (α z + β )dz = A exp erf 1 1 ∫ 1 1  α    ∞( ) α  4   α α + α 2  T1  2 1 

{ lim Re αz2 −β z +ln z  = lim Re αz2 +α 22 z +2 α β zz −β +2ln z = ( ) ( 1 11 )  zT→∞( 11) zT→∞( )

= α 2 − β + = α 2 + α 2 2 + α β − β + = +∞ ; lim [Re( z z ) ln z ] lim [Re( z 1 z 2 1 1 z z ) 2ln z ] z→∞(T2 ) z→∞(T2 )

= ± α+α22 =− α+α =±∞ A 1 if lim Re( 11zz) lim Re( ) , zT→∞( 21) zT→∞( )

= α+α22 ⋅ α+α =+∞ A 0 if lim Re( 11zz) lim Re( ) }. zT→∞( 12) zT→∞( )

ν 2 11. ∫ exp(− α z )erf (α1 z )dz = 0 . −ν

2.7.2.

+∞ aa 1. zexp−= a z2 erf( a z) erf ( a z) dz 12arctan + ∫ ( ) 12 22 0 π aaa++11 aa

aa + 21arctan {a > 0}. 22 π+aaa22 aa +

+∞  + 2 + 2 1  a1 a a1 a2 2. ∫ z exp(− az )erf (a1 z ) erfi (a2 z )dz =  ln + πa  + 2 + 2 − 0  2 a a1 a a1 a2  aa212 + arctan  { aa> 2 }. 22 aa−−22 aa

64 +∞  − 2 + 2 1  a1 a a1 a2 3. ∫ z exp(− az )erfi (a1 z )erfi (a2 z )dz =  ln + 2πa  − 2 − 2 − 0  a a1 a a1 a2

−+2  a2 aa21 a 22 + ln { aa>+12 a}. 22 aa−2 aa −− 21 a

+∞ 2  πβ β 2aaβ+ β 4. zexp − az2 +β zerf a z +β dz = exp erf 11 + ∫ ( ) ( 11)  −∞ 2aa 4a 22+ 2 a aa1

 2 2  a β − 4aβ − 4a1ββ1 + 1 exp 1  {a > 0}.  2  + 2 4a + 4a a a a1  1    +∞ πβ  β 2   2aβ + a β  − 2 + β + β =   1 1 + 5. ∫ z exp( az z )erfi (a1 z 1 )dz exp erfi   −∞ 2a a  4a   2 − 2   2 a aa1   2 2  a β + 4aβ + 4a1ββ1 + 1 exp 1  { aa> 2 }.  2  1 − 2 4a − 4a a a a1  1 

2 +∞ a  aβ  6. z exp(− az 2 ) erf (a z + β )erf (a z + β )dz = 1 exp  − 1  × ∫ 1 1 2 2  2  −∞ + 2 a + a a a a1  1 

2 22  aβ2 + a β 2 − aa 121 β a aβ  a β+1 a β− 1 aa 122 β ×erf 1+− 22exp erf 2 2  +2 ++ 22 + 2 aa+ +2 ++ 22 aa1 aa 12 a aaa 2 2 aa2 aa 12 a

{a > 0}.

2 +∞ a  aβ  7. z exp(− az 2 ) erf (a z + β )erfi (a z + β ) dz = 1 exp  − 1  × ∫ 1 1 2 2  2  −∞ + 2 a + a a a a1  1 

2 22  aβ2 + a β 2 − aa 121 β a aβ  a β−1 a β+ 1 aa 122 β ×+erfi 1 22exp erf 2 2  +2 +− 22 − 2 aa− −2 +− 22 aa1 aa 12 a aaa 2 2 aa2 aa 12 a 2 { aa> 2 }.

2 +∞ a  aβ  8. z exp(− a z 2 )erfi (a z + β )erfi (a z + β )dz = 1 exp 1  × ∫ 1 1 2 2  2  −∞ − 2 a − a a a a1  1 

65 2 22  aβ2 − a β 2 + aa 121 β a aβ  a β−1 a β+ 1 aa 122 β ×+erfi 1 22exp erfi 2 2  −2 −− 22 − 2 aa− −2 −− 22 aa1 aa 12 a aaa 2 2 aa2 aa 12 a 22 { aa>+12 a}.

∞ 1  αα 2  12 9. zexp(−=α z) erf( αα12 z) erf ( z) dz arctg + ∫ πα  22 0  αα++11 αα  α α  + 2 1 α2 = α2 +α 22 + = arctg  { lim Re( z) lim Re( zz1 ) ln z α + α 2 α + α 2  zz→∞ →∞ 2 2    = α 2 + α 2 2 + = α 2 + α 2 2 + α 2 2 + = +∞ lim [Re( z 2 z ) ln z ] lim Re ( z 1 z 2 z ) 2ln z  , z→∞ z→∞  

2 2 22 α1 ≠ −α,, α 2 ≠ −α α 12 +α ≠ −α }. ∞( ) T2 π β  β 2  − α 2 + β α + β =   × 10. ∫ z exp( z z ) erf ( 1 z 1 )dz A exp  2α α 4α ∞(T1 )  

   2 2   2αβ + α β  α β − 4αβ − 4α1ββ1 × erf 1 1 + A 1 exp 1     2   α α + α 2  α α + α 2 4α + 4α  2 1  1  1 

{ lim Re(αzz22 −β ) = lim Re( α zz −β ) = zT→∞( 12) zT→∞( )

= α 2 + α 2 2 + α β − β + = lim [Re( z 1 z 2 1 1 z z ) ln z ] z→∞(T1 )

= α 2 + α 2 2 + α β − β + = +∞ = ± lim [Re( z 1 z 2 1 1 z z) ln z ] ; A 1 if z→∞(T2 )

α+α22 =− α+α =±∞ lim Re( 11zz) lim Re( ) , zT→∞( 21) zT→∞( )

= α+α22 ⋅ α+α =+∞ A 0 if lim Re( 11zz) lim Re( ) }. zT→∞( 12) zT→∞( )

∞(T ) 2 α αβ2 11. zexp−α z2 erf( α z +β) erf ( αz +β) dz = A 11exp− × ∫ ( ) 11 2 2 2 ∞ α α+α2 α+α (T1 ) 1 1

22 αβ2 + α β 2 − α 1 α 21 β α αβ ×erf 1+A 22exp −×  2 α+α2 α+α 22 +α α α+α2 α+α 1 12 22

66 2 αβ+αβ−ααβ1 1 122 × 2 α 2 ≠ −α α 2 ≠ −α erf  { 1 , 2 , α+α2 α+α 22 +α 2 12 lim Re(α=zz22) lim Re( α=) zT→∞( 12) zT→∞( )

= lim Re αz2 +α 22 z +2 α β zz + ln = ( 1 11) zT→∞( 1 )

= lim Re αz2 +α 22 z +2 α β zz + ln = ( 1 11) zT→∞( 2 )

2 22 = lim Re αz +α z +2 α22 β zz + ln = →∞ ( 2 ) zT( 1 ) 

= α 2 + α 2 2 + α β + = lim [Re( z 2 z 2 2 2 z ) ln z ] z→∞(T2 ) = α 2 + α 2 2 + α 2 2 + α β + α β + = lim [Re( z 1 z 2 z 2 1 1 z 2 2 2 z ) 2ln z ] z→∞(T1 ) = α 2 + α 2 2 + α 2 2 + α β + α β + = +∞ ; lim [Re( z 1 z 2 z 2 1 1 z 2 2 2 z ) 2ln z ] z→∞(T2 )

= ± α+α22 +α =− α+α22 +α =±∞ A 1 if lim Re( 12zz) lim Re( 12) , zT→∞( 21) zT→∞( )

= α+α22 +α ⋅ α+α22 +α =+∞ A 0 if lim Re( 12zz) lim Re( 12) }. zT→∞( 12) zT→∞( )

ν 2 12. ∫ z exp(− αz ) erf (α1 z )erf (α 2 z )dz = 0 . −ν

2.7.3. +∞ (2m)! ( ) 2m − 2 = 7 > 1. ∫ z exp( az ) erf (a1 z )dz W1 (m, a, a1 ) {a 0}. 0 m! π

+∞ (2!m) (7) 22m −= > 2 2. ∫ zexp( az) erfi ( a11 z) dz W2 ( m,, a a ) { aa1 }. 0 m! π

+∞ +∞ 1 3. z 2m exp(− az 2 ) erf (a z )erf (a z )dz = z 2m exp(− az 2 ) erf (a z )erf (a z )dz = ∫ 1 2 2 ∫ 1 2 0 −∞   (−1)m ∂ m  1 a a  = ⋅ arctg 1 2 {a > 0}. m   π ∂a  a 2 + 2 + 2   a aa1 aa2 

67 +∞ +∞ 1 4. z 2m exp(− az 2 )erf (a z )erf i(a z )dz = z 2m exp(− az 2 )erf (a z )erfi (a z )dz = ∫ 1 2 2 ∫ 1 2 0 −∞

m m  2 2 2  (−1) ∂  1 a + aa − aa + a1a2  = ⋅ ln 1 2 { aa> 2 }. m   2 2 π ∂a  a 2 + 2 − 2 −   a aa1 aa2 a1a2  +∞ +∞ 2m 2 1 2m 2 5. ∫ z exp(− az ) erfi (a1z ) erfi (a2 z )dz = ∫ z exp(− az ) erfi (a1z ) erfi (a2 z )dz = 0 2 −∞   (−1)m ∂ m  1 a a  = ⋅ arctg 1 2 { aa>+22 a}. m   12 π ∂a  a 2 − 2 − 2   a aa1 aa2 

+∞ m! m (2!k ) 6. z21m+ exp−=× az 2 erf( a z) erf ( a z) dz ∑ ∫ ( ) 12 π 2 mk+−1 0 k=0 (ka!)

(77) 22( ) ×aW111( ka,, ++ a1 a 2) aW 2 ( ka ,, + a21 a) {a > 0}. 

+∞ m! m (2!k ) 7. z21m+ exp−=× az 2 erf( a z) erfi ( a z) dz ∑ ∫ ( ) 12π 2 mk+−1 0 k=0 (ka!)

 (77) 22( ) { > 2 }. ×aW121( ka,, ++ a1 a 2) aW 2 ( ka ,, − a21 a) aa2 

+∞ m! m (2!k ) 8. z21m+ exp−=× az 2 erfi( a z) erfi ( a z) dz ∑ ∫ ( ) 12π 2 mk+−1 0 k=0 (ka!)

× (7 ) − 2 + (7 ) − 2 >+22 [a1W2 (k , a a1 , a2 ) a2W2 (k , a a2 , a1 )] { aa12 a}. +∞ n! ( ) 9. z n exp(− az 2 + βz ) erf (a z + β )dz = W 7 (n, a, a , β, β ) {a > 0}. ∫ 1 1 n 3 1 1 −∞ 2

+∞ n! (7 ) 10. z n exp(− az 2 + βz )erfi (a z + β )dz = W (n, a, a , β, β ) { aa> 2 }. ∫ 1 1 n 4 1 1 1 −∞ 2

+∞ m! m (2!k ) 11. z21m+ exp− az 2 erf( a z+β) erf ( a z +β) dz = × ∫ ( ) 11 2 2 ∑ k mk+−1 −∞ π k=0 4!ka

 (7) ×aexp −β22 W2 ka ,+ a , a , − 2 a β , β +  1 ( 13) ( 12 11 2)

(7)  +aexp −β22 W2 ka ,+ a , a , − 2 a β , β {a > 0}. 2 ( 23) ( 21 22 1) 

68 +∞ m! m (2k )! 12. z 2m+1 exp(− az 2 )erf (a z + β )erfi (a z + β ) dz = × ∫ 1 1 2 2 ∑ k m+1−k −∞ π k=04 k!a

× − β2 (7 ) + 2 − β β + [a1 exp( 1 )W4 (2k , a a1 , a2 , 2a1 1 , 2 ) ( ) + β 2 7 − 2 β β > 2 a2 exp( 2 ) W3 (2k , a a2 , a1 , 2a2 2 , 1 ) ] { aa2 }. +∞ m! m (2k )! 13. z 2m+1 exp (− az 2 )erfi (a z + β )erfi (a z + β )dz = × ∫ 1 1 2 2 ∑ k m+1−k −∞ π k=04 k!a ( ) × a exp(β2 )W 7 (2k , a − a 2 , a , 2a β , β )+ [ 1 1 4 1 2 1 1 2 ( ) + β 2 7 − 2 β β >+22 a2 exp( 2 )W4 (2k , a a2 , a1 , 2a2 2 , 1 ) ] { aa12 a}.

∞ (2!m) (7) 22m −α α = α α α ≠ α2 ≠ −α 14. ∫ zexp( z) erf ( 11 z) dz W1 ( m,, ) { 0,1 , 0 m! π

2 2 22  lim Reα−−zmz( 2 1) ln = lim Re α+α−− zzmz1 (2 2) ln =+∞}. zz→∞ ( ) →∞ ( ) 

∞ m  22m A ∂ 1 αα12 15. ∫ zexp(−α z) erf( α12 z) erf ( α z) dz = ⋅ arctan πα∂αm 22 0 α α+α12 +α

2 2 22  { lim Reα−−zmz( 2 1) ln = lim Re α+α−− zzmz1 (2 2) ln = zz→∞ ( ) →∞ ( ) 

= α 2 + α 2 2 − − = α 2 + α 2 2 + α 2 2 − − = +∞ , lim [Re ( z 2 z ) (2m 2)ln z ] lim [Re ( z 1 z 2 z ) (2m 3)ln z ] z→∞ z→∞

22 m 22 α12 ≠ −α, α ≠ −α; A = (− 1) if lim Re α+α12 +αz =+∞, z→∞ ( )

m+1 22 A = (−1) if lim Re α+α12 +αz =−∞}. z→∞ ( )

∞ m 21m+ 2 m! (2!k ) 16. z exp−αz erf( α12 z) erf ( α z) dz = ∑ × ∫ ( ) π 2 mk+−1 0 k=0 (k!) α

  × α (7 ) α + α 2 α + α (7 ) α + α 2 α  1W1 (k , 1 , 2 ) 2W1 (k , 2 , 1 )   

α 2 ≠ −α α 2 ≠ −α α 2 + α 2 ≠ −α { 1 , 2 , 1 2 ,

α 2 − = α 2 + α 2 2 − − = lim [Re( z ) 2m ln z ] lim [Re( z 1 z ) (2m 1)ln z ] z→∞ z→∞

= α 2 + α 2 2 − − = lim [Re( z 2 z ) (2m 1)ln z ] z→∞

69 2 22 22 =lim Re αzzz +α12 +α −(2 m − 2) ln z =+∞}. z→∞ ( )

∞(T ) 2 n! n − α 2 + β α + β = (7 ) α α β β 17. ∫ z exp( z z ) erf ( 1z 1 )dz A W3 (n, , 1 , , 1 ) 2n ∞(T1 )

{α≠ 0, lim Re αz2 −β zn − −1 ln z = ( ) ( ) zT→∞( 1 )

= lim Re α+αz2 22 z +αβ−β−−2 zz n2 ln z = ( 1 11 ) ( ) zT→∞( 1 )

= lim Re αz2 −β zn − −1 ln z = ( ) ( ) zT→∞( 2 )

= lim Re α+αz2 22 z +αβ−β−2 zz n −2 ln z =+∞ ; ( 1 11 ) ( ) zT→∞( 2 )

= ± α+α22 =− α+α =±∞ A 1 if lim Re( 11zz) lim Re( ) , zT→∞( 21) zT→∞( )

= α+α22 ⋅ α+α =+∞ A 0 if lim Re( 11zz) lim Re( ) }. zT→∞( 12) zT→∞( )

∞(T ) 2 m! m (2k )! 18. z 2m+1 exp(− αz 2 ) erf (α z + β )erf (α z + β )dz = A × ∫ 1 1 2 2 ∑ k m+1−k π = 4 k!α ∞(T1 ) k 0

(7) × αexp −β22Wk2 ,α + α , α , − 2 α β , β +  1( 1) 3 ( 1 2 11 2)

(7) +αexp −β22Wk2 ,α + α , α , − 2 α β β  2( 2 ) 3 ( 2 1 2 2, 1 ) 

{ lim Reα−z22 2 mz ln = lim Re α−z 2 mz ln = ( ) ( ) zT→∞( 12) zT→∞( )

= lim Re αz2 +α 22 z +2 α β zm − 2 − 1 ln z = ( 1 11) ( ) zT→∞( 1 ) = lim Re αz2 +α 22 z +2 α β zm − 2 − 1 ln z = ( 1 11) ( ) zT→∞( 2 )

= lim Re αz2 +α 22 z +2 α β zm − 2 − 1 ln z = ( 2 22) ( ) zT→∞( 1 ) = lim Re αz2 +α 22 z +2 α β zm − 2 − 1 ln z = ( 2 22) ( ) zT→∞( 2 )

= lim Re αzzz2 +α 22 +α 22 +2 α β z + 2 α β zmz − 2 − 2 ln = ( 1 2 11 2 2 ) ( ) zT→∞( 1 )

70   = α 2 + α 2 2 + α 2 2 + α β + α β − − = +∞ , lim  Re( z 1 z 2 z 2 1 1z 2 2 2 z ) (2m 2)ln z  z→∞(T2 )  

α 2 ≠ −α α 2 ≠ −α 1 , 2 ;

= ± α+α22 +α =− α+α22 +α =±∞ A 1 if lim Re( 12zz) lim Re( 12) , zT→∞( 21) zT→∞( )

= α+α22 +α ⋅ α+α22 +α =+∞ A 0 if lim Re( 12zz) lim Re( 12) }. zT→∞( 12) zT→∞( )

ν 2m 2 19. ∫ z exp(− αz ) erf (α1z )dz = 0 . −ν

ν 21m+ 2 20. ∫ z exp(−αz) erf( α12 z) erf( α z) dz = 0 . −ν

Introduced notations:

− 2 ( ) 1 α m 1 (l!) 1) W 7 (m, α, α )= arctg 1 + α ; 1 1 m m 1 ∑ l+1 4 α α α l=0 + α m−l α + α 2 (2l 1)!(4 ) ( 1 )

− 2 ( ) 1 α + α m 1 (l!) 2) W 7 (m, α, α )= ln 1 + α ; 2 1 2m+1 m 1 ∑ l+1 2 α α α − α1 l=0 + α m−l α − α 2 (2l 1)!(4 ) ( 1 )

2   E (n / 2 ) n−2l ( ) π  β   2αβ + α β  β 3) W 7 (n, α, α , β, β )= exp  erf 1 1 ∑ + 3 1 1  α    n−l α  4   α α + α 2  l=0 l!(n − 2l )!α  2 1   22 n− En( /2) nl+−12 l lr+−1 1 β−αβ−αββ4411 l!β 4( 2r − 2!) +×exp1  ∑∑ 2 α+ α2 (2!ln) ( +− 12! l) ( r− 1!) α+α 441  lr=11= 1 

−− 2rq−− 22 rl−1 α2rq 12 (2 αβ + α β) En( /2) βnl−2 × 1 11 − (r −×1!) ∑ 22rq−− ∑∑ q=0 nlr−+ −22 q lr=11ln!( − 2! l) = qr!2( − 2 − 2 q) ! α( α+α1 )

− −−  r−1 α22rq αβ + α β 2rq 12 1 (2 11)  × , ∑ 21rq−− q=0 − − αnlr−+ −22 q α+α  qr!2( 1 2 q) ! ( 1 )   (7) π αβ1 Wm3 (2 ,αα ,11 , 0, β) = erf − m!ααm 2 α+α1

71 2lr+− 22 2rr+− 12 1!αβ2 ml−1 l αβ(2 ) −−exp1 ∑∑11 , 2 2 ml− 21l+− r m! α+α α+α1 lr=00 α = 2 1 rl!2( + 1 − 2 r) !( α+α1 )

(7 ) α α = W3 (2m, , 1 , 0, 0) 0 ,  2  ( ) (m +1)!α αβ W 7 (2m +1, α, α , 0, β )= 1 exp − 1  × 3 1 1  2  + α + α 2 α + α (2m 2)! 1  1 

22lr− ml(2!l) 4mr+−1 (αβ) 11 , × +− 2lr− ∑∑ml1 2 lr=00l!α = rl!2( −+ 2 r) !(αα1 )

m m+1−l ( ) (m +1)!α 4 (2l )! W 7 (2m +1, α, α , 0, 0) = 1 ; 3 1 ∑ l (2m + 2)! α + α 2 l=0 2 α m+1−l α + α 2 1 (l!) ( 1 )

2   E (n / 2 ) n−2l ( ) π  β   2αβ + α β  β 4) W 7 (n, α, α , β, β )= exp erfi 1 1 ∑ + 4 1 1  α    n−l α  4   α α − α 2  l=0 l!(n − 2l )!α  2 1 

 β+αβ+αββ22 n− En( /2) nl+−12 l lr+−1 1 441 11 l!β 4( 2r − 2!) +×exp ∑∑ 2 2 2!ln+− 12! l r− 1! α−α 44α− α  lr=11( ) ( ) = ( ) 1 1  −− 2rq−− 22 rl−1 α2rq 12 (2 αβ + α β) En( /2) βnl−2 × 1 11 + (r −×1!) ∑ 22rq−− ∑∑ q=0 nlr−+ −22 q lr=11ln!( − 2! l) = qr!2( − 2 − 2 q) ! α( α−α1 )

2r−2q − −  r−1 α (2αβ + α β)2r 1 2q × 1 1 1  , ∑ 2r−1−q  q=0 − − α n−l+r−2q α − α 2 q!(2r 1 2q )! ( 1 )   (7) π αβ1 Wm4 (2 ,αα ,11 , 0, β) = erf i + m!ααm 2 α−α1

2lr+− 22 2lr+− 12 1!αβ2 ml−1 l αβ(2 ) + exp 1 ∑∑11 , 2 2 ml− 21l+− r m! α−α α−α1 lr=00 α = 2 1 rl!2( + 1 − 2 r) !( α−α1 )

(7 ) α α = W4 (2m, , 1 , 0, 0) 0 , 2 (m +1)!α  αβ  (7 ) + α α β = 1  1  × W4 (2m 1, , 1 , 0, 1 ) exp + α − α 2  α − α 2  (2m 2)!( 1 )  1  22lr− ml(2!l) 4mr+−1 (αβ ) × 11 , ∑∑m+−12 l lr− lr=00l!α = 2 rl!2( − 2 r) !( α−α1 )

72 m m+1−l (7) (m +α1!) 4 (2l )! Wm(2+ 1, αα , ,0,0) = 1 . 4 1 ∑ l (2m + 2!) α−α2 l=0( )2 α m+1−l α − α 2 1 l! ( 1 )

+ + 2.8. Integrals of sin 2 m 1 (α 2 z 2 + β z + γ ), sinh2m 1(α 22zz +β +γ) ,

+ + cos 2 m 1 (α 2 z 2 + β z + γ ), cosh2m 1(α 22zz +β +γ)

2.8.1. +∞ 2π   b 2   b 2  1. sin(a 2 z 2 + bz + γ )dz = sin γ −  + cos γ −  × ∫ 4a   2   2  0   4a   4a    2   2     i +1 b   b   b   i +1 b  × 1− Re erf  ⋅  + cos γ −  − sin γ −  Im erf  ⋅  .   2 2a    4a 2   4a 2   2 2a 

+∞ +∞ 2.∫∫ sin(a22 z+ b z +γ) dz =2 sin(a22 z+ b z +γ) dz = −∞ −ba/2( 2 )

ba/2( 2 ) π bb22 =2 sin a22 z− b z +γ dz = cos−γ −sin −γ . ∫ ( ) 22 −∞ 2 a 44aa

∞ 2 2 2 2π    β  3. sin (α z + β z + γ ) dz = (i −1)expi  γ −  × ∫ 8α  2  0    4α 

11−+iiβ ββ2   ×erf  ⋅−−+Ai( 1) exp  i −γ erf  ⋅−A  αα122 22224α  

22 { lim lnz −Im α zz + β = +∞ ; Al = ±1 z→∞ ( ) if lim[Re(α z)+ (3 − 2l)Im(α z)]= ±∞ }. z→∞

∞ 2 22 πβ  β 4. sinh (αz++ βγ z) dz =exp −γerf  −A1 + ∫ αα2  α 0 44  2

2  ββ 22 +exp γ−A2 −erfi { lim lnz− Re( α zz + β) = +∞ ; 2 α z→∞  4α 2 

A1 = 1 if lim Re(α z ) = +∞ , A1 = −1 if lim Re(α z) = −∞ , z→∞ z→∞

73 A2 = ±i if lim Im(αz) = ±∞ }. z→∞ 2.8.2.

+∞ 2π  bb22 1. cos a22 z+ bz +γ dz =  cosγ− −sin γ− × ∫ ( ) 4a 22 0  44aa

ib++11 b22 b ib ×− ⋅ −γγ − + − ⋅ 1 Re erf cos22sin Im erf . 222a 44 aa 2 a

+∞ +∞ 2.∫∫ cos (a22 z+ b z +γ) dz =2 cos(a22 z+ b z +γ) dz = −∞ −ba/2( 2 )

ba/2( 2 ) π bb22 =2 cos a22 z− b z +γ dz = sin −γ +cos −γ . ∫ ( ) 22 −∞ 2 a 44aa

∞  2 22 21π− ββi 3. cos αz +β z +γ dz =(1 +i) exp  i γ− A −erf  ⋅ + ∫ ( ) 82αα2 1 0  4α 2 β2 1+ i β  +(1 −ii) exp −γ A −⋅erf  2 2  4α 2 2α 

{ lim lnz −Im α22 zz + β = +∞ ; z→∞ ( )

Al = ±1 if lim[Re(α z)+ (3 − 2l)Im(α z)]= ±∞ }. z→∞

∞ 2 22 πβ  β 4. cosh (αz++ βγ z) dz =exp −γA1 −erf  + ∫ αα2  α 0 44  2

ββ2  +exp γ−A −erfi 2 2  4α 2α 

22 { lim lnz− Re( α zz + β) = +∞ ; A1 = 1 if lim Re(αz ) = +∞ , z→∞ z→∞

A1 = −1 if lim Re(αz ) = −∞ , A2 = ±i if lim Im(αz) = ±∞ }. z→∞ z→∞

2.8.3. +∞ (2m +π 1!) 2 1. sin2m+ 1a 22 z+ b z +γ dz = × ∫ ( ) m+1 0 4 a

74 k m (−1)  b2 × sin( 2k + 1) −γ × ∑  2 k=0 (mk−)!( m ++ 1 k) !2 k + 1 4a

 11++ii21kb++21kb  × ⋅+ ⋅−+ Re erf Im erf 1  2222aa

bi2  1+ 21kb+ +cos( 2k + 1) −γ Im erf ⋅ − 2  4a  2 2a

1+ i 21kb+   − ⋅+ Re erf 1  . 2 2a  

+∞ +∞ 2.∫∫ sin2mm++ 1(a 22 z+ b z +γ) dz =2 sin2 1(a 22 z+ b z +γ) dz = −∞ −ba/2( 2 )

2 ba/2( ) k (2m +π 1!) m ( −1) =2 sin2m+ 1a 22 z− b z +γ dz = × ∫ ( ) m ∑ −∞ 4 a k=0 (mk−)!( m ++ 1 k) !4 k + 2

 b2 b2  ×cos( 2k + 1)  −γ −sin( 2k + 1) −γ .  2 2   4a 4a 

∞ + (2m +1)! π 3. sin 2m 1 (α 2 z 2 + β z + γ ) dz = × ∫ m+1 0 4 α

m (−1)k    β 2  × (i −1)exp i(2k +1) γ −  × ∑  2  k =0 (m − k )!(m +1+ k )! 4k + 2    4α 

1− i 21k +β β2 ×erf  ⋅ −A −( i +1) exp ik( 2+ 1) −γ × 1 2 2 2α 4α

1+ i 21k +β  ×⋅erf  −A  α 2 2 2 

{ lim lnz −(2 m + 1) Im α22 zz + β = +∞ ; z→∞ ( )

Al = ±1 if lim[Re(α z)+ (3 − 2l)Im(α z)]= ±∞ }. z→∞

75 mk− ∞ (2m +− 1!) π m ( 1) 4. sinh2m+ 1α 22z++ βγ z dz = × ∫ ( ) m+1 ∑ 0 4 α k =0 (mk−)!( mk ++ 1!) 2 k + 1

 ββ2221k +β   ×exp( 2k + 1) −γ erf −Ak +exp ( 2 + 1) γ−  × 22α 1   44αα2  

+β  21k  22 ×−A2 erfi  { lim lnzm−( 2 + 1) Re( α zz + β) = +∞ ; 2α z→∞  

A1 = 1 if lim Re(αz) = +∞ , A1 = −1 if lim Re(αz) = −∞ , z→∞ z→∞

A2 = ±i if lim Im(αz) = ±∞ }. z→∞

2.8.4. +∞ m + (2m +π 1!) 2 1 1. cos2m 1a 22 z+ b z +γ dz = ∑ × ∫ ( ) m+1 − ++ + 0 4 a k=0 (mk)!( m 1 k) !2 k 1

 b2  11++ii21kb++21kb ×sin( 2k + 1) −γ 1+ Im erf  ⋅−Re erf ⋅ +  2   4a  2222aa

bi2  1+ 21kb+ 1+ i 21kb+  +cos( 2k + 1) −γ1 − Re erf  ⋅ − Im erf ⋅  . 2  4a  2 2a 2 2a 

+∞ +∞ 2.∫∫ cos2mm++ 1(a 22 z+ b z +γ) dz =2 cos2 1(a 22 z+ b z +γ) dz = −∞ −ba/2( 2 )

ba/2( 2 ) (2m +π 1!) m 1 =2 cos2m+ 1a 22 z− b z +γ dz = × ∫ ( ) m ∑ −∞ 4 a k=0 (mk−)!( m ++ 1 k) !4 k + 2

 b2 b2  ×sin( 2k + 1) −γ + cos( 2k + 1) −γ .  2 2   4a 4a 

∞ + (2m +1)! π 3. cos 2m 1 (α 2 z 2 + β z + γ ) dz = × ∫ m+1 0 4 α

m 1  β2 × (1+i) exp ik( 2 + 1) γ− × ∑  2 k=0 (mk−)!( m ++ 1 k) !4 k + 2 4α

76 1−ik 21 +β β2 ×A −erf ⋅ +1 −i exp ik 2 + 1  −γ × 1 ( ) ( )2 2 2α 4α 

1+ i 21k +β  ×−A erf  ⋅  2 α 2 2 

{ lim lnz −(2 m + 1) Im α22 zz + β = +∞ ; z→∞ ( )

Al = ±1 if lim[Re(α z)+ (3 − 2l)Im(α z)]= ±∞ }. z→∞

∞ (2m +π 1!) m 1 4. cosh2m+ 1α 22z +β z +γ dz = ∑ × ∫ ( ) m+1 − ++ + 0 4 α k=0 (mk)!( m 1 k) !2 k 1

 ββ2221k +β  ×exp( 2kA + 1) −γ −erf +exp ( 2 k + 1) γ− × 221 α   44αα2 

21k +β  ×−A erfi 2 α 2 

22 { lim lnzm−( 2 + 1) Re( α zz + β) = +∞ ; A1 = 1 if lim Re(αz ) = +∞ , z→∞ z→∞

A1 = −1 if lim Re(α z ) = −∞ , A2 = ±i if lim Im(αz) = ±∞ }. z→∞ z→∞

n 22 2.9. Integrals of zsin (α zz +β +γ) exp ( β1 z)

2.9.1. +∞ 0 22 22 1.∫∫ sin (a z+ b z +γ) exp ( − b11 z) dz =sin( a z − b z +γ)exp( b z) dz = 0 −∞

2πbb  b22− b ii−−11b ++ ib b ib = exp11 cos−γ1 + Re erf ⋅1 −Im erf ⋅ 1 − 22 4a24aa 2222aa

22  b− b1ii−−11b 11 ++ ib b ib  −sin −γ1 + Reerf ⋅ +Imerf ⋅  { b1 ≥ 0 }. 2 2222aa 4a 

∞  2 π (β −βi ) 22 2  1 2.∫ sin (αz +β z +γ) exp ( β1 z) dz =(1 +i) exp −i γ × 8α α2 0  4i

77 2   1− i β − iβ   (β + iβ)  × A + erf  ⋅ 1  + (1− i )exp i γ − 1  ×  1  2   2 2α   4iα 

   1+ i β1 + iβ  22 × A2 + erf  ⋅   { lim Re(β1 z) + Im α zz + β −ln z = −∞ ;   →∞ ( )   2 2α  z

Ak = ±1 if lim Re(ααzk) +( 2 − 3) Im ( z) = ±∞ }. z→∞  2.9.2. +∞ 0 22 22 1.∫∫z sin( a z+ b z +γ)exp( − b11 z) dz =− zsin( a z− b z +γ)exp( b z) dz = 0 −∞

cos γ 21π−bb  b22−+ b  i b ib = + exp11 sin−γ(bb − )Re erf ⋅1 + 23 2 2  1  28aa 2 a  4 a  2 2a

i −1 b+− ib  b22 b +(bb + )Im erf ⋅11 +bb − +cos −γ × 11 2 2 2a  4a

 ii−−11b11++ ib b ib  ×−(bb1)Imerf  ⋅−+(bb 11)Reerf  ⋅−−bb  { b1 > 0 }. 2222aa  

∞ π  2.z sin α+β+γ22 z z exp ( βz) dz =(1 −i) ( i β−β×) ∫ ( ) 113  0 82α 

 (β + iβ)2    1+ i β + iβ  × expi γ − 1  A + erf  ⋅ 1  − (1+ i )(β + iβ )× 2  1  1  4iα    2 2α   2   (β1 − iβ)   1 − i β1 − iβ  cos γ × exp  − i γ A + erf  ⋅   + 2  2  2  4iα    2 2α  2α

2 2 { lim [Re (β1 z ) + Im (α z + β z ) ] = −∞; z→∞

Ak = ±1 if lim Re(ααz) +( 3 − 2 kz) Im( ) = ±∞ }. z→∞ 

2.9.3.

+∞ 0 n 2 2 n n 2 2 1. ∫ z sin (a z + bz + γ ) exp(− b1z )dz = (−1) ∫ z sin (a z − bz + γ )exp(b1z )dz = 0 −∞

22 ni!1bb b−+ b − b ib (9) = exp11 sin +γ Re erf ⋅1 +1W( nab , , , − b) − n 221 1 22aa 4 2 2a

78 22 ni!1bb b−+ b − b ib (9) − exp11 cos+γ Im erf ⋅1 +1W( nab , , , − b) + n 221 1 22aa 4 2 2a

n! (99) ( ) +sin γ⋅ ReW na ,22 , b ,− b − cos γ⋅ Im W na , , b , − b n 22( 11) ( ) 2 

{b1 > 0 if n > 0} .

2 ∞  (ββ− i ) 2. n 22 ni! 1 zsin (α z++ βγ z)exp( β1 z) dz =+ exp −×iγ ∫ 24n 12iα 0  

2   1− i β − iβ   ( )  (β + iβ)  × erf  ⋅ 1  + A W 9 (n, α, β, β ) −expi γ − 1  ×  1  1 1 2   2 2α    4iα  1+ i β +βi (9) × ⋅1 + αββ + erf AW213 ( n,,, ) 2 2α

 (99) ( )  + −γ α22 ββ − γ −α −ββ exp( iW) 22( n, , ,11) exp(iW) ( n , , , ) 

22 { lim Re(β1z) + Im α zzn + β +( −1) ln z = −∞ ; z→∞ ( )

Ak = ±1 if lim Re( αzk) +( 2 − 3) Im( α z)  = ±∞ }. z→∞ 2.9.4. +∞ 0 n n+1 n 1. ∫ z sin(bz + γ )exp(− b1 z )dz = (−1) ∫ z sin(bz − γ )exp(b1 z )dz = 0 −∞ ( ) = (− ) n 9 ( − ) > 1 n!W4 b, b1 {b1 0}. ∞ n β + γ β = − n (9 ) β β 2. ∫ z sin( z )exp( 1 z )dz ( 1) n!W4 ( , 1 ) 0

β22 ≠ −β  { 1 , lim Re(β1z) + Im( β z) + nz ln = −∞ }. z→∞

Introduced notations:

E (n / 2 ) n−2l ( ) 2π (1 − i ) (β − iβ) 1) W 9 (n, α, β, β ) = ∑ 1 , 1 1 4α n−l l=0 l!(n − 2l )!(iα 2 )

79 π (1 − i )(− i )n1 ( ) (9 ) α β β = 9 ( + α β β) = W1 (2n1 , , , i ) , W1 2n1 1, , , i 0 ; 2n1 +1 n1 ! 8α

n−E (n / 2 ) l−r n−1−2l+2r ( ) (l −1)! l 4 (β − iβ) 2) W 9 (n, α 2 , β, β ) = ∑ ∑ 1 − 2 1 (2l −1)!(n +1− 2l )! n−l+r l=1 r=1 (r −1)!(iα 2 )

n−1−2l+2r E (n / 2) 1 l r!(β − iβ) − ∑ ∑ 1 , l!(n − 2l )! n−l+r l=1 r=1 (2r )!(iα 2 )

( ) 4 n1 n ! W 9 2n , α 2 , β, iβ = 0 , (9 ) + α 2 β β = 1 ; 2 ( 1 ) W2 (2n1 1, , , i ) 2 n1 +1 (2n1 +1)!(iα )

E (n / 2 ) n−2l ( ) 2π (1+ i ) (β + iβ) 3) W 9 (n, α, β, β ) = ∑ 1 , 3 1 4α n−l l=0 l!(n − 2l )!(− iα 2 )

π (1 + i )i n1 ( ) (9 ) α β − β = 9 ( + α β − β) = W3 (2n1 , , , i ) , W3 2n1 1, , , i 0 ; 2n1 +1 n1 ! 8α

 En( /2) l 21l+− nl 2 (9) (n +1!) (−β1) β 4) β β =  γ⋅ 1 − W4 ( , 1 ) + cos ∑ 22n 1  2l+− 1! nl 2 ! β +β  l=0 ( ) ( ) ( 1 ) − ( ) l 2l n+1−2l n E n / 2 (−1) β β  i  exp(iγ ) exp(− iγ )  − sin γ ⋅ ∑ 1  =  −  . (2l )!(n +1 − 2l )!  2 n+1 n+1 l=0   (β1 + iβ) (β1 − iβ) 

n 2 2 2 2.10. Integrals of z exp(− α z + βz )sin(α 1 z + β 1 z + γ )

2.10.1.

2 2 +∞ π  b − b  1. exp(− a 2 z 2 + bz ) sin(b z + γ )dz = exp 1  × ∫ 1 2a  2  0  4a 

  bb1    b + ib1   bb1   b + ib1  × sin + γ  1+ Re erf   + cos + γ  Im erf   .   2a 2    2a   2a 2   2a 

2 2 +∞ π  b − b   bb  2. exp(− a 2 z 2 + bz ) sin(b z + γ )dz = exp 1 sin 1 + γ  . ∫ 1  2   2  −∞ a  4a   2a 

+∞  2 2 − 2 2 −  2 2 2 π  a b a b1 2a1bb1  3. ∫ exp(− a z + bz )sin (a1 z + b1 z + γ ) dz = exp × 2  4 + 2  0  4a 4a1 

80   2 2 2       a1b − a1b + 2a bb1 1 b + ib 1 ×  1 + γ    1  + + sin Re erf    4a 4 + 4a 2  2  2  2    1   a − ia1  2 a − ia1  a − ia1 

 2 2 2      a1b − a1b + 2a bb1 1 b + ib 1  +  1 + γ    1  +  cos Im erf    4a 4 + 4a 2  2  2  2   1   a − ia1  2 a − ia1  a − ia1 

{a > 0 or [a = 0, a1 ≠ 0, b ≤ 0]}. +∞ 22 2 2π 4. ∫ exp(−a z + bz)sin( a11 z+ b z +γ) dz = × 42+ −∞ 2 aa1

 a 2b 2 − a 2b 2 − 2a bb    a b 2 − a b 2 + 2a 2bb  ×  1 1 1   2 + 4 + 2  1 1 1 1 + γ  + exp a a a1 sin  4 + 2    4 + 2   4a 4a1    4a 4a1   2 2 2   a1b − a1b + 2a bb1 + 4 + 2 − 2  1 + γ   a a1 a cos  4 + 2    4a 4a1  

{a > 0 or [a = b = 0, a1 > 0]}.

∞ π i  ()β−i β 2 5. exp −α22z +β zsin( β z + γ) dz = exp 1 −i γ × ∫ ( ) 1 4α 2 0  4α

 2     β − iβ1   (β + iβ1 )   β + iβ1   × erf   ±1 − exp + iγ erf   ±1    2     2α    4α    2α  

22 { lim Re αzz −β−Im( β1 z) + ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞  22 2 π i  1 6. ∫ exp(−αz +β z)sin ( α11 z +β z +γ) dz =  × 4 2 0  α +αi 1

 (β − β )2    β − β   i 1   i 1   1 × exp  − iγ erf   + A1 − ×  4α 2 + 4iα    2   2  1    2 α + iα1   α − iα1 2  (β+i β1 ) β+i β  ×exp +γiAerf 1 +  2 2 44α−i α α2 −α  1 2 i 1 

22 2 { lim Re αzz −β−Im α11 z +β z +ln z =+∞ ; z→∞ ( ) ( )

2 Ak = ±1 if lim Reα +( 3 − 2ki) α1 z = ±∞ }. z→∞ 

81 ∞ exp(iγ) 2πi 7. exp −α22z +β zsin ±α i22 z +β+γ z dz =  × ∫ ( ) ( 1 ) β ±β α 0 2( 1 i ) 8

 (β ± iβ )2    β ± iβ   × exp 1 ± iγ erf  1  + A 2    8α    2 2α  

22 { lim Re 2αz − β ziz β1 +ln z = +∞ , lim Re[ (β iz β1 ) ] = −∞ ; z→∞ ( ) z→∞

A = 1 if lim Re(αz ) = +∞ , A = −1 if lim Re(αz) = −∞ }. z→∞ z→∞

2.10.2.

2 2 +∞ π  b − b  1. z exp(− a 2 z 2 + bz )sin(b z + γ )dz = exp 1 × ∫ 1 3  2  0 4a  4a 

  bb1   b + ib1   b + ib1    bb1  × sin + γ b Reerf   − b1 Imerf   + b + cos + γ  ×   2a 2   2a   2a    2a 2 

b++ ib11 b ib  sin γ ×b11Reerf + bbImerf  ++ . 22aa  2a2

2 2 +∞ π  b − b  2. z exp(− a 2 z 2 + bz )sin(b z + γ )dz = exp 1 × ∫ 1 3  2  −∞ 2a  4a 

  bb1   bb1  × bsin + γ  + b1 cos + γ  .   2a 2   2a 2 

+∞ 2 2 2 2 a sin γ + a1 cos γ 3. ∫ z exp(− a z + bz )sin (a1z + b1z + γ )dz = + 4 + 2 0 2a 2a1

π a22 b− a 22 b −22 abb ab2−+ ab 2 a 2 bb  + exp 1 1 1sin 1 11 1+γ × 4  42  42   44aa++11 44aa 

    b + ib  b + ib  b + ib × Re 1 erf 1 + 1  +  2 2  2  2 2   (a − ia1 ) a − ia1  2 a − ia1  (a − ia1 ) a − ia1 

 b+ ib b ++ ib b ib +Im 1erf  11+× 22 2 22 (a−− ia11) a ia2 a − ia 1( a −− ia 11) a ia  ab2−+ ab 222 a bb  ×cos1 11 1+γ  {a > 0 or [a = 0, a ≠ 0, b < 0]}. 42 1 44aa+ 1 

82 +∞ π ab22−− ab 22 2 abb 4. zexp − a22 z + bzsin a z2 ++ b zγ dz = exp 1 11× ∫ ( ) ( 11) 42 −∞ 2 44aa+ 1

  2 2 2     a1b − a1b + 2a bb1 b + ib × sin 1 + γ  Re 1  +     4a 4 + 4a 2  2 2    1   (a − ia1 ) a − ia1 

 2 2 2    a1b − a1b + 2a bb1 b + ib  + cos 1 + γ  Im 1  {a > 0}.    4a 4 + 4a 2  2 2   1   (a − ia1 ) a − ia1 

∞  2 π (β−i β ) 22 i  1 5. ∫ zexp(−α z +β z)sin( β11 z + γ) dz =( β−i β )exp −i γ × αα32 0 84 

2  β−ii β (β+i β ) β+ β γ 111  sin ×erf± 1 −( β+ii β1 ) exp + γ erf± 1  + 22αααα22 42

22 { lim Re αzz −β−Im( β1 z) =+∞, lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 2 2 2 α sin γ + α1 cos γ πi 6. ∫ z exp(− α z + βz )sin(α1z + β1z + γ )dz = + × α 4 + α 2 8 0 2 2 1

 β − β  (β − β )2    β − β    i 1 i 1   i 1   ×  exp − iγ erf   + A1 −  2 2  4α 2 + 4iα    2    (α + iα1 ) α + iα1  1    2 α + iα1  

β + β  (β + β )2    β + β    i 1 i 1   i 1    − exp + iγ erf   + A2  2 2  4α 2 − 4iα    2    (α − iα1 ) α − iα1  1    2 α − iα1   

22 2 { lim Re αzz − β −Im α11 z + β z = +∞ ; Ak = ±1 if z→∞ ( ) ( )

2 lim Reα +( 3 − 2ki) α1 z = ±∞ }. z→∞ 

∞ 2π (β  iβ) 7. z exp(− α 2 z 2 + βz )sin (± iα 2 z 2 + β z + γ ) dz = 1 × ∫ 1 3 0 32α 2 (β±i β1 ) β±i β1 iexp(± ii γ) exp( i γ) ×exp ±γiAerf +  ± 222α 22 88αα2(ββ i 1 )

22 { lim Re( 2αz − β ziz β1 ) = +∞ , lim [Re(βz  iβ1z ) + ln z ] = −∞ ; z→∞ z→∞ A = 1 if lim Re(αz ) = +∞ , A = −1 if lim Re(αz) = −∞ }. z→∞ z→∞

83

2.10.3.

+∞  2 2 − 2 2 −  n 2 2 2 n! π  a b a b1 2a1bb1  1. ∫ z exp(− a z + bz )sin (a1 z + b1 z + γ ) dz = exp × n+1  4 + 2  0 2  4a 4a1 

2 22 (10) ab−+ ab2 a bb b+ ib W( naa,,11 ,, bb) ×sin 1 11 1+γ Re erf 1 +1 1 + 42  44aa+ 22−− 1 2 a ia11a ia

 2 2 2 2   2 2 2  n! π a b − a b − 2a1bb1 a1b − a1b + 2a bb1 + exp 1 cos 1 + γ × n+1  4 + 2   4 + 2  2  4a 4a1   4a 4a1 

(10 )   +   W (n, a, a , b, b )    b ib1   1 1 1  × Im erf   +1  +   2   2    2 a − ia1   a − ia1 

n! ( ) (10) + 10 ( ) γ +γ [ReW2 n, a, a1 , b, b1 sin ImW2 ( naa , ,11 , bb ,) cos  2 n 

{a > 0 or [a = 0, a1 ≠ 0, b < 0] for n > 0} .

+∞  2 2 − 2 2 −  n 2 2 2 n! π  a b a b1 2a1bb1  2. ∫ z exp(− a z + bz )sin (a1z + b1z + γ ) dz = exp × n  4 + 2  −∞ 2  4a 4a1 

 2 22 (10)  ab1−+ ab 12 a bb 1 W( n,, a a11 ,, b b) × sin11+γ Re +    44aa42+ 2  1 a− ia1

2 22 (10)  ab−+ ab2 a bb W( naa,,11 ,, bb)  +cos1 11 1+γ Im 1  42 44aa+ 2  1 a− ia1 

{a > 0 for n > 0} .

2 ∞ π  (β−i β ) n 22 2 ni!  1 3. ∫ zexp(−α z +β z)sin( α11 z +β z +γ) dz = exp −i γ × n+22α+ α 0 2  44i 1

(10 )   β − β   W (n, α, − α , β, − β )  (β + β )2    i 1   1 1 1 i 1 × erf   + A1 − exp + i γ ×   2   2  4α 2 − 4iα    2 α + iα1   α + iα1  1 

(10 )   β + β   W (n, α, α , β, β )    i 1   1 1 1  n!i × erf   + A2  + ×   2   2  2 n+1   2 α − iα1   α − iα1 

84 × − γ (10 ) α − α β − β − γ (10 ) α α β β [exp( i )W2 (n, , 1 , , 1 ) exp(i )W2 (n, , 1 , , 1 )]

22 2 { lim Re αzz −β−Im α11 z +β zn −−( 1) ln z =+∞ ; z→∞ ( ) ( )

2 Ak = ±1 if lim Reα +( 3 − 2ki) α1 z = ±∞ }. z→∞ 

∞ (−1)n n!i exp( iγ ) 4. z n exp(− α 2 z 2 + βz )sin(± iα 2 z 2 + β z + γ )dz =   ∫ 1 n+1 0 2(β  iβ1 )   2  n!i  2π (β ± iβ1 )   β ± iβ1     exp ± iγ erf   + A × n+1 2   2  4α  8α    2 2α    (10) 22(10)  ×W12( ni, ααβ±β+ , ,,11) exp( ±γiWni) ( , ααβ±β , ,, ) 

{ lim Re(βziz β1 ) + nln z = −∞ , z→∞

22 lim Re( 2αz− ββ ziz 1 ) −( n −1) ln z = +∞ ; A = 1 if lim Re(αz ) = +∞ , z→∞ z→∞ A = −1 if lim Re(αz) = −∞ }. z→∞

Introduced notations:

En( /2) nl−2 (10) (β+i β ) 1) Wn( ,αα , ,, ββ) = 1 , 1 11∑ nl− l=0 2 ln!( − 2! l) ( α −α i1 )

(10) 1 (10 ) Wn(2 ,αα , ,, β i β=) , W (2n1 +1, α, α1 , β, iβ) = 0 ; 1 11 n 1 2 1 ni11! (α −α)

−− + n− En( /2) l lr− n12 lr 2 (10) (li−1!) 4 (β+ β ) 2) Wn( ,αα , ,, ββ) = 1 − 2 11 ∑∑nlr−+ lr=11(2ln− 1!) ( +− 1 2 l) ! = 2 (ri−1!) ( α −α1 )

En( /2) l n−−12 lr + 2 1 ri!(β+ β1 ) (10 ) − , W (2n1 , α, α1 , β, iβ) = 0 , ∑∑ nlr−+ 2 lr=11ln!( − 2! l) = 2 (2!ri) (α −α1 )

85 4n1 n ! (10 ) + α α β β = 1 . W2 (2n1 1, , 1 , , i ) 2 n1 +1 (2n1 +1)!(α − iα1 )

n 2.11. Integrals of z erf (αz + β)exp(β1 z )sin(β 2 z + γ )

2.11.1. +∞ 0 1. ∫ erf (az )exp(− b1z )sin(b2 z + γ )dz = ∫ erf (az )exp(b1z )sin(b2 z − γ )dz = 0 −∞

 2 − 2  1  b1 b2   b1b2  = exp sin − γ  × 2 + 2  2   2  b1 b2  4a  2a

b12−− ib b12 ib b12 b ×bbb1Re erf − 21Im erf − −cos  −γ × 2a  22 aa 

b12−− ib b12 ib  ×b2Re erf  +− bb 12Imerf  {a > 0, b1 > 0} . 22aa 

∞ 1  (β + iβ )2  2. erf (αz )exp(β z )sin(β z + γ )dz = exp  1 2 + iγ × ∫ 1 2 (β − β ) 2 0 2 2 i 1  4α 

  β + iβ   1  (β − iβ )2    β − iβ   × erf  1 2  ±1 + exp 1 2 − iγ erf  1 2  ±1   2     2α   2(β 2 + iβ1 )  4α    2α  

2 2 22 {β21 ≠ −β , lim Re αzz − β1 −Im( β 2 z) + 2ln z = +∞ , z→∞ ( )

lim Re(β12zz) + Im( β) = −∞, lim Re( α z) = ±∞ }. zz→∞ →∞

2.11.2. +∞ 0 1. ∫ erf (az + b)exp(− b1z )sin(b2 z + γ )dz = ∫ erf (az − b)exp(b1z )sin(b2 z − γ )dz = 0 −∞

 2 − 2 +  erf (b) 1  b1 b2 4abb1   b1b2 + 2abb2  = (b1 sin γ + b2 cos γ ) + exp sin γ −  × 2 + 2 2 + 2  2   2  b1 b2 b1 b2  4a  2a

b12− ib b12 −+ ib b12 b2 abb 2  ×bb12 +Imerf  b + − b1Re erf b + −cos γ− × 22aa2a2 

  b1 − ib2   b1 − ib2   × b2 Reerf  b +  + b1 Imerf  b +  − b2  {a > 0, b1 > 0} .   2a   2a  

86 ∞ erf (β) 2. ∫ erf (αz + β)exp(β1z )sin(β 2 z + γ )dz = (β 2 cos γ − β1 sin γ ) + β 2 + β 2 0 1 2

i  1  (β1 − iβ 2 )(β1 − 4αβ − iβ 2 )    β1 − iβ 2   +  exp − iγ erf  β −  1 −  2    2 β1 − iβ 2  4α    2α  

1  (β1 + iβ 2 )(β1 − 4αβ + iβ 2 )    β1 + iβ 2   − exp + iγ erf  β −  1   2    β1 + iβ 2  4α    2α   22 { lim Reαz +αβ−β 2 zz12 −Im( β z) + 2ln z =+∞ , z→∞ ( )

22 lim [Re(β1z ) + Im(β 2 z ) ] = −∞, β21 ≠ −β, lim Re( αz) = ±∞ }. z→∞ z→∞

2.11.3. +∞ 0 n n n 1. ∫ z erf (az )exp(− b1z )sin(b2 z + γ )dz = (−1) ∫ z erf (az )exp(b1z )sin(b2 z − γ )dz = 0 −∞

 2 − 2   b1 b2   b1b2    b1 − ib2   (11)  = exp sin − γ  Re erf   −1 W (a, 0, − b , b ) −  2   2    1 1 2  4a   2a    2a   

b22−− b b b  b ib −1 2 12−γ 1 2 −(11) −+ exp22 cos  Im erf  1W1 ( a , 0, bb12 , ) 42aa   2 a

(11) (11) +sin γ⋅ ReW22( a , 0,− bb12 ,) + cos γ⋅ Im W( a , 0,− bb12 , ) {ab>>0,1 0} .

∞ 1 β22 −β  β β 2. zn erf(α z) exp( β z) sin ( β z +γ) dz = exp1 2  exp i 12+γ × ∫ 12 22 0 2i 42αα 

β1 +i β 2 (11)  ββ12 ×erf ±1Wi( α , 0, β12 , β) − exp  − +γ × 2α 1 α2   2

β −βi (11)  i (11) × 12± αβ−β+ −γ αβ−β− erf 1W12( , 0,12 , ) exp( iW) ( , 0,12 , ) 22α  

(11)  22 −exp(iW γ) 2 ( α, 0, ββ12 , ) { lim Re αz − β12 z −Im( β zn) −( −2) ln z = +∞ ,  z→∞ ( )

22 lim [Re(β1z ) + Im(β 2 z ) + n ln z ] = −∞, β21 ≠ −β, lim Re( αz) = ±∞ }. z→∞ z→∞

2.11.4.

+∞ n 1. ∫ zerf( az+ b) exp( − b12 z) sin ( b z +γ) dz = 0

87 0 n n =( −1) ∫ z erf( az− b) exp( b12 z) sin ( b z−γ) dz = −∞

b22−+ b42 abb b b+ abb =exp1 2 1 sin γ− 12 2 × 22 42aa

22 b− ib (11) b−+ b4 abb ×−+Re 1 erf b12 W( ab, ,− b , b) + exp12 1× 1 12 2 2a 4a

 b b + 2abb    b − ib   ×  γ − 1 2 2  − + 1 2 (11) − + cos  Im1 erf  b W1 (a, b, b1 , b2 )  2a 2    2a  

(11) (11) +sin γ⋅ ReW22( ab , ,− b12 , b) + cos γ⋅ Im W( ab , ,− b12 , b) {a > 0, b1 > 0} .

∞  β 2 − β 2 − αββ  n i  1 2 4 1  2. z erf (αz + β)exp(β1z )sin(β 2 z + γ )dz = exp × ∫ 2  2  0  4α 

  β12 β −2 αββ 2 β1 +i β 2 (11) ×exp iW+γerf β− 1(α , β , β , β) − 2 1 12  2α 2α   2αββ − β β     β − iβ    −  2 1 2 − γ  β − 1 2 (11) α β β − β + expi    erf   1 W1 ( , , 1 , 2 )   2α 2     2α    1 ( ) + [exp(iγ )W 11 (α, β, β , β ) − exp(− iγ )W (11) (α, β, β , − β )] 2i 2 1 2 2 1 2

22 { lim Reαz +αβ−β− 2 zz12Im( β zn) −−( 2) ln z =+∞ , z→∞ ( )

22 lim [Re(β1z ) + Im(β 2 z ) + n ln z ] = −∞, β21 ≠ −β, lim Re( αz) = ±∞ }. z→∞ z→∞

Introduced notations:

n+1−k E (k / 2 ) k−2l ( ) n n!  1  (β − 2αβ + iβ ) 1) W 11 (α, β, β , β ) =  −  1 2 , 1 1 2 ∑ k   ∑ 2k−2l k=02  β1 + iβ2  l=0 l!(k − 2l )!α

E (n / 2 ) ( ) n! 1 W 11 (α, β, β , iβ − 2iαβ) = ; 1 1 1 n+1 ∑ n+1−2k (2α) k=0 k!(− β)

n+1 ( )  1  1 n n! 2) W 11 (α, β, β , β ) = n!erf (β) −  + exp(− β 2 ) × 2 1 2   ∑ k −1  β1 + iβ 2  π k =12

88 n+1−k − ( ) l−r k−1−2l+2r  1  k E k / 2 (l −1)! l 4 (β − 2αβ + iβ ) ×  −   1 2 −   ∑ ∑ 2k−1−2l+2r  β1 + iβ 2   l=1 (2l −1)!(k +1− 2l )!r=1 (r −1)!α

( ) k−1−2l+2r E k / 2 1 l r!(β − 2αβ + iβ )  − 1 2  , ∑ ∑ 2k−1−2l+2r l=1 l!(k − 2l )!r=1 (2r )!α 

n+1 n (11) 1 (−1!) n 2 W2 (α, β , β11 , ii β − 2 αβ) = n ! erf ( β) − + exp(−β) × 2αβ παn+1

− ( ) n E n / 2 (k −1)! × . ∑ n+2−2k k =1 (2k −1)!(2β)

2n+1 2 2 2.12. Integrals of z erf (αz + β)exp(− α 1 z ) sin(α 2 z + γ )

2.12.1. +∞ 2 2 a1 sin γ + a2 cos γ 1. ∫ z erf (az + b)exp(− a1z )sin(a2 z + γ )dz = erf (b) + 2 + 2 0 2a1 2a2

 2 2 2   2 2  a a a1 + a + a a a b + exp − b 2 1 2 sin γ + 2 × 2 + 2  4 + 2 + 2 + 2   4 + 2 + 2 + 2  2a1 2a2  a a1 a2 2a a1   a a1 a2 2a a1 

 a+ ia ab a ×Re121 − erf  +× 22 22+− +− 22aa+ a a12 ia a a12 ia 12

 aa2++ a 22 a  aab22  ×exp  −b2 11 2 cos γ+ 2 ×  422 2 422 2  aaa+++1222 aa 1 aaa+++12 aa 1

 +     a1 ia2   ab  × Im 1− erf  { a1 > 0 }. 2   2   a + a1 − ia2   a + a1 − ia2 

+∞ 22 2. ∫ zerfi( az+ b) exp( − a12 z) sin ( a z+γ) dz = 0

0 22 =∫ zerfi( az − b) exp( − a12 z) sin ( a z+γ) dz = −∞ a sin γ + a cos γ a = 1 2 erfi (b) + × 2a 2 + 2a 2 2a 2 + 2a 2 1 2 1 2

89  2 2 2   2 2  a + a − a a1 a a b × exp b 2 1 2 sin γ + 2  ×  4 + 2 + 2 − 2   4 + 2 + 2 − 2   a a1 a2 2a a1   a a1 a2 2a a1 

     a + ia ab  a × 1 2  +   + × Re 1 erf    2  2  2a 2 + 2a 2  a1 − a − ia2   a1 − a − ia2  1 2

 a222+− a aa  aab22  ×expb2 12 1cos γ+ 2 ×  422 2 422 2 aaa++−1222 aa 1 aaa++−12 aa 1

     a + ia  ab   × Im 1 2 1+ erf  2   2   a1 − a − ia2   a1 − a − ia2 

> 2 =>≠≤2 { aa1 or a12 a0, a 0, ab 0 }.

+∞ 22 2 3. ∫ zerfi( az+ b) exp( − a z) sin ( a1 z+γ) dz = 0

0 22 2 =∫ zerfi( az − b) exp( − a z) sin ( a1 z+γ) dz = −∞

aa2 sinγ+ cos γ a =1 erfi (bb) +×exp( 2 ) 42+ 42 22aa1 (aa+ 11) 8 a

  2 2       a b  2  1+ i  2 × sin γ +  (a − a1 )Re erf  ab  − (a + a1 )×   a1    2a1 

++22  11i 22ab i ×Im erf ab+ a − a11 +cos γ+(a + a )Re erf ab + a  22aa111 

 1+ i   +22 − ++ (a a11)Im erf ab a a  {aa>0,1 >≤ 0, b 0}.   2a1  

+∞ a 4. zerf( az+ b) exp − a z22 sin a z+γ dz = × ∫ ( 12) ( ) 22 −∞ aa12+

 2 2 2    2 2  a a1 + a + a a a b × exp − b 2 1 2  sin γ + 2  ×  4 + 2 + 2 + 2    4 + 2 + 2 + 2   a a1 a2 2a a1    a a1 a2 2a a1 

90  a + ia   a 2a b 2   a + ia  ×  1 2  +  γ + 2   1 2  Re  cos Im  2  a 4 + a 2 + a 2 + 2a 2a  2   a + a1 − ia2   1 2 1   a + a1 − ia2 

{a1 > 0}.

+∞ a 5. zerfi( az+ b) exp − a z22 sin a z+γ dz = × ∫ ( 12) ( ) 22 −∞ aa12+

2 2 2  a + a − a a    a 2 a b 2  ×  2 1 2 1    γ + 2 × exp b  sin  a 4 + a 2 + a 2 − 2a 2 a  a 4 + a 2 + a 2 − 2a 2 a  1 2 1    1 2 1 

 a + ia   a 2 a b 2   a + ia   ×  1 2  +  γ + 2   1 2   Re  cos Im   2  a 4 + a 2 + a 2 − 2a 2 a  2    a1 − a − ia2   1 2 1   a1 − a − ia2  

> 2 =>2 ≠= { aa1 or aa120, a 0, b 0 }.

+∞ a 6. zerfi( az) exp− a22 z sin a z 2+γ dz = × ∫ ( ) ( 1 ) 42 −∞ (aa+ 11) 2 a

×aa22 −sin γ+ aa +cos γ {a > 0}. ( 11) ( ) 1

∞ αsin γ+α cos γ 7. zerf(α z +β) exp −αz22 sin α z + γ dz = 12× ∫ ( 12) ( ) 22 0 22α+α12  α  1  α + iα  × (β) +  − β2 1 2 − γ  × erf  exp i  4 2 α 2 + α + iα  (α 2 − iα1 ) α + α1 + iα 2  1 2       αβ  1 × A1 − erf + ×   2  2   α + α1 + iα 2  (α 2 + iα1 ) α + α1 − iα 2      α − iα  αβ  ×  − β2 1 2 + γ   −   exp i  A2 erf    α 2 + α − iα  2   1 2    α + α1 − iα 2  

22 2 2 { lim Re αzz + α12 +2 αβ z − Im α z + ln z = z→∞ ( ) ( )

22 =lim Re α12zz − Im α = +∞ ; z→∞ ( ) ( )

2 Ak = ±1 if lim Re α + α12 +(3 − 2ki) α z = ±∞ }. z→∞ 

91 ∞ (1 i)α 8. zerf(α z +β) exp  α22 ±i α zsin α z 2 +γ dz = × ∫ ( 11) ( ) 2 0 82α11( α±i α)

  2  2 α ± 2iα   1± i αβ   erf (β)exp(± iγ ) × exp± i β 1 + γ  erf  ⋅  − A +   2α   2  2   1    α1   8α1  4iα

2 γ exp −β iiexp( ) ( )  2 1   erf (β+) { lim Re(αβz ) ± Im(α1z )+ ln z  = 4α2 πβ z→∞  2  

22 2 22 =lim Re( αβz) = +∞ , lim Reα zz 2Imα1 = lim Re α z = −∞ ; z→∞ zz→∞ ( ) ( ) →∞ ( )

  A = 1 if lim Re( 1 iz) α1 = +∞ , A = −1 if lim Re( 1 iz) α1 = −∞ }. z→∞  z→∞ 

2.12.2. +∞ na! 1. z21n+ erf( az+ b) exp − a z2 sin a z 2+γ dz = × ∫ ( 12) ( ) 2 0

 2 2 2   2 2  a a1 + a + a a a b × exp − b 2 1 2 sin γ + 2  ×  4 + 2 + 2 + 2   4 + 2 + 2 + 2   a a1 a2 2a a1   a a1 a2 2a a1 

(12) ab W( aa,,12 a , b) n! a ×Re 1 − erf 1 +× 222 a+− a12 ia a +− a12 ia 

2 22  (12)  aa1++ a a ab W( aa,,12 a , b) ×−expb2 12 Im 1− erf 1 ×  aaa422+++2 aa 2 22 12 1  a+− aia1 2 a+− aia12 

22   aab nb!erf ( )  1 ×cos γ+ 2 + Re sin γ+ aaa422+++2 aa 2 2 n+1 12 1  (a12− ia )

 1  +Im cos γ+ n+1 (a12− ia ) 

na! (12) (12) + ReW22( aaab ,12 , ,) ⋅ sin γ+ Im W( aaab ,12 , ,) ⋅ cos γ {a1 > 0}. 2 π 

+∞ 21n+ 2 2 2. ∫ zerfi( az+ b) exp( − a12 z) sin ( a z+γ) dz = 0

92 0 na! a222+− a aa = z21n+ erfi( az− b) exp − a z2 sin a z 2+γ dz = exp b2 12 1 × ∫ ( 12) ( ) 422 2 −∞ 2 aaa++−122 aa 1

22  (12)  aab ab W( ia,, a12 a , ib) ×sin  γ+ 21Re erf +1 +  aaa422++−2 aa 2 22 12 1 aa1−− ia 2 aa 12−− ia  

na!  a222+− a aa  aab22  + expb2 12 1cos γ+ 2 ×  422 2 422 2 2 aaa++−1222 aa 1 aaa++−12 aa 1  (12)   ab W( ia,, a12 a , ib) ×+Im 1 erf 1 +     −−2 −−2   a12 a ia a12 a ia 

n!erfi(b)   1   1   n!a + Re  sin γ+ Im  cos γ + × 2 n+1 n+1   (a1 − ia2 )   (a1 − ia2 )   2 π

(12) (12) × ReW( ia , a , a , ib) ⋅ sin γ+ Im W( ia , a , a , ib) ⋅ cos γ 2212 12

> 2 =>≠<2 > } { aa1 or a12 a0, a 0, ab 0 for n 0 .

+∞ 2n+ 1 22 2 3. ∫ zerfi( az+ b) exp( − a z) sin ( a1 z+γ) dz = 0

0 na! a22 b = 2n+ 1 − − 22 2+γ = 2 γ+ × ∫ zerfi( az b) exp( a z) sin ( a1 z) dz exp(b ) sin  −∞ 2a1 a1  (12 ) 2    1+ i  W1 (ia, a , a1 , ib) n!a 2 × Re1+ erf  ab   + exp(b )×   1− i   2a1   2a1

(12) 2 ab22 1+ i W1 ( ia, a ,, a1 ib) ×cos γ+ Im 1+ erf ab + ai 1− 1 2a1 

 nb!erfi( ) 11 + γ+ γ + Re ++sin Im cos 2 22nn11 a−− ia a ia ( 11) ( )

na!  (12) 2 + ReW2 ( ia , a , a1 , ib) ⋅ sin γ+ 2 π 

+ImW(12) ia , a2 , a , ib ⋅γ cos  { > > < – for > }. 2 ( 1 )  a 0, a1 0, b 0 n 0

93 +∞ 2n+1 2 2 4. ∫ z erf (az + b)exp (− a1z ) sin (a2 z + γ ) dz = −∞

 2++ 22 22  aa1 a12 a  aab2 =na! exp − b2 sin γ+ ×  422+++ 2422+++ 2 aaa1222 aa11 aaa12 aa

(12 ) W (a, a , a , b)   a 2 a b 2  ×  1 1 2  +  γ + 2  × Re cos   2  a 4 + a 2 + a 2 + 2a 2 a  a + a1 − ia2   1 2 1  ( ) W 12 (a, a , a , b)   1 1 2  × Im  {a1 > 0}.  2   a + a1 − ia2  +∞ 2n+1 2 2 5. ∫ z erfi (az + b)exp(− a1 z )sin(a2 z + γ )dz = −∞

 a222+− a aa  aab22  =na! exp b2 12 1sin γ+ 2 × 422 2 422 2 aaa++−1222 aa 1 aaa++−12 aa 1  (12 )   2 2  W (ia, a1 , a2 , ib) a a b × Re 1  + cos γ + 2 ×  4 2 2 2   − 2 −  a + a + a − 2a a  a1 a ia2   1 2 1  ( ) W 12 (ia, a , a , ib)   1 1 2  2 × Im  { aa1 > for n > 0 }.  2   a1 − a − ia 2 

∞ ni! α 6. z21n+ erf(α z +β) exp −αz2 sin α z 2 + γ dz = × ∫ ( 12) ( ) 4 0

2     (12 )   β (α − iα )  αβ W (α, α , α , β) × − 1 2 + γ    −  1 1 2 + exp i  erf   A1   α 2 + α − iα   2  2   1 2    α + α1 − iα 2   α + α1 − iα 2 2 (12)  β( α12 +αi ) αβ W (,α α12 , −α ,) β  +exp  − −γiA −erf 1  + 2 2 α +α +i α α22 +α + α α +α + α  12 12ii12

n+1   α  n!1  (12) +exp(iW γ) erf ( β)+( αα,,,12 α β) − 4ii α −α π 2   12 

 n+1    1  α (12 )  − exp(− iγ )erf (β)  + W (α, α , − α , β)  α + α 2 1 2   1 i 2  π  

94 22 2 2 { lim Re αzz + α12 +2 αβ z − Im α z −( 2 n − 1) ln z = z→∞ ( ) ( )

22 =lim Re α12z − Im α z − 2 nz ln = +∞ ; z→∞ ( ) ( )

2 Ak = ±1 if lim Re α + α12 +(2k − 3) iz α = ±∞ }. z→∞ 

∞ 2n+1 2 2 2 n!(1  i )α 7. ∫ z erf (αz + β)exp[(α ± iα1 )z ]sin (α1 z + γ ) dz = × 0 8 α1

2 2  2  α β    1± i αβ  (12 ) 2 × exp− β ± i + γ   A − erf  ⋅ W (α, − α  iα , ± α , β)±  α    1 1 1   2 1    2 α1  +   n 1  n!  α (12 ) 2  1   ± exp(± iγ ) W (α, − α  iα1 , ± α1 , β)+ erf (β) − ± 4i  π 2  α 2 ± α     2i 1  

2 ni! erf (β) exp(−β ) n (2k ) ! ±γ + exp(i )+ ∑ +− 4 22n112 k nk −α πβ k=0 k!2αβ −α ( ) ( ) ( )

2 { lim Re( 2αβz) ± 2Im α1 z −( 2 n − 1) ln z = lim Re( αβznz) − ln = +∞ , zz→∞ ( ) →∞

22 2 22  lim Reαz 2Im α+=α+=−∞1 z 2 nz ln lim Rez 2 nz ln ; zz→∞ ( ) ( ) →∞ ( )   A = 1 if lim Re[(1  i ) α1 z ]= +∞ , A = −1 if lim Re( 1 iz) α1 = −∞ }. z→∞ z→∞ 

Introduced notations:

n+1−k ( ) n (2k )! 1  1) W 12 (α, α , α , β) = ∑   × 1 1 2 k! α − iα k =0  1 2  k (αβ)2k −2l × , ∑ 2k −l l=0 l 2 4 l!(2k − 2l )!(α + α1 − iα 2 )

n+1−k ( ) n (2k )!  1  W 12 (α, α , α , 0) =   ; 1 1 2 ∑ k k =0 k 2 2  α1 − iα 2  4 (k!) (α + α1 − iα 2 )

+− n (2!k ) nk1 2) (12) 2 1 W2 (α, α12 , α , β) = exp( −β ) ∑ × k=1 ki! α12 −α

95  2k−− 12 lr + 2  kl1 rl!(αβ) k( −1!) × −× ∑∑ −+ ∑ lk!2− 2 l ! lr− 2 2 klr 2l− 1!2 k +− 1 2 l ! lr=11( ) = 4 2!riα +α − α l=1( ) ( )  ( ) ( 12)

2k−− 12 lr + 2  l (αβ)  ( ) × , W 12 (α, α , α , 0) = 0 . ∑ 2 klr−+  2 1 2 r=1 ri−1! α2 +α − α  ( ) ( 12) 

n 2 2 2.13. Integrals of z erf (αz + β)exp(− α1z + β1z )sin(α 2 z + β 2 z + γ ),

n 2 n 2 z erf (αz )exp(− α1z )sin(βz ) , z erf (αz )exp(− α1z )cos(βz )

2.13.1.

+∞ 0 2 2 2 2 1. ∫ erf (a z )exp(− a1z ) sin (a2 z + γ ) dz = − ∫ erf (az ) exp (− a1z )sin (a2 z + γ ) dz = 0 −∞

11a++ ia ia 1a++ ia ia = Re ln 12 cosγ+ Im ln 12 sin γ  2 πa12 + ia a 12 +− ia ia a12+ ia a 12 +− ia ia

{a1 > 0 or [a1 = 0, a2 ≠ 0]}.

+∞ π b22− b bb 2. erf(az) exp − a22 z + bzsin ( b z +γ) dz = exp11 sin +γ × ∫ ( ) 1 22 0 4a 42aa

2 22− b+ ib1 π bb11bb ×Re erf+ 1 + exp cos+γ × 4a 22 22a 42aa  2    b + ib1    × Imerf   +1  {a > 0}.   2 2a   

+∞ 22 1 3. ∫ erfi(a z) exp(− a12 z) sin ( a z+γ) dz = × 0 2 π   + +   + +    1 a1 ia2 a   1 a1 ia2 a  × Re ln sin γ −Im ln  cos γ   a1 + ia2 a1 + ia2 − a   a1 + ia2 a1 + ia2 − a   2 { aa1 > }. +∞ +∞ 1 4. erf (a z )exp (− a z 2 )sin(b z )dz = erf (az )exp(− a z 2 ) sin (bz )dz = ∫ 1 2 ∫ 1 0 −∞

96  π b2 ab = − > exp erfi { a1 0 }. 44aa1122 2 a11+ aa

+∞ +∞ 1 5. erfi (az )exp(− a z 2 )sin(bz )dz = erfi (az )exp(− a z 2 )sin(bz )dz = ∫ 1 2 ∫ 1 0 −∞  π b2 ab = − > 2 exp erf {}aa1 . 44aa1122 2 a11− aa

+∞ 2 2 6. ∫ erf (az + b)exp(− a1z + b1z )sin(a2 z + b2 z + γ )dz = −∞

 2 − 2 −   + 2 − 2   a1b1 a1b2 2a2 b1b2   2a1b1b2 a2 b1 a2 b2  = π exp sin + γ ×  2 + 2   2 + 2   4a1 4a2   4a1 4a 2 

   2 2 1 2a b + ab + 2ia b − iab  2a b b + a b − a b  ×   1 1 2 2  −  1 1 2 2 1 2 2 + γ  × Re erf   cos  a + ia 2   4a 2 + 4a 2   1 2  2 a1 + ia2 a + a1 + ia2   1 2     1  2a b + ab + 2ia b − iab   × Im erf 1 1 2 2   a + ia  2   1 2  2 a1 + ia2 a + a1 + ia2 

{a1 > 0 or [ab11= = 0, a 2 ≠ 0]}.

2 2 +∞ π  b − b  7. erf (az )exp − a 2 z 2 + bz sin(b z + γ )dz = exp 1  × ∫ ( ) 1   −∞ a  2 2a 

  bb1   b + ib1   bb1   b + ib1  × sin  + γ  Re erf   + cos + γ  Imerf   {a > 0} .   2a 2   2 2a   2a 2   2 2a  +∞ 2 2 8. ∫ erfi (az + b)exp (− a1z + b1z )sin (a2 z + b2 z + γ )dz = −∞

 2 − 2 −   + 2 − 2   a1b1 a1b2 2a2 b1b2   2a1b1b2 a2 b1 a 2 b2  = π exp sin + γ ×  2 + 2   2 + 2   4a1 4a2   4a1 4a 2 

 1 22a b++ ab ia b − iab ×−Re erfi 112 2 a+ ia 2 12 2 a1+ ia 21 a −+ a ia 2

2 2     2a b b + a b − a b  1 2a b + ab + 2ia b − iab  −  1 1 2 2 1 2 2 + γ    1 1 2 2  cos Im erfi     4a 2 + 4a 2   a + ia 2   1 2   1 2  2 a1 + ia2 a1 − a + ia2  2 { aa1 > }.

97 ∞ 1 exp(iγ ) 9. α− α22 αγ += × ∫ erf( z) exp( 12 z) sin ( z) dz  0 4 π αα12− i

αα−−ii αexp(−iγ ) αα++ii α ×+ln 12 ln 12  αα12−+ii α αα 12 + i αα 12 +− ii α

22 { lim Reα−α12z Im zz + ln = z→∞ ( ) ( )

22 2 2 =lim Re αzz + α12 −Im α z + 2ln z = +∞ , z→∞ ( ) ( )

2 22 2 2 α2 ≠−α 12, α ≠−( α +α 1) }.

∞ π  (β + iβ )2  10. erf (αz )exp(− α 2 z 2 + βz ) sin(β z + γ ) dz = exp 1 + iγ × ∫ 1 8iα 2 0  4α  222 β+ii β11π (β−i β1 ) β− β ×erf± 1 − exp −γi erf± 1 αα8iα 2 22 4α 22

22 { lim Re(αzz −β) −Im( β1 z) + ln z = z→∞  22 =lim Re 2 αzz − β −Im( β1 z) + 2ln z = +∞ , lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

∞ π  β2  11. erf (αz )exp(− α z 2 )sin(βz ) dz = ± exp − × ∫ 1  4α  0 2 α1  1     αβ  2 ×erfi { lim Re(α1 z) − Im( β+ zz) ln =  2  z→∞   2 α1 α + α1 

22 2 2 =lim Re( αzz + α1 ) −Im( β z) + 2ln z = +∞ , lim Re α + α1 z = ±∞ }. z→∞ z→∞ ( )

∞(T ) 2 πi 12. erf(α+βz ) exp −αz22 +β zsin α z +β+γ z dz = × ∫ ( 11) ( 2 2) 2 ∞(T1 )

 2    A  (β − iβ )  α(β − iβ ) + 2β(α + iα ) ×  1 exp 1 2 − iγerf  1 2 1 2  − α + iα  4α1 + 4iα 2   2   1 2    2 α1 + iα 2 α + α1 + iα 2 

2   A  (β + iβ )  α(β + iβ ) + 2β(α − iα )  − 2 exp 1 2 + iγerf  1 2 1 2  α − iα  4α1 − 4iα 2   2  1 2    2 α1 − iα 2 α + α1 − iα 2 

98 α22 −β − α +β + = { lim Re( 11zz) Im( 2 z 2 z) ln z zT→∞( 1 ) 

= α+α+αβ−β−α+β+22 2 2 = lim Re( z1 z2 zz 1) Im( 22 z z) 2ln z zT→∞( 1 ) 

= α22 −β − α +β + = lim Re( 11zz) Im( 2 z 2 z) ln z zT→∞( 2 ) 

= α+α+αβ−β−α+β+22 2 2 =+∞ lim Re( z1 z2 zz 1) Im( 22 z z) 2ln z , zT→∞( 2 ) 

α 2 ≠ −α 2 ; = ± if  α 2 + α + ( − ) α  = 2 1 Ak 1 lim Re 1 3 2k i 2 z  z→∞(T2 )  

= −  α 2 + α + ( − ) α  = ±∞ , = if lim Re 1 3 2k i 2 z  Ak 0 z→∞(T1 )  

α22 +α + − α ⋅ α +α + − α =+∞}. lim Re 12(3 2ki) z lim Re 12(3 2ki) z zT→∞( 12) zT→∞( ) 

ν 2 2 13. ∫ erf (αz )exp(− α1z ) sin (α 2 z + γ ) dz = 0 . −ν

ν 2 14. ∫ erf (αz )exp(− α1z ) cos (βz ) dz = 0 . −ν

2.13.2.

+∞ 1 bb22− 1. zerf( az) exp − a22 z + bzsin ( b z +γ) dz = exp1 × ∫ ( ) 1 22 0 44aa

  bb1   bb1   π+(b ib1 ) × sin + γ  Re θ + cos + γ  Imθ { θ= ×   2a 2   2a 2   2a

2 2 b+ ib1 (b+ ib1 ) b+ ib1 ×+1 erf +2 exp −+1 erf ,a > 0 }. 2 22a 8a 22a

+∞ +∞ 221 2. ∫∫zerf( az) exp(−= a11 z) cos( bz) dz zerf( az) exp( −= a z) cos( bz) dz 0 2 −∞

99    1 2a  b 2  πb  b 2   ab  =  exp −  − exp − erfi    2      4a1 2 +  4a + 4a  a1  4a1   2 + 2   a a1 1  2 a a1 a1 

{a1 > 0}.

+∞ +∞ 221 3. ∫∫zerfi( az) exp(− a11 z) cos( bz) dz = zerf i( az) exp( −= a z) cos( bz) dz 0 2 −∞

 12ab22π b  bab = exp−−exp erf 2  44aa11−−2 44aa− a1 22 a11 a 1 2 a1 aa

2 { aa1 > }.

+∞ 22 4. ∫ zerf( az+ b) exp( − a11 z + b z)sin ( a 2 z+ b 2 z +γ) dz = −∞

 2 − 2 −   2 − 2 +  1 a1 (b1 b2 ) 2a 2 b1b2  a 2 (b1 b2 ) 2a1b1b2 = exp sin  + γ Reθ − 2  2 + 2   2 + 2   4a1 4a 2   4a1 4a 2 

22  a b−+ b2 abb π− 2( 1 2) 112  (b12 ib ) −cos +γIm θ { θ= × 22 44aa+  (a++ ia) a ia 12  1212  22a b++ ab ia b − iab 2a ×erf 112 2 +×  2 a+ ia a22 ++ a ia( a + ia) a ++ a ia 12 12 12 12

2 (22a112 b++ ab ia b − iab 2) ×−exp ,a > 0 }. 2 1 4 a+ ia a ++ a ia ( 12)( 12)

+∞ 22 5. ∫ zerfi( az+ b) exp( − a11 z + b z)sin ( a 2 z+ b 2 z +γ) dz = −∞

 2 − 2 −   2 − 2 +  1 a1 (b1 b2 ) 2a 2 b1b2  a 2 (b1 b2 ) 2a1b1b2 = exp sin  + γ Imθ + 2  2 + 2   2 + 2   4a1 4a 2   4a1 4a 2 

22−+  a2( b 1 b 2) 2 abb 112  π−(b12 ib ) ++cos γθRe  { θ= × 44aa22+ a++ ia a ia 12  ( 1212)

100   ab − 2a b + 2ia b + iab 2ia ×  2 2 1 1  + × erf   + − 2 + ( + ) − 2 +  2 a1 ia2 a1 a ia2  a1 ia2 a1 a ia2

++ − 2 (22a112 b ab ia b iab 2) 2 ×>exp , aa1 }. + −+2 4(a1 ia 21)( a a ia 2)

∞ 2 1 (β+i β ) 6. zerf(α z) exp −α22 z +β zsin ( β z + γ) dz = exp 1 +i γ × ∫ ( ) 1 22 0 84iαα

2 2 π β+ii β (β+i β ) β+ β 111 ×( β+i β1 )erf± 1 + 2 exp − erf± 1 − 2α ααα2 22 8 22

2 2 (β−i β )  π β−i β 1 1  1 − exp −ii γ ( β− β1 )erf± 1 + 222α α 84iαα 22  (β − iβ )2    β − iβ    + 2 exp− 1  erf  1  ±1  2    8α    2 2α   

22 { lim Re αzz −β −Im( β1 z) = z→∞ ( )

22 =lim Re( 2 αzz − β) −Im( β1 z) + ln z = +∞ , lim Re(αz) = ±∞ }. z→∞ z→∞

∞  12α β2 7. zerf(α z) exp −α z2 cos( β z) dz = ±  exp− − ∫ ( 1 ) 2 4α1  2 44α+α 0  α +α1 1

πβ  β2   αβ  −  −    { lim Reαzz2 − Im β= exp erfi   ( 1 ) ( ) α 4α1 2  z→∞ 1    2 α1 α + α1 

22 2 2 =lim Re α+αzz11 −Im( β+ zz) ln =+∞ , lim Re α+αz =±∞ }. zz→∞ ( ) →∞ ( )

∞(T2 ) 22 8. ∫ zerf(α z +β) exp( −α11z +β z)sin ( α 2 z +β 2 z +γ) dz = ∞(T1 )

2 ii(β −βi ) (13) =A exp 12−γiW (1, αα , , α , ββ , , β) −A × 14 44α+i α 1 1 2 12 24 12  (β + iβ )2  × 1 2 + γ (13) α α − α β β − β exp i W1 (1, , 1 , 2 , , 1 , 2 )  4α1 − 4iα 2 

101 α22 −β − α +β = { lim Re( 11zz) Im( 2 z 2 z) zT→∞( 1 ) 

= α+α+αβ−β−α+β+22 2 2 = lim Re( z1 z2 zz 1) Im( 22 z z) ln z zT→∞( 1 ) 

22 = lim [Re(α11zz −β) −Im( α 2 z +β 2 z)  = zT→∞( 2 ) 

= α+α+αβ−β−α+β+22 2 2 =+∞ lim Re( zz12 zz 1) Im( 22 zzz) ln , zT→∞( 2 ) 

α 2 ≠ −α 2 ; = ± if α2 +α + − α = 2 1 Ak 1 lim Re 12(3 2ki) z zT→∞( 2 ) 

= − α2 + α + − α = ±∞ , = if lim Re 12(3 2ki) z Ak 0 zT→∞( 1 ) 

α22 +α + − α ⋅ α +α + − α =+∞ lim Re 12(3 2ki) z lim Re 12(3 2ki) z }. zT→∞( 12) zT→∞( ) 

ν 2 9. ∫ zerf(α z) exp( −α1 z) sin( β z) dz = 0 . −ν

2.13.3. +∞ (2n)! 2n − 2 2 + γ = γ ⋅ (13) − 1. ∫ z erf (az )exp( a1z )sin (a2 z ) dz [sin ReW2 (a, a1 , a2 ) 0 n! π

− γ ⋅ (13) cos ImW2 (a, a1 , a2 )] {a1 > 0 for n > 0} .

+∞ bb22− 2. zn erf( az) exp − a22 z + b zsin ( b z +γ) dz =exp 1 × ∫ ( ) 1 2 0 4a

bb (13) bb (13) ×11 +γ + +γ sin ReW33( abb , ,11 ,1) cos ImW( abb , , ,1) 22aa22

{a > 0} .

+∞ +∞ 22nn1 2 2 3. ∫∫zerf( az) exp(−= a11 z) sin ( b z) dz zerf( az) exp( −= a z) sin ( b z) dz 0 2 −∞

2 (2n)!  b  (13) = − exp −  ImW (2n, a, a , b) {a > 0}. 2n+1   4 1 1 2  4a1 

102 +∞ +∞ 21nn++2 1 21 2 4. ∫∫zerf( az) exp(−= a11 z) cos( bz) dz zerf( az) exp( −= a z) cos( bz) dz 0 2 −∞

2 (2n + 1!) b (13) =−+exp ReW( 2 n 1, aa , , b) {a > 0}. n+1 4 1 1 4 4a1

+∞ (2n)! 2n − 2 2 + γ = γ ⋅ (13) + 5. ∫ z erfi (az )exp( a1z )sin (a2 z )dz [sin ImW2 (ia, a1 , a2 ) 0 n! π

(13) +cos γ⋅ ReW( ia , a , a ) { aa> 2 }. 2 12 1

+∞ +∞ 1 6. z 2nerfi (az )exp(− a z 2 )sin(bz )dz = z 2nerfi (az )exp(− a z 2 )sin(bz )dz = ∫ 1 2 ∫ 1 0 −∞ 2 (2n)!  b  (13) = exp −  ReW (2n, ia, a , b) { aa> 2 }. 2n+1   4 1 1 2  4a1 

+∞ +∞ 1 7. z 2n+1erfi (az )exp(− a z 2 )cos(bz )dz = z 2n+1erfi (az )exp(− a z 2 )cos(bz )dz = ∫ 1 2 ∫ 1 0 −∞ 2 (2n +1)!  b  (13) = exp −  ImW (2n +1, ia, a , b) { aa> 2 }. n+1   4 1 1 4  4a1 

+∞ n 22 8. ∫ zerf( az+ b) exp( − a11 z + b z)sin ( a 2 z+ b 2 z +γ) dz = −∞

2 n! (b12− ib ) (13) =sin γ⋅ Re exp W( naa,,,,,, a bb b) − n 44a+ ia 1 12 12 2 12

2 n! (b12− ib ) (13) −cos γ⋅ Im exp W( naa,,,,,, a bb b) n 44a+ ia 1 12 12 2 12

{ a1 > 0 for n > 0 }. +∞ n 2 2 9. ∫ z erfi (az + b)exp(− a1 z + b1 z )sin (a2 z + b2 z + γ )dz = −∞

2 n! (b12− ib ) (13) =cos γ⋅ Re exp W( niaa,,,,,, a ibbb) + n 44a+ ia 1 12 12 2 12

2 n! (b12− ib ) (13) +sin γ⋅ Im exp W( niaa,,,,,, a ibbb) { aa> 2 }. n 44a+ ia 1 12 12 1 2 12

103

∞ 2n 2 2 (2n)!i 10. ∫ z erf (αz )exp(− α1z )sin (α 2 z + γ ) dz = × 0 2 πn!

× − γ (13) α α α − γ (13) α α − α [exp( i )W2 ( , 1 , 2 ) exp(i )W2 ( , 1 , 2 )]

22 { lim Reα12z −α Im z −−( 2 nz 1) ln = z→∞ ( ) ( )

22 2 2 =lim Re α+α−αzz12Im z −−( 2 n 2) ln z =+∞ , z→∞ ( ) ( )

2 22 2 2 α2 ≠−α 12,( α ≠− α +α 1 )}. ∞ n 2 2 11. ∫ z erf (αz )exp(− α z + βz )sin(β1z + γ )dz = 0

2 2 1  (β + iβ )  ( ) 1  (β − iβ )  = exp 1 + iγW 13 (α, β, β , ±1) − exp  1 − iγ × 2 3 1 2 2i  4α  2i  4α 

× (13) (α β − β ± ) 22 W3 , , 1 , 1 { lim Re(αz −β z) −Im( β1 zn) −( −1) ln z = z→∞  22 =lim Re( 2 α−β−β−−z z) Im( 1 zn) ( 2) ln z =+∞ , lim Re(αz) = ±∞ }. z→∞ z→∞

∞ 2 (2n)!i  β  ( ) 12. z 2nerf (α z )exp(− α z 2 )sin(βz )dz = ± exp − W 13 (2n, α, α , β) ∫ 1 2n+1  4α  4 1 0 2  1 

 2  lim [Re(α1z )− Im(βz ) − (2n −1)ln z ]=  z→∞

22 2 2 =lim Re( α+α−β−−zz1 ) Im( zn) ( 2 2) ln z =+∞ , lim Re α + α1 z = ±∞ . z→∞ z→∞ ( ) }

∞ (2n + 1!) β2 13. z21n+ erf(α z) exp −α z2 cos( β z) dz = ± exp− × ∫ ( 1 ) n+1 α 0 4 4 1

× (13) + α α β 2 W4 (2n 1, , 1 , ) { lim Re(α1 z) − Im( β− z) 2 nz ln = z→∞  22 2 2 =lim Re( α+α−β−−zz1 ) Im( zn) ( 2 1) ln z =+∞ , lim Re α + α1 z = ±∞ }. z→∞ z→∞ ( )

∞(T2 ) n 2 2 14. ∫ z erf (αz + β)exp(− α1z + β1z )sin(α 2 z + β2 z + γ ) dz = ∞(T1 )

104  2 ni!  (ββ12− i ) (13) =−−Aexp iWγ( n,,,,,, αα α ββ β) 2n+1 1 44αα+ i 1 12 12  12  (β + iβ )2   − 1 2 + γ (13) α α − α β β − β A2 exp i W1 (n, , 1 , 2 , , 1 , 2 )   4α1 − 4iα 2  

α22 −β − α +β − − = { lim Re( 11z z) Im( 2 z 2 zn) ( 1) ln z zT→∞( 1 ) 

= α22 −β − α +β − − = lim Re( 11z z) Im( 2 z 2 zn) ( 1) ln z zT→∞( 2 ) 

= α+α+αβ−β−α+β−−22 2 2 = lim Re( z1 z2 zz 1) Im( 22 z z) ( n2) ln z zT→∞( 1 ) 

= α+α+αβ−β−α+β−−22 2 2 =+∞ lim Re( z1 z2 zz 1) Im( 22 z z) ( n2) ln z , zT→∞( 2 ) 

 α 2 ≠ −α 2 ; A = ±1 if α2 +α + − α = 2 1 k lim Re 12(3 2ki) z zT→∞( 2 ) 

= − α2 + α + − α = ±∞ = lim Re 12(3 2ki) z , Ak 0 if zT→∞( 1 ) 

α22 +α + − α ⋅ α +α + − α =+∞ . lim Re 12(3 2ki) z lim Re 12(3 2ki) z } zT→∞( 12) zT→∞( ) 

ν 2n 2 2 15. ∫ z erf (αz )exp(− α1z )sin (α 2 z + γ )dz = 0 . −ν

ν 2n 2 16. ∫ z erf (αz )exp(− α1z )cos(βz )dz = 0 . −ν

ν 2n+1 2 17. ∫ z erf (αz )exp(− α1z )sin(βz )dz = 0 . −ν

Introduced notations:

(13) π 1) Wn1 ( ,αα ,1 , α 2 ,, ββ 12 , β) = × α+α12i

nl−2 2βα+( ii α) +αβ−β( ) En( 2) (β−β i) ×+erf 1 2 1 2 12 ∑ nl− 2 l=0 − α+α 2 α+α12ii α +α+α 12 ln!( 2! l) ( 12 i )

105 2 1 2 β( α1 +ii α 2) +α( β 12 − β)  +−exp × 2 4(α+αi ) α2 +α +i α α +α12 +i α 12( 12)

+− n− En( 2) nl12 l 2lr+− 12  (li−1!) ( β−β12) 2( 2r− 2!) ×× ∑∑ 2ln− 1! +− 1 2 l ! r−1!  lr=11( ) ( ) = ( )

−− 2rq−− 22 r−1 2rq 12 α 2 β( α1 +ii α 2) +α( β 12 − β)  ×−∑ −+ − 22rq−− q=0 nlr2 q 2 qr!2( − 2 − 2 q) !( α+α12 i ) ( α +α+α12i )

nl−2 En( 2) (β−βi ) l −∑∑12 (r −×1!) lr=11ln!( − 2! l) =

− 2 rq 2rq−− 12  r−1 (α)  2 β( α1 +ii α 2) +α( β 12 − β)   × ∑  , nlr−+ −2 q 21rq−− q=0 qr!2−− 1 2 q ! α+α i α2 +α+αi  ( ) ( 12) ( 1 2) 

(13) (13) Wn11(21 ,αα , 12 , α ,0,0,0) =Wn( 21 , αα , 12 , α ,0, i β 22 , β) = 0,

(13) (13) Wn11(21+ 1, αα , 12 , α ,0,0,0) =Wn( 21 + 1, αα , 12 , α ,0, i β 22 , β) =

+− n ! α n1 22nl1 12 ( 2!l) = 1 ∑ , +− l 2ni+ 1! α2 +α + α l=0 21nl1 2 ( 1) 12(li!) (α+α12) ( α +α+α12i)

(13) (13) W1 (2n1,α,α1,α2 , β,0,0) = W1 (2n1,α,α1,α2 , β,iβ2 , β2 ) =

 π β α+αi 1 = erf 12−× α+α α+α n1 22 ni11212! ( i) α +α1 +in α 2 1! α +α 12 + i α

+− 2 lr1 2lr+− 12 2 n1 −1 l αβ(2 ) β( α+α12i ) l! ( ) ×−exp  , 2 ∑∑nl− 21l+− r α +α +i α lr=00(α+αi ) 1 = 2 12 12 rl!2( + 1 − 2 r) !( α +α12 + i α )

(13) (13) W1 (2n1 +1,α,α1,α2 , β,0,0) = W1 (2n1 +1,α,α1,α2 , β,iβ2 , β2 ) =

n ! β2 ( α+αi ) =1 exp −×12 2 α2 +α +i α (2ni1+ 1!) α +α 12 + α 12

106 lr− 2nr1 +− 12 2lr+− 12 2 n1 (2!l) l 2 αβ( ) × ; ∑∑n+−12 l lr− lr=00li! (α+α) 1 = 2 12 rlr!2( − 2) !( α +α12 + i α )

(13) i α+12ii α −α 2) W2 (αα,,12 α) = ln + 21n+ α+ii α +α (2 α+α12i ) 12

2 n−1 (l!) +α ; ∑ nl− l+1 l=0 2 (2li+ 1!)  4( α+α12) ( α +α+α 12 i)

2 E (n / 2 ) n−2k ( ) πn!   β + iβ   (β + iβ ) 3) W 13 (α, β, β , A) = erf  1  + A 1 + 3 1 n+1   ∑ k n−2k 4α   2 2α   k =0 4 k!(n − 2k )!(2α)

nk−2 En( /2) (β+i β ) k−1 nl!! 1 (13) +2 ∑∑Wl(2+ 1, αββ , ,1 , A) + n+12 n−− k kl 5 α+ kl=10kn!( −α 2 k) !2( ) = 4( 2l 1!)

nk+−12 n− En( /2) ki!(β+ β ) k−1  1 1 (13)  + ∑∑Wl(2,αββ , ,1 , A) ; nk+−12 l! 5  kl=10(2!kn) ( +− 12!2 k) ( α) = 

En( /2) k nk−2 (13) π iαβ (−β1) 4) Wn( ,,,αα β=) erf  + 4 1 n+−2 ∑ nk i α 2 k=0 kn!( −α 2! k) 112 α11 α +α

En( /2) α αβ22  βnk−2 k + exp  ∑∑(l −×1) ! + 2 n 124α α +α  kl=11kn!( − 2! k) = i α1 +α 11( ) 

−− klr+− 2 2lr 12 l−1 (−1) ( αβ) n− En( /2) (k −β1!) nk+−12 × −× ∑∑21lr−− rk=01nkl− +−22 r = (2kn− 1!) ( +− 1 2 k) ! rl!2( − 1 − 2 r) ! α11( α +α )

2lr−− 22 +− klr+− 2  kl22kl 12 ( 2l − 2!) −1 (−1) ( αβ)  × ; ∑∑ −−  l −1! nkl− +−22 r 22lr lr=10( ) = rl!2− 2 − 2 r ! α α +α  ( ) 11( ) 

2 ni!2 (β+i β ) β+ β (13) 111 5) Wn5 ( 11,,,,αββ A) = exp − erf +A × n1 +22 (−2) 8α 22α

107 En( /2) nr−22 1 (β+ii β ) 1 n ! (β+ β ) ×∑ 11+1 exp  −× r nr11−+21 n  2 r=0 2rn !( 1 −α 2 r) !2( ) ( −2) π4α

( )  E n1 / 2 (β + iβ )n1 −2r r−1 q!(β + iβ )2q+1 ×  ∑ 1 ∑ 1 + n1 −2r r−q 2q+1  r=1 r!(n1 − 2r )!(2α) q=0 2 (2q +1)!(2α)

− ( ) n1 E n1 / 2 r!(β + iβ )n1 +1−2r r−1 2r−q (β + iβ )2q  + ∑ 1 ∑ 1  . n1 +1−2r 2q r=1 (2r )!(n1 +1− 2r )!(2α) q=0 q!(2α) 

108 2.14. Integrals of z n [± 1 − erf (αz + β)],

n z [erf (α 1 z + β 1 )  erf (α 2 z + β 2 )] 2.14.1. +∞ 0 1 β 1. [1− erf (az + β)] dz = − [−1− erf (az − β)] dz = exp(− β2 )+ [erf (β) −1] ∫ ∫ a 0 −∞ πa {a > 0}.

+∞ β β 2. [erf (az + β ) − erf (az + β )]dz = 1 [1− erf (β )]+ 2 [erf (β ) −1]+ ∫ 1 2 a 1 a 2 0 1 + [exp(− β2 )− exp(− β2 )] {a > 0}. π a 2 1

+∞ ββ12 3. ∫ erf (a11 z +β−) erf ( a 2 z +β=− 2) dz 1 erf ( β+1)  erf( β−+2) 1  0 aa12

1122 +exp( −β21) −exp( −β ) {a1 > 0, a2 > 0}. ππaa21

+∞ 2 4. ∫[erf (az + β1 ) − erf (az + β2 )] dz = (β1 − β2 ) {a > 0}. −∞ a

+∞ ββ12 5. ∫ erf (a11 z +β) −erf ( a 2 z +β 2)  dz =2 − {a1 > 0, a2 > 0}. −∞ aa12

∞ 1 β 6. ±1 − erf ( αz +β)  dz =exp −β2 +  erf( β)  1  ∫   ( ) α  0 πα

{ lim Reα22z +αβ+ 2 zz 2ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 1 α + β − α + β = − β2 − − β2 + 7. ∫[erf ( z 1 ) erf ( z 2 )] dz [exp( 2 ) exp( 1 )] 0 πα ββ 21 22 +βerf( 21)  1 −β erf( ) 1  { lim Re(αz + 2 αβ1 zz) + 2ln = αα z→∞ 

22 =lim Re α+αβ+z 22 zz 2ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ β β 8. [erf (α z + β )  erf (α z + β )] dz = 1 [ A − erf (β )] 2 [ A − erf (β )]− ∫ 1 1 2 2 α 1 1 α 2 2 0 1 2

109 11 − −β22 ± −β exp( 12) exp( ) πα12πα

22 22 { lim Reα1z + 2 αβ 11 zz + 2ln = lim Re(α2z+ 2 αβ 22 zz) + 2ln = +∞ ; z→∞ ( ) z→∞ 

Ak = 1 if lim Re(αk z) = +∞ , z→∞

Ak = −1 if lim Re(αk z) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞

2.14.2.

+∞ 0 21β+2 1. z−1 erf ( az +β) dz = z −−1 erf ( az −β) dz = × ∫∫  2 0 −∞ 4a β ×[1− erf (β)]− exp(− β2 ) {a > 0}. 2 πa 2

+∞ 1 2. zerf( az +β−) erf ( az +β=) dz  βexp −β−β22 exp −β+ ∫ 1 2 2 1( 12) ( 2) 0 2 πa

β2 + β2 + 2 1 1 2 2 1 + [erf (β1 ) −1]+ [1− erf (β2 )] {a > 0}. 4a 2 4a 2

+∞   1 β1 2 β2 2 3. ∫ z[erf (a1z + β1 ) − erf (a2 z + β2 )] dz =  exp(− β )− exp(− β ) + 2 π  2 1 2 2  0  a1 a2  21ββ22++ 21 + 12ββ−+  −  {a > 0, a > 0}. 22erf( 12) 1  1 erf ( ) 1 2 44aa12

+∞ β2 − β2 4. z[erf (az + β ) − erf (az + β )]dz = 2 1 {a > 0}. ∫ 1 2 2 −∞ a

+∞ 2121β+22 β+ 5. zerf ( a z +β) −erf ( a z +β)  dz =21 − {a > 0, a > 0}. ∫ 11 2 2 221 2 −∞ 22aa21

∞ 2β2 +1 β 6. z[±1− erf (αz + β)] dz = [±1− erf (β)]− exp − β2 ∫ 2 2 ( ) 0 4α 2 πα

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

110 ∞ 1 7. z[erf (αz + β ) − erf (αz + β )] dz = β exp − β2 − β exp − β2 + ∫ 1 2 2 [ 1 ( 1 ) 2 ( 2 )] 0 2 πα

β2 + β2 + 2 1 1 2 2 1 + [erf (β1 ) 1]− [erf (β2 ) 1] 4α 2 4α 2

22 { lim Reαz + 2 αβ1 zz + ln = z→∞ ( )

22 =lim Re αz +αβ+ 22 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 1 ββ 8. zerf αβ z +erf αβz += dz 12exp −ββ22exp −+ ∫ ( 11)  ( 2 2) 22( 12)  ( ) 0 2 π αα12

β+22β+ 211221 + erf ( β11) −AA ±  2 −erf ( β 2)  αα22 4412

22 22 { lim Reα1z + 2 αβ 11 zz + ln = lim Re(α2z+ 2 αβ 22 zz) + ln = +∞ ; z→∞ ( ) z→∞ 

Ak = 1 if lim Re(αk z) = +∞ , z→∞

Ak = −1 if lim Re(αk z) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞

2.14.3.

+∞ 0 1. ∫ z 2 [1− erf (az + β)] dz = − ∫ z 2 [−1− erf (az − β)] dz = 0 −∞

β2 +1 2β3 + 3β = exp(− β2 )+ [erf (β) −1] {a > 0}. 3 πa3 6a3

+∞ 1 2. z2erf( az +β−) erf ( az +β=) dz  β+21 exp −β−β+× 221 ∫ 123  ( 2) ( 21) ( ) 0 3 πa

2β3 + 3β 2β3 + 3β × − β2 + 1 1 − β + 2 2 β − { > } exp( 1 ) ] [1 erf ( 1 )] [erf ( 2 ) 1] a 0 . 6a3 6a3

+∞ 3 2β + 3β1 3. z 2 [erf (a z + β ) − erf (a z + β )] dz = 1 [1− erf (β )]− ∫ 1 1 2 2 3 1 0 6a1

23β+β3β+ 221 β+1 − 221− erf ( β ) − 1 exp −β22 + 2exp −β {a > 0, a > 0}. 3[ 2] 33( 12) ( ) 1 2 6a2 33ππ aa 12

111 +∞ 232β+β−β33 −β 3 4. z2 erf( az +β) − erf ( az +β)  dz = 1122 {a > 0}. ∫ 12 3 −∞ 3a

+∞ 33 2323β+β12 β+β 5. z2 erf ( a z +β) −erf ( a z +β)  dz =12 − ∫ 11 2 2 33 −∞ 33aa12

{a1 > 0, a2 > 0}.

∞ β+231 23β+β 6. z22±1 − erf ( αz +β)  dz = exp −β + erf( β) 1  ∫   33( )  0 36πα α

{ lim Reα22zz +αβ=+∞ 2 , lim Re( α=±∞ z) }. zz→∞ ( ) →∞

∞ 3 3 2β + 3β2 2β + 3β1 7. z 2 [erf (αz + β ) − erf (αz + β )] dz = 2 [erf (β ) 1]− 1 × ∫ 1 2 3 2 3 0 6α 6α 1 × β + β2 + − β2 − β2 + − β2 [erf ( 1 ) 1] [( 2 1)exp( 2 ) ( 1 1)exp( 1 )] 3 πα3

22 22 { lim Reαzz +αβ= 212 lim Re α z +αβ 2 z =+∞ , lim Re( α=±∞ z) }. zz→∞ ( ) →∞ ( ) z→∞

∞ β3 + β 2 2 1 3 1 8. ∫ z [erf (α1z + β1 )  erf (α 2 z + β2 )]dz = [ A1 − erf (β1 )]  α3 0 6 1

23β+β3 1 β+221 β+ 1 22A −erf ( β)  − 1exp −β222exp −β 322 33( 1) ( 2) 6α2 3 π αα12

22 { lim Reα1zz + 2 αβ 11 = z→∞ ( )

= α 2 2 + α β = +∞ = lim Re( 2 z 2 2 2 z ) ; Ak 1 if lim Re(α k z ) = +∞ , z→∞ z→∞

Ak = −1 if lim Re(α k z ) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞

2.14.4.

+∞ 0 n − + β = − n+1 n − − − β = (14 ) β 1. ∫ z [1 erf (az )]dz ( 1) ∫ z [ 1 erf (az )]dz W1 (n, a, , 1) 0 −∞ {a > 0}.

+∞ n + β − + β = (14 ) β − (14 ) β 2. ∫ z [erf (az 1 ) erf (az 2 )] dz W1 (n, a, 2 , 1) W1 (n, a, 1 , 1) 0 {a > 0}.

112 +∞ n + β − + β = (14 ) β − 3. ∫ z [erf (a1z 1 ) erf (a2 z 2 )] dz W1 (n, a2 , 2 , 1) 0

− (14 ) β > > W1 (n, a1 , 1 , 1) {a1 0, a2 0}.

+∞ n + β − + β = (14 ) β − (14 ) β 4. ∫ z [erf (az 1 ) erf (az 2 )]dz n![W2 (n, a, 1 ) W2 (n, a, 2 )] −∞ {a > 0}.

+∞ n 5. ∫ zerf ( a11 z +β) −erf (a 2 z +β 2)  dz = −∞

(14) (14) =n! W( na ,,β−) W( na , , β) {a > 0, a > 0}. 2211 2 2 1 2

∞ n ± − α + β = (14 ) α β ± 6. ∫ z [ 1 erf ( z )] dz W1 (n, , , 1) 0

22 { lim Re(αz + 2 αβ zn) −( − 2) ln z = +∞ ; lim Re(αz) = ±∞ }. z→∞ z→∞

∞ n α + β − α + β = (14 ) α β ± − (14 ) α β ± 7. ∫ z [erf ( z 1 ) erf ( z 2 )] dz W1 (n, , 2 , 1) W1 (n, , 1 , 1) 0

22 { lim Reαz + 2 αβ1 zn −( −2) ln z = z→∞ ( )

22 =lim Re( αz + 2 αβ2 zn) −( −2) ln z = +∞ ; lim Re(αz) = ±∞ }. z→∞ z→∞

∞ n 8. ∫ zerf ( α11 z +β)  erf ( α 2z +β 2)  dz = 0 (14) (14) =±Wn11( , α2 , β 2 , AWn 2) −( , αβ111 ,, A)

22 { lim Reα1z + 2 αβ 11 zn −( −2) ln z = z→∞ ( )

22 =lim Re α2z + 2 αβ 22 zn −( −2) ln z= +∞ ; z→∞ ( )

Ak = 1 if lim Re(α k z ) = +∞ , z→∞

Ak = −1 if lim Re(αk z) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞

113 Introduced notations:

2  n− En( /2) nk+−12 exp −β (14) n!  β ( ) 1) Wn( ,,,αβ A) =  A −erf ( β) + × 1 nk+1 ∑ (−α)  k=0 4kn !( +− 12 k) ! π

− ( ) ( ) n E n / 2 1 k l!βn−2k +2l E n / 2 k! k βn−2k +2l  ×  −  , ∑ ∑ k −l ∑ ∑  k =1 k!(n +1− 2k )!l=1 4 (2l )! k =0 (2k +1)!(n − 2k )!l=0 l! 

(14) n ! α= 1 , Wn1 (21 , , 0, A) 21n1 + (21n1 +) πα

(14 ) (2n1 +1)! W (2n1 +1, α, 0, A) = A ; 1 2n1 +2 (n1 +1)!(2α)

n n−E (n / 2 ) n+1−2k ( ) (−1) β 2) W 14 (n, α, β) = , 2 n+1 ∑ 2k −1 α k =0 2 k!(n +1− 2k )!

( ) 1 14 α = (14 ) W2 (2n1 , , 0) 0 , W (2n1 +1, α, 0) = − . 2 2n1 +1 2n1 +2 2 (n1 +1)!α

2.15. Integrals of z n [± 1 − erf (αz + β)]2 , z n [1 − erf 2 (αz + β)],

n 2 z [erf (α 1 z + β 1 )  erf (α 2 z + β 2 )],

n 2 2 z [erf (α 1 z + β 1 ) − erf (α 2 z + β 2 )]

2.15.1.

+∞ 0 222 1. −+β  =−−−= ββ   −− ∫∫1 erf (az)  dz 1 erf (az)  dz erf( 2) 1 0 −∞ 2π a

2 2 β 2 −exp( −β)   erf( β−−) 1  erf( β−) 1 {a > 0}. πa a

+∞ 2 β −2 +β=  β −β+22 β−− 2. ∫ 1 erf (az)  dz erf( ) exp( )  erf( ) 1 0 π a a 2 − erf( 2β−) 1 {a > 0}. 2π a 

+∞ 0 3. +β −22 +β =− −β + −β = ∫∫erf (a11 z ) erf (a 2 z 2) dz erf (a11 z ) erf (a 2 z 2) dz 0 −∞

114 β 1 1  2 = 1 − β − − β2 + β − β2 + [1 erf ( 1 )] exp( 1 )  erf ( 2 )exp( 2 ) a1 πa1 a2  π

2 2  + [1− erf ( 2β2 )]− β2 [1− erf (β2 )] {a1 > 0, a2 > 0}. 2π  +∞ ββ 22+β− +β =12  −2 β−  − 2 β+  4. ∫ erf (a11 z ) erf (a 2 z 2) dz 1 erf ( 1) 1 erf ( 2)  0 aa12

2  erf (β ) erf (β )  + 2 − β2 − 1 − β2 +  exp( 2 ) exp( 1 ) π  a2 a1  1− erf 2 β erf 2 β− 1 2 ( 21) ( ) ++ {a1 > 0, a2 > 0}. 2π aa 21

+∞ 4 5. ∫ [1− erf 2 (az + β)] dz = {a > 0}. −∞ 2πa

+∞ 2 2 4  1 1  6. ∫ [erf (a1z + β1 ) − erf (a2 z + β2 )] dz =  −  {a1 > 0, a2 > 0}. −∞ 2π  a2 a1 

∞ 2 2 7. ∫[±1− erf (αz + β)]2 dz = [erf ( 2β)1]− exp(− β2 )× 0 2πα πα β ×[erf (β) 1]− [erf (β) 1]2 α

{ lim 2Reα22z +αβ+ 2 zz 3ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 β 8. [1− erf 2 (αz + β)] dz = erf (β)exp(− β2 )+ [erf 2 (β) −1]− ∫ α 0 πα 2 − [erf ( 2β)1] 2πα

{ lim 2Reα22z +αβ+ 2 zz 3ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ β 1 9. [erf (α z + β )  erf 2 (α z + β )] dz = 1 [±1− erf (β )]− exp(− β2 )± ∫ 1 1 2 2 α 1 1 0 1 πα1 1  2 2  ± β − β2 + − β + β 2 β −  erf ( 2 )exp( 2 ) [A erf ( 2 2 )] 2 [erf ( 2 ) 1]  α 2  π 2π 

115 α22 + αβ + = { lim Re1 z 211 zz 2ln z→∞ ( )

= α22 + α β + = +∞ = lim 2Re2 z 222 zz 3ln ; A 1 if z→∞ ( )

lim Re(α2 z) = +∞ , A = −1 if lim Re(α2 z) = −∞ ; lim Re(α1 z) = ±∞ }. z→∞ z→∞ z→∞

∞ ββ 10. erf 22(α+β−z ) erf ( α+βz) dz =12 1 − erf 2( β−) 1 − erf 2( β+)  ∫  11 2 2αα 1 2  0 12 2  erf (β ) erf (β )  + 2 − β2 − 1 − β2 +  exp( 2 ) exp( 1 ) π  α 2 α1 

2  A − erf ( 2β2 ) erf ( 2β1 )1 +  +  2π  α 2 α1 

α22 + αβ + = { lim 2Re1 z 211 zz 3ln z→∞ ( )

= α22 + α β + = +∞ = lim 2Re2 z 222 zz 3ln ; A 1 if z→∞ ( )

lim Re(α2 z) = +∞ , A = −1 if lim Re(α2 z) = −∞ ; lim Re(α1z) = ±∞ }. z→∞ z→∞ z→∞ 2.15.2. +∞ 0 2β2 +1 1. z[1− erf (az + β)]2 dz = − z[−1− erf (az − β)]2 dz = [erf (β) −1]2 + ∫ ∫ 2 0 −∞ 4a

ββ222 1 +exp( −β)  erf( β−−) 1 erf( 2β−) 1 − exp( −β 2 ) {a > 0}. πa2 22 ππ aa22

+∞ 2β2 +1 2β 2. z 1− erf 2 (az + β) dz = 1− erf 2 (β) + [erf ( 2β)−1]+ ∫ [ ] 2 [ ] 2 0 4a 2πa 1 β +exp( − 2 β22) −erf( β) exp( −β ) {a > 0}. 2ππaa22

+∞ 0 3. +β −22 +β = −β + −β = ∫∫zerf ( a11 z ) erf (a 2 z 2) dz zerf ( a11 z ) erf (a 2 z 2) dz 0 −∞

β2 + β2 + 2 1 1 β1 2 2 2 1 2 = [erf (β1 ) −1]+ exp(− β )+ [1− erf (β2 )]+ 2 π 2 1 2 4a1 2 a1 4a2

1 2ββ + −β+2222β−− β −β exp( 2 22) erf( 222) 1 erf( ) exp( ) ππ22 π 2 22aa22 a 2

116 {a1 > 0, a2 > 0}.

+∞ 2β +1 4. z erf 2 (a z + β ) − erf 2 (a z + β ) dz = 2 1− erf 2 (β ) + ∫ [ 1 1 2 2 ] 2 [ 2 ] 0 4a2 2ββ1 + 22erf 2β−+ 1 exp −β− 2 22erf( β) exp −β− 2( 2) 22( 2) 22( ) 22πa2 ππ aa 22 2β1 +1 2 2β1 1 2 − [1− erf (β1 )]− [erf ( 2β1 )−1]− exp(− 2β )+ 2 π 2 π 2 1 4a1 2 a1 2 a1

β1 +erf( β) exp −β2 {a > 0, a > 0}. 2 11( ) 1 2 πa1

+∞ 4β 5. z 1− erf 2 (az + β) dz = − {a > 0}. ∫ [ ] 2 −∞ 2πa +∞   2 2 4  β1 β2  6. ∫ z[erf (a1z + β1 ) − erf (a2 z + β2 )] dz = − {a1 > 0, a2 > 0}. 2π  2 2  −∞  a1 a2 

∞ 2β 2 +1 β 7. z[±1− erf (αz + β)]2 dz = [erf (β) 1]2 + exp(− β 2 )× ∫ 2 2 0 4α πα 2β 1 ×[erf (β) 1]− [erf ( 2β)1]− exp(− 2β2 ) 2πα 2 2πα2

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2β2 +1 2β 8. z 1− erf 2 (αz + β) dz = 1− erf 2 (β) + [erf ( 2β)1]+ ∫ [ ] 2 [ ] 2 0 4α 2πα 1 β +exp( − 2 β22) −erf( β) exp( −β ) 2πα22πα

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ β2 + 2 2 1 1 9. ∫ z[erf (α1z + β1 )  erf (α 2 z + β2 )] dz = [erf (β1 ) 1]+ α 2 0 4 1

β 21β+2 1 2β + 12exp −β22 ±1 − erf ( β) ±exp − 2 β 22× 22( 1)  22 2( )  2 24πα12α 22πα 2πα 2

β2 2 × [A − erf ( 2β2 )] erf (β2 )exp(− β ) πα 2 2 2

117 22 22 { lim Reα1z + 2 αβ 11 zz + ln =lim Re( α2z + 2 α 22 β zz) + ln = +∞ ; z→∞ ( ) z→∞ 

A = 1 if lim Re(α2 z) = +∞ , A = −1 if lim Re(α2 z) = −∞ ; lim Re(α1 z) = ±∞ }. z→∞ z→∞ z→∞

∞ β2 + 2 2 2 2 1 2 10. ∫ z[erf (α1z + β1 ) − erf (α 2 z + β2 )] dz = [1− erf (β2 )]+ α 2 0 4 2

2ββ1 + 22erf 2β−A +exp −β− 2 22erf( β) exp −β− 2( 2) 22( 2) 22( ) 22πα2πα 22πα

β2 + 2 1 1 2 2β1 − [1− erf (β1 )]− [erf ( 2β1 )1]− α 2 πα 2 4 1 2 1 1 β − − β22 +1 β −β exp( 2 11) erf( 1 ) exp( ) πα22πα 2 11

22 22 {lim[Re(α1z++ 2 αβ 11 zz ) ln ] = lim Reα2z+ 2 αβ 22 zz + ln = +∞ ; z→∞ z→∞ ( )

A = 1 if lim Re(α2 z) = +∞ , A = −1 if lim Re(α21zz) = −∞ ; lim Re( α) = ±∞ }. z→∞ zz→∞ →∞

2.15.3.

+∞ 0 1. ∫ z n [1− erf (az + β)]2 dz = (−1)n ∫ z n [−1− erf (az − β)]2 dz = 0 −∞ n!  2 2 = β − 2 (15) β − (15) β − × [erf ( ) 1] W1 (n, ) W2 (n, ) (− a )n+1  π 2π

 (15) 1 (15)   × erf ( 2β)−1]W (n, β) − W (n, β)  {a > 0}.  3 π 4  

+∞ n!  (15) 2. zn 1− erf 22( az +β)  dz =  1− erf ( β) W( n, β) + ∫  n+1 1 0 (−a) 

21(15) (15)   > +erf( 2ββ) −+ 1Wn34( , ) Wn( , β) {a 0}. 2ππ 

118 +∞ n 2 n+1 3. ∫ z [erf (a1z + β1 ) − erf (a2 z + β2 )] dz = (−1) × 0

0 n! × zn erf ( a z −β) +erf 2 (a z −β) dz = × ∫ 11 2 2 n+1 −∞ (−a1 )  (15) 1!(15) n  2 ×erf( β−11) 1Wn( , β+) Wn( , β 1) +1 − erf ( β2) × 12π n+1   (−a2 ) 

(15) 21(15) (15)  ×Wn1( , β+2) erf( 2 β− 22) 1Wn34( , β+) Wn( , β 2) 2ππ 

{a1 > 0, a2 > 0}.

+∞ n!  4. zn erf 22( a z +β) −erf (a z +β) dz = 1− erf 2( β) × ∫ 11 2 2n+1  2 0 (−a2 ) 

(15) 21(15) (15)  × β+ β− β+ β − Wn1( , 2) erf( 2 22) 1Wn34( , ) Wn( , 2) 2ππ 

 n!2 (15) −1 − erf 2 ( β) Wn( , β+) × n+1  111 (−a )  2π 1 

(15) 1 (15)  × β− β+ β erf( 211) 1Wn34( , ) Wn( , 1)  {a1 > 0, a2 > 0}.  π 

+∞ 4 ( ) 5. z n 1− erf 2 (az + β) dz = (−1)n n! W 15 (n, β) {a > 0} . ∫ [ ] n+1 3 −∞ 2πa +∞  n 2 2 n 4 1 (15) 6. ∫ z [erf (a1z + β1 ) − erf (a2 z + β2 )] dz = (−1) n!  W (n, β2 ) − 2π  n+1 3 −∞  a2

1 (15)  −βWn( , ) {a > 0, a > 0}. n+1 3 1 1 2 a1 

∞ 22n!2 (15) (15) 7. zn ±1 − erf ( α z +β)  dz = erf( β) 1 Wn( , β) Wn( , β) − ∫  n+1  12 0 (−α)  π

2 1  − β (15) β − (15) β [erf ( 2 ) 1]W3 (n, ) W4 (n, ) 2π π  { lim 2Reα22z + 2 αβ z +( 3 − nz) ln = +∞ ; lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

119 ∞ n! 8. z n 1− erf 2 (αz + β) dz = × ∫ [ ] n+1 0 (− α)

 (15) 2 (15) 1 (15)  ×  [1− erf 2 (β)] W (n, β) + [erf ( 2β)1] W (n, β)+ W (n, β)  1 2π 3 π 4 

{ lim Reα22z + 2 αβ zn −( − 2) ln z = +∞ for n > 0 ; lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

∞ n! 9. z n erf (α z + β )  erf 2 (α z + β ) dz = × ∫ [ 1 1 2 2 ] n+1 0 (− α1 )

(15) 1!n ×erf( β) 1 Wn( , β) + W(15) (,) n β ± × 11 12 1n+1 π ()−α2

 2 (15) 2 ×[1 − erf ( β22 )]Wn1 ( , β ) + [erf ( 2β− )A ] ×  2π

(15) 1 (15)  ×W34( n,, β+22) Wn( β) π 

22 { lim Reα1z + 2 αβ 11 zn −( −2) ln z = z→∞ ( )

22 = lim Reα2z+ 2 αβ 22 zn −( −2) ln z = +∞ for n > 0 ; A = 1 if z→∞ ( )

lim Re(α 2 z ) = +∞ , A = −1 if lim Re(α 2 z ) = −∞ ; lim Re(α1 z) = ±∞ }. z→∞ z→∞ z→∞

∞ n n 2 2 (−1) n! 10. ∫ z [erf (α1z + β1 ) − erf (α 2 z + β 2 )]dz = × α n+1 0 1

 (15) 2 (15) × −2 β β+ β β+  1 erf ( 11) Wn13( , ) erf( 2 1)  1Wn( , 1)  2π 

 1!(15) n 2 (15) 2 +Wn( , β1) + 1− erf ( β22) Wn( , β+) × ππ41n+1  (−α2 ) 2

(15) 1 (15)  × [erf ( 2β 2 )− A]W (n, β 2 ) + W (n, β 2 ) 3 π 4 

22 { lim Reα1z + 2 αβ 11 zn −( −2) ln z = z→∞ ( )

22 =lim Re α2z + 2 α 22 β zn −( −2) ln z = +∞ for n > 0 ; A = 1 if z→∞ ( )

lim Re(α 2 z ) = +∞ , A = −1 if lim Re(α2 z) = −∞ ; lim Re(α1 z) = ±∞ }. z→∞ z→∞ z→∞

120 Introduced notations:

n− En( /2) nk+−12 (15) β (15) 1) Wn, β= , W (2n , 0) = 0 , 1 ( ) ∑ k 1 1 k=0 4kn !( +− 12! k)

(15) 1 Wn(21 += 1, 0 ) ; 1 n1+1 4(n1 + 1!)

En( /2) k nkl−+22 (15) k! β 2) Wn( ,β) = exp −β2  ∑∑− 2 ( ) +−  kl=00(2k 1!) ( nk 2) != l !

− ( ) n E n / 2 1 k l!βn−2k +2l  −  , ∑ ∑ k −l k =1 k!(n +1− 2k )! l=1 4 (2l )! 

(15) n ! ( ) = 1 15 ( + ) = Wn2 (21 ,0) , W2 2n1 1, 0 0 ; (2n1 + 1!)

En( /2) nk−2 k (15) k!β (2!l) 3) Wn( , β=) ∑∑, 3 +− l 2 kl=00(2k 1!) ( nk 2) != 8!(l )

n (15) n ! 1 (2!k ) (15) Wn(2 ,0) = 1 , W (2n + 1, 0) = 0 ; 3 1 ∑ k 2 3 1 (2n1 + 1!) k=0 8!(k )

n− En( /2) nk+−12  k 21l− (15) β (l −β1!) 4) Wn( , β) = ∑∑erf(β) exp −β2 + 4 +− ( ) kl− kl=11kn!( 12! k)  = 4( 2l − 1!)

2 2 − exp(−β 2 ) kl−+11(lk!) β22r−  En( /2) ( +β1!) nk2 +∑∑ −× ∑ 2l+ 1! 2 klr−−  2k+− 2! nk 2 ! π lr=01( ) = 2(r − 1!)  k=0( ) ( )

2 − kβ2l exp(−β 2 ) kl(2lr) !( −β 1!) 21r ×4erf( β) exp −β2 + , ( )∑ ∑∑2 lr− l=0l! π lr=11 = 8( 2r − 1!) (l!) ( ) 15 ( ) = W4 2n1 , 0 0 ,

n 2 ( ) 1 1 (k!) W 15 (2n +1, 0) = . 4 1 ∑ 2n +1−k (n1 +1)! π k =0 2 1 (2k +1)!

121 n 2.16. Integrals of z exp(βz )[± 1 − erf (αz + β1 )],

n z exp(βz )[erf (α1z + β1 )  erf (α 2 z + β 2 )]

2.16.1.

+∞ 0 1. ∫ exp(βz )[1− erf (az + β1 )] dz = − ∫ exp(− βz )[−1− erf (az − β1 )] dz = 0 −∞

1 1  β2 − 4aββ   β − 2aβ   = [erf (β ) −1] + exp 1  erf  1  +1 {a > 0}. 1  2   β β  4a   2a  

+∞ 1  β2 − 4a ββ  2. exp(βz )[erf (a z + β ) − erf (a z + β )]dz = exp 1 1  × ∫ 1 1 2 2 β  2  0  4a1 

2 2a11β −β 1 β −42aa2 ββ 2  2β 2 −β   ×erf −−1 exp erf  −+1  22aaβ 2   124a2    1 +erf( β) − erf ( β) {a > 0, a > 0}. β 211 2

+∞ 3. ∫ exp(βz )[erf (a1z + β1 ) − erf (a2 z + β2 )] dz = −∞   2   2  2  β − 4a2ββ 2   β − 4a1ββ1  = exp − exp  {a1 > 0, a2 > 0}. β   2   2    4a2   4a1 

∞ 11β2 −4 αββ 4. exp(βz) ± 1 − erf ( αz +β)  dz = erf( β)  1  − exp1 × ∫ 11 ββ  2 0 4α

  2αβ1 − β   × erf   1   2α  

22 { lim Reαz +αβ−β+ 2 1 zz2ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞  2  1  β − 4α1ββ1  5. ∫ exp(βz )[erf (α1z + β1 )  erf (α 2 z + β2 )] dz = exp × β  α 2  0  4 1 

 2    2α1β1 − β   1  β − 4α 2ββ 2   2α 2 β2 − β   × erf   − A1   exp erf   − A2  −   2α   β  α 2   2α   1  4 2  2

1 22 − [erf (β1 )  erf (β2 )] { lim Re(α1z + 2 α 11 β zz −β) +2ln z = β z→∞ 

122 22 =lim Re( α2z +αβ−β+ 2 22 zz) 2ln z =+∞ ; Ak = 1 if lim Re(α k z ) = +∞ , z→∞ z→∞

Ak = −1 if lim Re(α k z ) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞ 2.16.2.

+∞ 0 1. ∫ z exp(βz )[1− erf (az + β1 )] dz = ∫ z exp (− βz )[−1− erf (az − β1 )] dz = 0 −∞

β2 − 2a 2 − 2aββ  β2 − 4aββ    β − 2aβ   = 1 exp 1  erf  1  +1 + 2 2  2    2a β  4a    2a  

1 1 2 + [1− erf (β1 )]+ exp (− β ) {a > 0}. β2 πaβ 1

+∞ 1 1 2. z exp(βz )[erf (a z + β ) − erf (a z + β )]dz = [erf (β ) − erf (β )]+ × ∫ 1 1 2 2 2 1 2 0 β πβ

β2 − 2 − ββ  1 2 1 2  2a1 2a1 1 ×  exp(− β )− exp(− β ) + ×  a 2 a 1  2β2 2 1 2a1

β2 −4a ββ  2 aβ −β β22 −22aa − ββ ×exp1 1 erf 11 −+1 2 2 2× 2  22 42aa122a1 β

 2   β − 4a 2 ββ 2   2a 2 β 2 − β  × exp 1− erf   {a1 > 0, a2 > 0}.  2   2a   4a2  2

+∞ 2 + ββ − β2 2a1 2a1 1 3. ∫ z exp(β z )[erf (a1z + β1 ) − erf (a2 z + β2 )] dz = × 2β2 −∞ a1

 2  2 + ββ − β2  2   β − 4a1ββ1  2a2 2a2 2  β − 4a2ββ 2  × exp − exp {a1 > 0, a2 > 0}.  2  2β2  2   4a1  a2  4a2  ∞ 1 β2 − 2α 2 − 2αββ 4. z exp(βz )[±1− erf (αz + β )] dz = exp − β2 + 1 × ∫ 1 ( 1 ) 2 2 0 παβ 2α β

 β2 − 4αββ   β − 2αβ   1 × exp 1  erf  1  ±1 − [erf (β ) 1]  2   2 1  4α   2α   β

22 { lim Reαz +αβ−β+ 2 1 zzln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ β2 − α 2 − α ββ 2 1 2 1 1 5. ∫ z exp(βz )[erf (α1z + β1 )  erf (α 2 z + β2 )] dz = × α 2β2 0 2 1

123 2 22 β−αββ41 1  2 αβ−β11 β−α−αββ222 2 2 ×experf  −×A  2 α 1 22 42α12 2 1  αβ

2 β−αββ422 2  αβ−β22 1 ×experf −A + erf( β)  erf ( β) − 22α 2 12 4α2 2 2 β

11 1 − exp −β22exp −β { lim Reα22z + 2 α β zz −β +ln z = ( 12)  ( ) ( 1 11 ) πβ αα12z→∞

22 =lim Re( α2z +αβ−β+ 2 22 zz) ln z =+∞ ; Ak = 1 if lim Re(αk z) = +∞ , z→∞ z→∞

Ak = −1 if lim Re(αk z) = −∞ ; lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. z→∞ zz→∞ →∞ 2.16.3.

+∞ 0 n − n+1 n −β − − −β  = 1 ∫ zexp(β z)  1 − erf ( az +β1 )  dz = ( 1) ∫ z exp( z)  1 erf ( a z) dz 0 −∞

n+1 1 (16) =( −1) n ! 1 − erf ( β) +Wa( , β , β ,1) {a > 0}. n+1 111 β

+∞ n 2. ∫ z exp(βz )[erf (a1z + β1 ) − erf (a2 z + β 2 )]dz = 0

n+1  1 =( −1) n !  erf( β) − erf ( β) − n+1 12 β

(16) (16)  > > −Wa11( 11, ββ , ,1) + Wa( 2, ββ , 2 ,1) {a1 0, a2 0}. 

+∞ n 3. ∫ z exp(βz )[erf (a1z + β1 ) − erf (a2 z + β2 )]dz = −∞ n+1 (16) (16) =( −1) nWa !( ,,ββ) − Wa( ,, ββ ) {β ≠ 0, a > 0, a > 0}. 2211 2 2 1 2

∞ n 4. ∫ z exp(βz )[± 1 − erf (αz + β1 )]dz = 0

n+1 1 (16) =( −1) nW ![± 1 − erf ( β )] +( αββ , , , ± 1) n+1 111 β

22 { lim Reαz +αβ−β−− 2 1 zz( n2) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

124 ∞ n 5. ∫ z exp(βz )[erf (α1z + β1 )  erf (α 2 z + β2 )]dz = 0

n+1  1 =( −1) n !  erf( β)  erf ( β) − n+1 12 β

(16 ) (16 )  −W (α1 , β, β1 , A1 ) ± W (α 2 , β, β 2 , A2 ) 1 1 

22 { lim Reα1z + 2 α 11 β zz −β −( n −2) ln z = z→∞ ( )

22 =lim Re α2z +αβ−β−− 2 22 zz( n2) ln z =+∞ ; z→∞ ( )

Ak = 1 if lim Re(αk z) = +∞ , Ak = −1 if lim Re(α k z ) = −∞ ; z→∞ z→∞

lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. zz→∞ →∞

Introduced notations:

2 n (16) β −42 αββ αβ − β 1 1) WA(αββ, , ,) = exp11erf −A × 1 1 21∑ kn+− k 42αβ2α k=0

( ) − E k / 2 (2αβ − β)k 2l 1 n 1 × 1 + exp(− β 2 ) × ∑ 2k −2l 1 ∑ k n+1−k l =0 l!(k − 2l )!α π k =12 β

− ( ) + − k −1−2l+2r k E k / 2 l! l 4l 1 r (2αβ − β) ×  ∑ ∑ 1 − + − 2k −1−2l+2r  l=1 (2l )!(k 1 2l )!r=1 (r −1)!α

Ek( /2) k−−12 lr + 2  1 l (r −1!) ( 2 αβ − β) − ∑∑1  , lk!− 2! l 2k−− 12 lr + 2  lr=11( ) = (2r −α 1!) 

2 (16) ββ WA(αβ , , , ) = exp − × 1 2 2α 4α

n− En( /2) En( /2) 2!k 1 ×−∑∑A ; n+−22 kk 2 − 1 nk+−12 2k π kk=10(2!k ) βα = k!2βα( )

− 2 n Ek( /2) kl2 (16) β −4 αββ 1 (2αβ − β) 2) W (αββ, ,) = 2exp1 1 , 2 1 2 ∑∑kn+−1 k 22k− l 4αkl=00 2 β= lk!( −α 2! l)

125 2 En( /2) (16) ββ 1 W (αβ , , ) = 2exp − . 2 22∑ nk+−12 k 2α 4α k=0 k!2βα( )

n 2 2 2.17. Integrals of z exp(− α z + βz ) [± 1 − erf (α 1 z + β 1 )],

n 22  zexp(−α zz +β) erf ( α11 z +β)  erf ( α 22 z +β )

2.17.1.

+∞ 0 22 22 1. ∫∫exp(−a z)  − 1 erf ( az +β) dz =−exp( −a z ) −− 1 erf (az −β)  dz = 0 −∞

2 π   β  = 1 − erf   {a > 0}. 4a   2 

+∞ 0 22 22 2. ∫∫exp(−a z)  − 1 erf ( a11 z) =− dz exp( −a z ) −−1 erf (a z) = dz 0 −∞ 1 a = arctan {a1 > 0}. πa a1

+∞ 0 2 2 2 2 3. ∫ exp(a z ) [1− erf (a1 z )]dz = − ∫ exp(a z ) [−1− erf (a1 z )]dz = 0 −∞

1 a1 + a = ln {a1 > a} . 2 πa a1 − a

+∞ 2 2 4. ∫ exp(− a z ) [erf (az + β) − erf (a1 z )]dz = 0

2 1 a πβ =arctan −− 1 erf  {a > 0, a1 > 0} . π a aa1 4 2

+∞ 22 1 aa 5. ∫ exp(−a z)   erf( a12 z) − erf ( a z) = dz arctan− arctan 0 πa aa21

{a1 > 0, a2 > 0}. +∞ 1  a − a a − a  6. exp(a 2 z 2 ) [erf (a z ) − erf (a z )]dz =  ln 1 − ln 2  ∫ 1 2 a + a a + a 0 2 π a  1 2 

{a1 > a, a2 > a}.

126 +∞ 2 2 7. ∫ exp(− a z ) [erf (az + β1 ) − erf (az + β 2 )]dz = 0  2 2  π   β 2    β1   = 1 − erf   − 1 − erf    {a > 0} 4a   2    2  

+∞ π  β 2  8. exp(− a 2 z 2 + βz ) [erf (a z + β ) − erf (a z + β )]dz = exp × ∫ 1 1 2 2  2  −∞ a  4a 

      a β + 2a 2β   a β + 2a 2β  × erf 1 1 − erf 2 2  {a > 0, a > 0}.      1 2  2 + 2   2 + 2    2a a a1   2a a a 2 

+∞ π β2 9. exp a22 z+β zerf ( a z +β−) erf ( a z +β=) dz exp − × ∫ ( ) 11 2 2 2 −∞ a 4a

      2a 2β − a β   2a 2β − a β  × erfi 1 1 − erfi 2 2  {a > a, a > a}.      1 2  2 − 2   2 − 2    2a a1 a   2a a 2 a 

∞ 2 π   β  10. exp(− α 2 z 2 ) [±1− erf (αz + β)]dz = 1 erf   ∫ 4α   0   2 

{ lim Re α22z +αβ+ zzln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞ ∞ 1 α 11. −αα22  ±− = { α22 ≠ −α , ∫ exp( z )  1 erf ( 1z) dz arctan 1 0 πα α1

22 22 lim Re αzz + α11 +2ln z = +∞ ; ± Re( α z) > 0 if z → ∞}. z→∞ ( )

∞ 2 22 π β 12. exp−αz erf( α+β z )  erf ( α=−z) dz A −erf  ± ∫ ( ) 1 α 0 4 2 1 α ± arctan { lim Re α22z + αβ zz +ln = →∞ ( ) πα α1 z

= α 2 2 + α 2 2 + = +∞ 2 2 lim [Re( z 1 z ) 2ln z ] , α ≠ −α ; z→∞ 1 A = 1 if lim Re(α z ) = +∞ , A = −1 if lim Re(αz ) = −∞ ; z→∞ z→∞

±Re( αzz +β) ⋅ Re( α1 ) > 0 if z → ∞}.

∞ 22 1 αα 13. exp−αz  erf( α z)  erf ( α z)  dz = − arctan arctan ∫ ( ) 12 αα 0 πα 12

127 22 22 22 22 { lim Re αzz +α12 +2ln z = lim Re α zz +α +2ln z =+∞, zz→∞ ( ) →∞ ( )

α 2 ≠ −α 2 α 2 ≠ −α 2 ± α⋅ α > → ∞ 1 , 2 ; Re( 12zz) Re( ) 0 if z }.

∞ 22 14. ∫ exp(−αz)   erf ( α+β− z 12) erf ( α+βz) dz = 0

β 2 β 2 π   2  π   1  22 = 1  erf   − 1  erf   { lim Re(αz + αβ1 zz) +ln = 4α   2  4α   2  z→∞  22 =lim Re αz +αβ+2 zzln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞(T2 ) 22 15. ∫ exp(−αz +β z) erf ( α11 z +β)  erf ( α 2z +β 2)  dz = ∞(T1 )

 π β2 αβ+αβ2222 αβ+αβ = expAA erf 11 erf 2 2 2 12 α 4α 22 22 22α α +α12α α +α

{ lim Re α+α+αβ−β+22z 22 z2 zz2ln z = ( 1 11 ) zT→∞( 1)

2 2 2 2 = lim [Re(α z + α z + 2α1β1 z − βz )+ 2ln z ]= →∞( ) 1 z T2 = α 2 2 + α 2 2 + α β − β + = lim [Re( z 2 z 2 2 2 z z ) 2ln z ] z→∞(T1 )

= α 2 2 + α 2 2 + α β − β + = +∞ ; lim [Re( z 2 z 2 2 2 z z ) 2ln z ] z→∞(T2 )

= if  α 2 + α 2  = −  α 2 + α 2  = +∞ , Ak 1 lim Re k z  lim Re k z  z→∞(T2 )   z→∞(T1 )  

= − if  α 2 + α 2  = −  α 2 + α 2  = −∞ , Ak 1 lim Re k z  lim Re k z  z→∞(T2 )   z→∞(T1 )  

= if  α 2 + α 2  ⋅  α 2 + α 2  = +∞ ; Ak 0 lim Re k z  lim Re k z  z→∞(T1 )   z→∞(T2 )  

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞(T1 ) and z → ∞(T2 )} .

2.17.2.

+∞ 0 2 2 2 2 1. ∫ z exp(− a z ) [1− erf (a1 z + β)]dz = ∫ z exp(− a z ) [−1− erf (a1 z − β)]dz = 0 −∞

128 22  1 aa11a β β = 1 − erf ( β) + exp− erf −1 2a2 222 aa22+ 22 2aaa++111 aa

{a1 > 0}.

+∞ 0 2 2 2 2 2. ∫ z exp(a z ) [1− erf (a1 z + β)]dz = ∫ z exp (a z ) [−1− erf (a1 z − β)]dz = 0 −∞

 2 2     1 a α β  a β  = [erf (β) −1]+ 1 exp  1− erf 1  2  2 2     2a 2 2 − 2 a − a  2 − 2  2a a1 a  1    a1 a 

{a1 > a} .

+∞ 0 22 22 3. ∫∫zexp( a z) − 1 erf ( az += b) dz zexp( a z ) −−  1 erf (a z −= b)  dz 0 −∞ 1 1 = [erf (b) −1]+ exp(− b 2 ) {a > 0, b > 0}. 2a 2 2 πa 2 b +∞ 1 4. z exp(− a 2 z 2 ) [erf (a z + β ) − erf (a z + β )]dz = [erf (β ) − erf (β )]+ ∫ 1 1 2 2 2 1 2 0 2a

22  aa β aaβ +1 exp −−1 1 erf 11 −2 × 22 222+aa+ 22++ 222 22aaa11 aa12 aaa

2 2     a β   a β  × exp − 2  1− erf 2 2  {a > 0, a > 0}.  2 2     1 2 a + a  2 + 2   2    a a 2  +∞ 2 2 a1 5. ∫ z exp(a z ) [erf (a1 z + β1 ) − erf (a 2 z + β 2 )]dz = × 2 2 2 0 − 2a a1 a  a22ββ a aa22β ×exp1 erf 11 −−1 2 exp2 × aa22−−22 222 aa22 12aa12−−2 aaa 

 a22β 1 ×erf −1 +  erf( β21) − erf ( β) {a1 > a, a2 > a}. 22 2a2 aa2 −

+∞ 22 6. ∫ zexp( a z)  erf( a1 z +β) − erf ( az + b)  dz = 0

129 0 22 22 a1 a β = ∫ zexp( a z) erf( a1 z −β) − erf ( a z − b)  dz = exp× 22 2 aa22− −∞ 2aa1 − a 1

2 exp −b −β a1β ( ) erf(b) erf ( ) ×erf −+1 + {a>0, a1 >> ab , 0} . 22 22πab22 a aa1 −

+∞ 2 2 7. ∫ z exp(a z ) [erf (az + b1 ) − erf (az + b2 )]dz = 0

0 22 =∫ zexp( a z)  erf( a z − b12) − erf ( az − b) = dz −∞

1 11 1 = erf(bb) − erf ( ) + exp−b22 − exp − b 2221 ( 2) ( 1) 22aaπ bb21

{a > 0, b1 > 0, b2 > 0}.

+∞ πβ  β 2  8. z exp (− a 2 z 2 + βz )[erf (a z + β ) − erf (a z + β )]dz = exp  × ∫ 1 1 2 2 3  2  −∞ 2a  4a 

      2a 2β + a β   2a 2β + a β  a × erf 1 1 − erf 2 2  + 1 ×       2 + 2   2 + 2  2 2 + 2   2a a a1   2a a a2  a a a1 2 22 2 22  β−44aa β−11 ββ a β−44aa β−2 ββ 2 ×−exp12 exp 2  22 22 44aa++ 22+ 2 44aa  12 aa a2 

{a1 > 0, a2 > 0}.

+∞ π β  β 2  9. z exp(a 2 z 2 + βz )[erf (a z + β ) − erf (a z + β )]dz = exp −  × ∫ 1 1 2 2 3  2  −∞ 2a  4a 

      a β − 2a 2β   a β − 2a 2β  a × erfi 1 1 − erfi 2 2  − 1 ×       2 − 2   2 − 2  2 2 − 2   2a a1 a   2a a2 a  a a1 a

 2 2 2   2 2 2  β + 4a β − 4a1ββ1 a β + 4a β − 4a2ββ 2 × exp 1 + 2 exp 2   2 2   2 2  4a − 4a 2 2 − 2 4a − 4a  1  a a2 a  2 

{a1 > a, a2 > a}. ∞ 1 α 10. z exp(− α 2 z 2 )[±1 − erf (α z + β)]dz = [±1 − erf (β)] + 1 × ∫ 1 2 2α α 2 α 2 + α 2 0 2 1

130      α 2β 2   α β  × exp −  erf 1 − A  2 2      α + α  α 2 + α 2   1    1  

22 22 { lim Re α+α+αβ+z11 z2 zz ln =+∞; z→∞ ( )

22 22 A = 1 if lim Re α + α1 z = +∞ , A = −1 if lim Re α + α1 z = −∞ ; z→∞ ( ) z→∞ ( )

±Re( α1 z +β) > 0 if z → ∞}.

∞ 11 11. zexpα22 z ± 1 − erf ( αz +β)  dz = erf( β) 1  + exp −β2 ∫ ( )  22  ( ) 0 22α πα β

{ lim Re(αβz) = +∞ , ±Re( αz +β) > 0 if z → ∞}. z→∞

∞ 1 12. zexp−α22 z  erf ( α+β z ) erf ( α+β=z) dz erf( β) erf ( β−) ∫ ( ) 11 2 22 1 2  0 2α

α α22 β αβ α 1 1 11 2 − exp− erf −±A1 × ααα222+αα22+ αα22 ++ ααα222 2211 12

αβ22  αβ 2 22 ×−experf −A2 αα22+ αα22+ 2 2

22 22 { lim Re α+α+αβ+z1 z2 11 zz ln = z→∞ ( )

= α 2 2 + α 2 2 + α β + = +∞ lim [Re( z 2 z 2 2 2 z ) ln z ] ; z→∞

22 Ak = 1 if lim Re α + αk z = +∞ , Ak = −1 if z→∞ ( )

22 lim Re α + αk z = −∞ ; ±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞}. z→∞ ( )

∞ 2 2 α1 13. ∫ z exp(α z )[erf (α1 z + β1 )  erf (αz + β 2 )]dz = × α 2 α 2 − α 2 0 2 1

22  2 α β αβ erf(ββ)  erf ( ) exp(−β2 ) ×exp1 erf 11 −−A 12± 2222 2 2 α12 − α α −α 22α πα β 1 22 22 { lim Re α−α+αβ+1z z211 zz ln = lim Re( αβ=+∞2 z) ; zz→∞ ( ) →∞

131 =  α 2 − α 2  = +∞ = −  α 2 − α 2  = −∞ A 1 if lim Re 1 z  , A 1 if lim Re 1 z  ; z→∞   z→∞  

±Re( αzz +β2) ⋅ Re( α 11 +β) >0 if z → ∞}.

∞ 1 14. zexpα22 z  erf( α+β− z ) erf ( α+β=z) dz erf( β−) erf ( β+) ∫ ( ) 1 22 21  0 2α

11 1 + exp−β22 − exp −β { lim [Re(αβzz) = lim Re( αβ) = +∞ }. 2 ( 21) ( ) 12 2 πα ββ21zz→∞ →∞

∞(T ) 2 πβ β2 15. zexp −α22 z +β z erf α z +βerf αz +β  dz = exp× ∫ ( ) ( 11)  ( 2 2)  24αα32 ∞(T1 ) 

      2α 2β + α β   2α 2β + α β  ×  A erf 1 1 A erf 2 2  +  1    2    α α 2 + α 2   α α 2 + α 2    2 1   2 2 

  β 2 − α 2β 2 − α ββ  1 A1α1  4 1 4 1 1  +  exp  2   2 2  α α 2 + α 2 4α + 4α  1  1 

 β 2 − α 2β 2 − α ββ  A2 α 2  4 2 4 2 2   exp   2 2  α 2 + α 2 4α + 4α 2  2 

α 2 2 + α 2 2 + α β − β + = { lim [Re( z 1 z 2 1 1 z z ) ln z ] z→∞(T1 )

= α 2 2 + α 2 2 + α β − β + = lim [Re( z 1 z 2 1 1 z z ) ln z ] z→∞(T2 )

= lim Re α2z +α 22 z +2 α β zz −β +ln z = ( 2 22 ) zT→∞( 1 )

= α 2 2 + α 2 2 + α β − β + = +∞ lim [Re( z 2 z 2 2 2 z z ) ln z ] ; z→∞(T2 )

= if  α 2 + α 2  = −  α 2 + α 2  = +∞ , Ak 1 lim Re k z  lim Re k z  z→∞(T2 )   z→∞(T1 )  

= − if  α 2 + α 2  = −  α 2 + α 2  = −∞ , Ak 1 lim Re k z  lim Re k z  z→∞(T2 )   z→∞(T1 )  

= if  α 2 + α 2  ⋅  α 2 + α 2  = +∞ ; Ak 0 lim Re k z  lim Re k z  z→∞(T1 )   z→∞(T2 )  

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞(T1 ) and z → ∞(T2 )} .

132 2.17.3. +∞ 1. ∫ z 2m exp(− a 2 z 2 ) [1− erf (az + β)]dz = 0

0 (17) = −2m − 22 − − −β  = β { > } . ∫ zexp( a z )  1 erf (az) dz W1 ( a, ,1) a 0 −∞

+∞ 0 2m 2 2 2m 2 2 2. ∫ z exp(− a z ) [1− erf (a1z )]dz = − ∫ z exp(− a z ) [−1− erf (a1z )]dz = 0 −∞

2 (2!mk) 1 a m−1 ( !) = − {a > 0}. ++arctg a1 ∑ 1 mm21 a 22mk− 2 2k1 m! π 4 a 1 k=0 2k++ 1 !( 2 a ) aa ( ) ( 1 )

+∞ 0 2m 2 2 2m 2 2 3. ∫ z exp(a z ) [1− erf (a1z )]dz = − ∫ z exp(a z ) [−1− erf (a1z )]dz = 0 −∞

m 2 (2m )!(−1!) aa+ m−1 (k ) = 1 − {a > a} . +ln a1 ∑ −+1 21m aa− 2mk 22k1 m! π (2a) 1 k=0 2k+− 1! 4 a aa − ( ) ( ) ( 1 )

+∞ 2m 2 2 (2m)! 4. ∫ z exp(− a z ) [erf (az + β) − erf (a1z )]dz = × 0 m! π  m−1 2 1 a (k!) (17) × − −β ++arctg a1 ∑ Wa1 ( , ,1) mm21 a 22mk− 22k1 4 a 1 k=0 2k++ 1!2 a aa ( ) ( ) ( 1 )

{a > 0, a1 > 0} .

+∞ (2m)! 5. z 2m exp(− a 2 z 2 ) [erf (a z ) − erf (a z )] dz = × ∫ 1 2 m 2m+1 0 4 m! πa

2  aa(2!mk) m−1 ( !) aa ×−+ 12− arctg arctg ∑ −+ + aa 2mk 22k11 22k 21m! π k=0 2+ 1!4  ++ ( k) ( a) ( aa12) ( aa)

{a1 > 0, a2 > 0}.

+∞ (−1)m (2m)! 6. z 2m exp(a 2 z 2 ) [erf (a z ) − erf (a z )]dz = × ∫ 1 2 2m+1 0 m! π (2a )

 a − a a − a  (2m)! m−1 (k!)2 ×  ln 1 − ln 2  + ∑ × a + a a + a m−k  1 2  m! π k =0 (2k +1)!(− 4a 2 )

133   a a ×  1 − 2  {a > a, a > a}.  k +1 k +1  1 2 2 − 2 2 − 2  (a1 a ) (a2 a )  +∞ 2m 2 2 7. ∫ z exp(− a z ) [erf (az + β1 ) − erf (az + β 2 )]dz = 0

= (17 ) β − (17 ) β W1 (a, 2 ,1) W1 (a, 1 ,1) {a > 0} . +∞ 2m+1 2 2 8. ∫ z exp(− a z ) [1− erf (a1z + β)]dz = 0 0 2m+1 2 2 = ∫ z exp(− a z ) [−1− erf (a1z − β)]dz = −∞

m! (17) = 1 − erf ( β) −W aa2 , ,β ,1 {a > 0}. m+1 2 ( 1 ) 1 2(a2 ) 9.

+∞ 0 2m+1 2 2 2m+ 1 22 ∫ z exp(a z ) [1− erf (a1z + β)]dz = ∫ zexp( a z ) − 1 − erf (az1 −β)  dz = 0 −∞ m! ( ) = [1− erf (β)]−W 17 (− a 2 , a , β,1) {a > a} . m+1 2 1 1 2(− a 2 )

+∞ 0 10. ∫ z 2m+1 exp(a 2 z 2 ) [1− erf (az + b)]dz = ∫ z 2m+1 exp(a 2 z 2 ) [−1− erf (az − b)]dz = 0 −∞

m mm!!2 (2!k ) = 1 − erf(bb) + exp( − ) ∑ m+−1 mk 21k+ 2(−−a22) πa k=0 k!2( a) ( ab)

{a > 0, b > 0}.

+∞ 2m+1 2 2 11. ∫ z exp(− a z ) [erf (a1z + β1 ) − erf (a2 z + β 2 )] dz = 0 m! = [erf (β1 ) − erf (β 2 )]+ 2(a 2 ) m+1 ( ) ( ) + 17 2 β − 17 2 β > > W2 (a , a1 , 1 , 1) W2 (a , a2 , 2 , 1) {a1 0, a2 0}. +∞ 2m+1 2 2 12. ∫ z exp(a z ) [erf (a1z + β1 ) − erf (a2 z + β 2 )]dz = 0

134 m! (17) (17) = β−β+erf( ) erf ( ) W − aa22, , β− ,1 W − aa, , β ,1 m+1 1 2 22( 11) ( 2 2) 2(−a2 )

{a1 > a, a2 > a}. +∞ 2m+1 2 2 13. ∫ z exp(a z ) [erf (a1z + β) − erf (az + b)]dz = 0

0 2m+ 1 22 = ∫ zexp( a z)  erf( a1 z −β) − erf ( az − b)  dz = −∞

m! (17) = erf( β) − erf (b) + W − aa2 , , β ,1 + m+1 2 ( 1 ) 2(−a2 )

− m! m (−1)m k (2k )! + exp(− b 2 ) {a>0, a >> ab , 0} . 2m+2 ∑ 2k+1 1 πa k=0 k!(2b)

+∞ 2m+1 2 2 14. ∫ z exp(a z ) [erf (az + b1 ) − erf (az + b2 )]dz = 0

0 2m+1 2 2 = ∫ z exp(a z ) [erf (az − b1 ) − erf (az − b2 )] dz = −∞ mm!!m (2!k ) = erf(bb) − erf ( ) + × m+−1 12 ∑ mk 2!(−−a22) πa k=0 ka( )

 1 1  ×  exp(− b 2 )− exp(− b 2 ) {a > 0, b > 0, b > 0}. 2k +1 2 2k +1 1 1 2  (2ab2 ) (2ab1 ) 

+∞ n − 2 2 + β ( + β ) − ( + β ) = (17 ) 2 β β − 15. ∫ z exp ( a z z ) [erf a1 z 1 erf a 2 z 2 ] dz W3 (n, a , a1 , , 1 ) −∞

− (17 ) 2 β β + (17 ) β β − (17 ) β β W3 (n, a , a2 , , 2 ) W4 (n, a, a1 , , 1 ) W4 (n, a, a2 , , 2 )

{a > 0, a1 > 0, a2 > 0}. +∞ n 2 2 + β + β − + β = (17 ) − 2 β β − 16. ∫ z exp(a z z ) [erf (a1z 1 ) erf (a2 z 2 )] dz W3 (n, a , a1 , , 1 ) −∞

− (17 ) − 2 β β + (17 ) β β − (17 ) β β W3 (n, a , a2 , , 2 ) W5 (n, a, a1 , , 1 ) W5 (n, a, a2 , , 2 )

{a > 0, a1 > a, a2 > a} . ∞ 2m − α 2 2 ± − α + β = (17 ) α β ± 17. ∫ z exp( z ) [ 1 erf ( z )]dz W1 ( , , 1) 0

135 { lim Re α22z +αβ− zm( −1) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ (2m)!  1 α 18. z 2m exp(− α 2 z 2 ) [±1− erf (α z )] dz = arctg − ∫ 1  m 2m+1 α 0 m! π  4 α 1  m−1 (k!)2 − α  1 ∑ m−k k+1  k=0 + α 2 α 2 + α 2 (2k 1)!(4 ) ( 1 ) 

α22 + α 22 − − = +∞ > { lim Re zzm1 (2 2) ln z (for m 0 ); z→∞ ( )

± Re(α1z ) > 0 if z → ∞}. ∞ (2m)!  1 α 19. z 2m exp(− α 2 z 2 ) [erf (αz + β)  erf (α z )]dz = ± arctg − ∫ 1  m 2m+1 α 0 m! π  4 α 1

− 2  m 1 (k!) ( ) − α  −W 17 (α, β, A) 1 ∑ m−k k+1  1 k=0 + α 2 α 2 + α 2 (2k 1)!(4 ) ( 1 ) 

{ lim Re α22z + αβ zm −( −1) ln z = z→∞ ( )

= α 2 2 + α 2 2 − − = +∞ > lim [Re( z 1 z ) (2m 2)ln z ] (for m 0 ); z→∞ A = 1 if lim Re(αz ) = +∞ , A = −1 if lim Re(αz ) = −∞ ; z→∞ z→∞

±Re( αzz +β) ⋅ Re( α1 ) > 0 if z → ∞}.

∞ (2!m) 20. z2m exp−α 22z  erf( α z) erf ( α z)  dz = − × ∫ ( ) 12 mm21+ 0 4!m πα

2 αα(2!mk) m−1 ( !) ×−arctg arctg × αα ∑ mk− 12m! π k=0 (2k +α 1!4) ( 2 )

 αα × 12 kk++11 α22 +α α 22 +α ( 12) ( )

α 2 2 + α 2 2 − − = { lim [Re( z 1 z ) (2m 2)ln z ] z→∞

= α22 + α 22 − − = +∞ > lim Re zzm2 (2 2) ln z (for m 0 ); z→∞ ( )

± Re(α1z )⋅ Re(α 2 z ) > 0 if z → ∞}.

136 ∞ 2m 2 2 21. ∫ z exp (− α z ) [erf (αz + β1 ) − erf (αz + β 2 )]dz = 0

(17) (17) = αβ ± − αβ ± WW11( ,21 ,1) ( , ,1)

22 { lim Re αz + αβ1 zm −( −1) ln z = z→∞ ( )

22 =lim Re α+αβ−−z2 zm( 1) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2m+1 2 2 22. ∫ z exp(− α z ) [±1− erf (α1z + β)]dz = 0 m! = ± − β − (17 ) α 2 α β [ 1 erf ( )] W2 ( , 1 , , A) 2(α 2 ) m+1

22 22 { lim Re α+α+αβ−−z11 z2 zm( 2 1) ln z =+∞; z→∞ ( )

22 A = 1 if lim Reα + α1 z = +∞ , z→∞ 

22 A = −1 if lim Reα + α1 z = −∞ ; ±Re( α1z +β) > 0 if z → ∞}. z→∞ 

m  ∞ (−1!) m  23. z2m+ 1expα 22z ± 1 − erf αz +β  dz = erfβ 1 + ∫ ( ) ( ) 22m+  ( )  0 2α  

1 m (2!k )  +exp −β2 ∑  π ( ) k 21k+  k=0 (−β4!) k 

{ lim Re( αβzmz) − ln  = +∞ , ± Re( αz + β) > 0 if z → ∞}. z→∞ 

∞ 2m+1 2 2 24. ∫ z exp(− α z ) [erf (α1z + β1 )  erf (α 2 z + β 2 )]dz = 0

m! (17 ) (17 ) = [erf (β )  erf (β )] + W (α 2 , α , β , A ) W (α 2 , α , β , A ) m+1 1 2 2 1 1 1 2 2 2 2 2(α 2 )

22 22 { lim Re α+α+αβ−−z1 z2 11 zm( 2 1) ln z = z→∞ ( )

22 22 =lim Re α+α+αβ−z2 z2 22 zm( 2 − 1) ln z =+∞, As = 1 if z→∞ ( ) 22 22 lim Reα + αs z = +∞ , As = −1 if lim Reα + αs z = −∞ ; z→∞  z→∞ 

137 ±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞}. ∞ 2m+ 1 22 25. ∫ z exp(αz)  erf ( α11 z +β)  erf ( αz +β 2)  dz = 0 m! (17) = erf β erf β  +WA −α2,,, α β m+1 ( 1) ( 2) 2 ( 11 ) 2(−α2 ) m! m (2!k )  exp −β2 mk+1 ( 2 ) ∑ 21k+ 2 π( −α2 ) k=0 (−β4!) k 2 22 22 { lim Re α−α+αβ−−1z z211 z( 2 m 1) ln z = lim Re( αβ−2zmz) ln =+∞; zz→∞ ( ) →∞ 22 22 A = 1 if lim Reα1 − αz = +∞ , A = −1 if lim Reα1 − αz = −∞ ; z→∞  z→∞  ±Re( αzz +β2) ⋅ Re( α 11 +β) >0 if z → ∞}.

∞ m (−1!) m  26. z2m+ 1expα 22z  erf α+β− z erf α+βz dz = erfβ − erf β + ∫ ( ) ( ) ( 11) 22m+  ( ) ( ) 0 2α 

1 m (2k )!  1 1   +  − β 2 − − β 2  ∑ exp ( 1 ) exp( )  π − k  β 2k+1 β 2k+1  k=0( 4) k!  1  

{ lim Re(αβzmz) − ln  = lim Re( αβ1zmz) − ln  = +∞ }. zz→∞ →∞

∞(T2 ) n 22 27. ∫ zexp(−α z +β z)  erf ( α11 z +β)  erf ( α 2z +β 2)  dz = ∞(T1)

= (17 ) α 2 α β β + (17 ) α α β β A1 [W3 (n, , 1 , , 1 ) W4 (n, , 1 , , 1 )]

(17) (17)  AW n,,,,α2 α ββ +W( n ,,,, αα ββ ) 234( 22) 22

{ lim Re α+α+αβ−β−−22z 22 z2 zz( n2) ln z = ( 1 11 ) zT→∞( 1 )

= α 2 2 + α 2 2 + α β − β − − = lim [Re( z 1 z 2 1 1z z ) (n 2)ln z ] z→∞(T2 )

= α 2 2 + α 2 2 + α β − β − − = lim [Re( z 2 z 2 2 2 z z ) (n 2)ln z ] z→∞(T1 )

= α 2 2 + α 2 2 + α β − β − − = +∞ lim [Re( z 2 z 2 2 2 z z ) (n 2)ln z ] ; z→∞(T2 )

22 22 As = 1 if lim Reα +αsszz =− lim Re α +α =+∞, zT→∞( 21) zT→∞( ) 

138 22 22 As = −1 if lim Reα +αsszz =− lim Re α +α =−∞, zT→∞( 21) zT→∞( ) 

22 22 As = 0 if lim Reα +αsszz ⋅ lim Re α +α =+∞; zT→∞( 12) zT→∞( ) 

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞(T1 ) and z → ∞(T2 )} .

Introduced notations:

2 − ( ) (2m)! π   β  (2m)! m 1 1) W 17 (α, β, A) = A − erf   + k! × 1 m+1 2m+1   2m+1 ∑ 4 m!α   2  m!(2α) k=0

2  1 β2  ββk 2kl+− 12 exp(−β ) ×exp −−A erf + ×  ∑ l  222 l=0 2lk !2( +− 1 2 l) ! π

k1! lkrlββ2klr−+ 22 !2 llrklr−2 −+ 22  ×−∑ ∑∑ ∑ , lk!2+− 1 2 l ! lr− 2l+ 1!2 k − 2 l ! r ! l=1( ) rl= 102( 2!r) = ( ) ( ) r= 0 m−1 2 (17) (2!mk) π 1 ( !) WA(α=, 0, )  −∑ ; 1 21m+ m + 1π 21mk+− mk!α+ 4 k=0 2( 2 1!)

22  (17) m!α αβ αβ 2) WAα2 ,,, αβ = 11exp−A −erf × 2 ( 1 ) 22 α22 +α α +α α22 +α 2 111 

22kl− mk(2!k ) (αβ) m!α × 1 +1 exp −β2 × ∑∑m+−12 k kl− ( ) kl=002 = l 22 2 π k!(α ) 4lk !2( − 2 l) !( α +α1 )

2k−− 12 lr + 2 m(2!kr)  kl1 !(αβ) ×−1 ∑m+−12 k ∑∑ klr−+ k=12  lr= 11lk!2( − 2 l) != lr− 22 kr!(α ) 4( 2!) (α +α1 )

 kl2k−− 12 lr + 2 (l −1!) (αβ1 )  −∑∑  , (2l− 1!2) ( kl +− 1 2) ! 2klr−+ lr=11= (r −1!) α22 +α  ( 1 ) 

m (17) m!α (2!k ) Wαα2, , 0, AA = 1 ; 2 ( 1 ) ∑ mk+−1 k 2 α22 +α k=0 k 2 2 22 1 4!(k ) (α) ( α +α1 )

139 2 22 (17) n! β−αβ−αββ44 3) Wn,,,,α2 α ββ = exp1 11× 3 ( 11) n 22 2 22 44α+α (2α) α +α1 1

n− En( /2) +− kl+−1  k!βnk12 k 4( 2l − 2!) ×× ∑∑ +− −  kl=11(2!kn) ( 12! k) = ( l 1!)

k −2−l+2r 2l−2r l 2 2l+1−2r 2 E (n / 2 ) n−2k (α ) α (2α β1 + α1β) β × ∑ 1 − ∑ × 2l−1−r ( − ) r=1 − − α 2 + α 2 k =1 k! n 2k ! (r 1)!(2l 2r )!( 1 )

−+ −− 2kl2 r 22lr− 2 2l 12 r kl−1 (α) α1(2 α β 11 +αβ)  ×−l 1! , ∑∑( ) 21lr−−  lr=10 = rl!2( − 1 − 2 r) ! α22 +α  ( 1 ) 

2 (17) αβn! α β Wn(,,,,)α2 α β−11 = exp× 3 1 22n  24ααα2 α 22 +α  (2 ) 1

− ( ) + − − k −1+l n E n / 2 k!β n 1 2k k−14 k l (2l )!(α 2 ) × ∑ ∑ , ( ) ( + − ) l k=1 2k ! n 1 2k ! l=0 2 α 2 + α 2 (l!) ( 1 )  2 2  ( ) (2m)! α β W 17 (2m, α 2 , α , 0, β )= − exp − 1 × 3 1 1  2 2  m α 2 + α 2 α + α 4 m! 1  1 

− 2kl−− 12 mk(k −1!) −1 αβ22kl(2 ) × 1 1 , ∑∑mk+−1 21kl−− kl=10α2 = − − α22 +α ( ) lk!2( 1 2 l) !( 1 )

 2 2  ( ) m! α β W 17 (2m +1, α 2 , α , 0, β )= exp − 1 × 3 1 1  2 2  α 2 + α 2 α + α 1  1 

mk(2!k ) αβ2k+− 12 lkl 2 − 2 × 11 ; ∑∑mk+−1 21k− kl=002 = l 22 k!(α ) 4lk !2( − 2 l) !( α +α1 )

2  2  ( ) n! π  β   2α β + α β  4) W 17 (n, α, α , β, β ) = exp erf 1 1 × 4 1 1 n  2    2 α  4α   α α 2 + α 2   2 1 

E (n / 2 ) β n−2k × , ∑ 2n−2k k =0 k!(n − 2k )!α

140   ( ) (2m)! π  αβ  W 17 (2m, α, α , 0, β ) = erf 1 , 4 1 1 m 2m+1   4 m!α  α 2 + α 2   1 

(17 ) + α α β = W4 (2m 1, , 1 , 0, 1 ) 0 ;

2  2  ( ) n! π  β   2α β − α β  5) W 17 (n, α, α , β, β ) = exp − erfi 1 1 × 5 1 1 n  2    2 α  4α   α α 2 − α 2   2 1  ( ) − − E n / 2 (−1)n k β n 2k × , ∑ 2n−2k k =0 k!(n − 2k )!α

  ( ) (2m)! π  αβ  W 17 (2m, α, α , 0, β ) = erfi 1 , 5 1 1 m 2m+1   (− 4) m!α  α 2 − α 2   1 

(17) Wm5 (2+ 1, αα ,11 , 0, β) = 0 .

n 2 2.18. Integrals of z erf (αz + β 1 )exp[− (αz + β 2 ) ],

2 zzn ±1 − erf( α +β) exp  −( α z +β ) , 12

n 2 n 2 z exp(βz )erf (αz + β1 ), z exp(βz ) [1 − erf (αz + β1 )] ,

n 2 2 z exp(βz )[erf (α1 z + β1 ) − erf (α 2 z + β 2 )]

2.18.1. +∞ 2 2 π   β1 − β 2  1. ∫ erf (az + β1 )exp[− (az + β 2 ) ] dz = 1+ erf   {a > 0}. 4a   2  −β1 a

+∞ 2 2 2 π π   β  2. ∫ erf (az + β)exp(− a z )dz = − 1− erf   {a > 0}. 0 2a 4a   2  +∞ 2 2 π   β  3. ∫ erf (az )exp[− (az + β) ] dz = 1− erf   {a > 0}. 0 4a   2  +∞ 2 4. ∫ [1− erf (az + β1 )]exp[− (az + β 2 ) ] dz = −β1 a

141 β1 a 2 =− −−1 erf(az −β) exp  −(az −β) dz = ∫ 12 −∞ 2 π π   β1 − β 2  = [1+ erf (β1 − β 2 )]− 1+ erf   {a > 0}. 2a 4a   2  +∞ 2 5. 1 − erf(az +β)  exp  −(az +β) dz = ∫  0

0 2 π 2 =−−−1 erf(az −β) exp  −(az −β) dz = −1 erf ( β) {a > 0}. ∫   −∞ 4a

+∞ 0 22 6. −1 erf(az)  exp  −+β=−−−( az) dz 1 erf(az)  exp  −−β=( az) dz ∫∫  0 −∞ 2 π π   β  = [1− erf (β)]− 1− erf   {a > 0}. 2a 4a   2  +∞ 2 π  β1 − β 2  7. ∫ erf (az + β1 )exp[− (az + β 2 ) ] dz = erf   {a > 0}. −∞ a  2 

∞ 2 2 π β12 −β 8. ∫ erf(αz +β12) exp  −( αz +β) dz = erf ±1 4α 2 −β1 α

2 2 { lim [Re(α z + αβ1 z + αβ 2 z )+ ln z ]= z→∞

22 =lim Re α+αβ+z 22 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 22 ππβ 9. erf(αz +β) exp −αz dz = − erf 1 ∫ ( ) 24αα 0 2

{ lim [Re(α 2 z 2 )+ ln z ]= lim [Re(α 2 z 2 + αβz )+ ln z ]= +∞, z→∞ z→∞

lim Re(αz ) = ±∞ }. z→∞

∞ 2 π   β   10. erf (αz )exp [− (αz + β)2 ] dz = erf   1 ∫ α   0 4   2  

{ lim [Re(α 2 z 2 + αβz )+ ln z ]= lim [Re(α 2 z 2 + 2αβz )+ ln z ]= +∞, z→∞ z→∞

lim Re(αz ) = ±∞ }. z→∞

∞ 2 11. ±−1 erf( α+βz ) exp  −α+β( z) dz = ∫ 12 −β1 α

142 2 ππβ12 −β = 1 ± erf ( β12 −β) −1 ± erf  24αα2

22 { lim Re αz +αβ+αβ12 z zz +ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ π 12. [±1− erf (αz + β)]exp[− (αz + β)2 ] dz = [erf (β) 1]2 ∫ α 0 4

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 π π   β  13. [±1− erf (αz )]exp[− (αz + β)2 ] dz = [1 erf (β)]− 1 erf   ∫ α α   0 2 4   2 

{ lim Re α22z +αβ+ zzln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

−β2 α 2 π 2  β1 − β 2  14. ∫ erf (αz + β1 )exp[− (αz + β 2 ) ] dz = erf   . 2α  2  −β1 α

−(β1 +β2 ) (2α) 2 15. ∫ erf (αz + β1 )exp[− (αz + β 2 ) ] dz = −β1 α

π 22β12 −β β 12 −β = erf − erf . 42α 2  2.18.2.

+∞ β a 1. ∫ exp(− bz )erf 2 (az + β)dz = ∫ exp(bz )erf 2 (az − β)dz = −β a −∞

2 1  b 2 + 4abβ   2b  =   −   { > > } exp 1 erf   a 0, b 0 . b  4a 2   4a 

+∞ 2 2 1 β− 4a ββ1 2. exp(ββz)  1−+= erf ( az1 ) dz exp× ∫ β 4a2 −β1 a 

2   β  ββ  2  1  1  × 1+ erf   − exp −  {a > 0}.   4a  β  a 

+∞  2  2 2 2 1  β    2β  3. exp(βz ) [erf (a1z ) − erf (a2 z )] dz = exp 1+ erf   − ∫ β  2   4a  0  4a2    2 

143  2  2 1  β   2β  − exp 1+ erf   {a1 > 0, a2 > 0}. β  2   4a   4a1   1  +∞ 4  β 2 − 4aββ   2β  4. exp(βz ) [1− erf 2 (az + β )] dz = exp 1 erf   {a > 0}. ∫ 1 β  2    −∞  4a   4a 

+∞ 4  β 2 − 4a ββ  5. exp(βz ) [erf 2 (a z + β ) − erf 2 (a z + β )] dz = exp 2 2  × ∫ 1 1 2 2 β  2  −∞  4a2 

 2   2β  4  β − 4a1ββ1   2β  × erf   − exp erf   {a1 > 0, a2 > 0}.  4a  β  2   4a   2   4a1   1 

∞ 2 1 β2 −4 αββ 2β β2 α +β =− 1 ± 6. ∫ exp( z) erf ( z1 ) dz exp erf 1 βα4α2 4  −β1 α 

2 2 { lim [Re(2α z + 4αβ1z − βz )+ 3ln z ]= +∞, z→∞ lim Re(βαzz) = −∞ , lim Re( ) = ±∞ }. zz→∞ →∞

∞  2  2 1  β − 4αββ1  7. ∫ exp(βz ) [1− erf (αz + β1 )] dz = exp × β  α 2  −β1 α  4 

2   β   ββ  2  1  1  2 2 × erf   ±1 − exp −  { lim [Re(α z + 2αβ1z − βz )+ 2ln z ]=   4α   β  α  z→∞

22 =lim Re 2 αz +αβ−β+ 4 1 zz3ln z =+∞ , lim Re(αz ) = ±∞ }. z→∞ ( ) z→∞

2 ∞  β 2    β   2 2 1    2  8. ∫ exp(βz )[erf (α1z ) − erf (α 2 z )] dz = exp erf   ±1 − β  α 2  4α 0  4 2    2   2  β 2    β   1    2  − exp erf   + A β  α 2  4α  4 1    1  

22 22 { lim Re α12zz −β +2ln z = lim Re α zz −β +2ln z = zz→∞ ( ) →∞ ( )

= α 2 2 − β + = α 2 2 − β + = +∞ lim [Re(2 1 z z ) 3ln z ] lim [Re(2 2 z z ) 3ln z ] ; z→∞ z→∞

A = 1 if lim Re(α1z ) = +∞ , A = −1 if lim Re(α1z ) = −∞ ; z→∞ z→∞

lim Re(α2z) = ±∞ }. z→∞

144 2 (β−2αβ1 ) (2α )  2  2 1  β − 4αββ1  9. ∫ exp(βz )erf (αz + β1 )dz = exp × β  α 2  −β1 α  4 

ββ2  2 β ×−exp erf22 2erf . 2   42αα  4 α

2 (β−4αβ1 ) (4α )  2  2 1  β − 4αββ1  10. ∫ exp(βz )erf (αz + β1 )dz = exp × β  α 2  −β1 α  4 

 β  β  2   2  2  × 2erf   − erf   .   4α   4α 

2.18.3.

+∞ β −β 2 2 2 ( 12) 1. ∫ zerf( az +β12) exp  −(az +β) dz =exp − × 4a2 2 −β1 a 

2 ββ−− πβ  ββ ×+ 12− 2 + 12 { > } 1 erf 2 1 erf  a 0 . 224a 

+∞ 2 2 2 ββ 2. zerf( az) exp −( az +β) dz =exp − 1 − erf  − ∫ 2 2 0 4a 2

2 πβ   β  − 1− erf   {a > 0}. 4a 2   2  +∞ 2 3. z1 − erf( az +β)  exp  −(az +β) dz = ∫ 12 −β1 a

β1 a 2 2 πβ β − β =z −−1 erf( az −β) exp  −−β(az) dz =21 + erf 12 − ∫ 122  −∞ 4a 2

2 β −β β − β πβ 2 ( 12) 12 2 −exp − 1+ erf − 1 + erf ( β12 −β) + 222 42aa2

1 2 +exp  −( β12 −β ) {a > 0}. 2a2 

145 +∞ 0 2 2 4. z−1 erf( az +β) exp  −(az +β) dz = z −−1 erf( az −β) exp −(az −β) dz = ∫∫    0 −∞

1 πβ 2 = erf (− β 2 ) [1− erf (β)]− [1− erf (β)]2 − [1− erf ( 2β)] {a > 0}. 2a 2 4a 2 4a 2

+∞ 0 5. ∫ z[1− erf (az )]exp[− (az + β)2 ] dz = ∫ z[−1− erf (a z )]exp[− (az − β)2 ] dz = 0 −∞ 2 πβ   β  2  β 2   β  πβ = − −  −  − − × 1 erf   exp 1 erf   4a 2   2  4a 2  2   2  2a 2 1 ×[1− erf (β)]+ exp(− β 2 ) {a > 0}. 2a 2 +∞ 2 πβ β − β 1 6. zerf( az +β) exp  −(az +β) dz = 2erf 21+ × ∫ 1222 −∞ aa2 2 2 (β21 −β ) ×−exp  {a > 0}. 2 

∞ 2 1 β12 −β 7. ∫ zerf(α z +β12) exp  −( αz +β) dz = erf ±1 × 4α2 2 −β1 α

2 (β12 −β ) β12 −β ×2 exp  − − πβ2 erf ±1 2 2 

22 { lim 2Re αz + αβ12 z + αβ zz +ln = z→∞ ( )

22 =lim Re αzz +αβ=+∞ 22 , lim Re( α=±∞ z) }. zz→∞ ( ) →∞

∞ 2 1 β 8. zerf(α z) exp  −( α z +β) dz =− erf 1 × ∫ 2  0 4α 2

ββ2  × − + πβ 2 exp erf 1 2 2

{ lim 2Re α22z +αβ+ zzln = lim Re α22 z +αβ=+∞ 2 z , lim Re( α=±∞z) }. z→∞ ( ) zz→∞ ( ) →∞

∞ 2 1 β12 −β 9. ∫ z±−1 erf( α+β z 12) exp  −α+β( z) dz = erf ±1 × 4α2 2 −β1 α

146   2      β1 − β 2   (β1 − β 2 )  ×  πβ 2 erf   ±1 − 2 exp−   −    2    2  

πβ 2 1 2 − [1± erf (β1 − β 2 )]± exp[− (β1 − β 2 ) ] 2α 2 2α 2

22 { lim 2Re αz +αβ+αβ12 z zz +ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 2 10. z±−1 erf( α+β z ) exp  −α+β( z) dz = erf 2β 1 − ∫ 2 ( ) 0 4α

πβ 2 1 2 − erf( β)  1  − exp( −β) [ erf ( β ) 1] 42αα22

{ lim 2Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞ ∞  2 2 1   β     β  11. z[±1− erf (αz )]exp[− (αz + β) ] dz = erf   1  2 exp −  + ∫ 2     0 4α   2     2 

  β   πβ 1 2 + πβ erf   1 − [1 erf (β)]± exp(− β )   2   2α 2 2α 2

{ lim 2Re α22z +αβ+ zzln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

−β2 α 2 2 β12 −β 12. ∫ zerf(α z +β12) exp  −( αz +β) dz = erf × 2α2 2 −β1 α

2 (ββ− ) πβ β− β 1 ×−exp 12 − 2erf 2 12−erf (ββ −) . αα22 12 222 2

−(β1 +β2 ) (2α ) 2 2  β1 − β 2  13. ∫ z erf (αz + β1 )exp[− (αz + β 2 ) ]dz = erf   × α 2  2  −β1 α 4

2 (β12 −β ) πβ222 β 12 −β β 12 −β ×−exp  + erf −erf  − 222 4α 2

1  β − β   (β − β )2  − erf  1 2  exp− 1 2  . 2 2α  2   4 

147

2.18.4.

+∞ β a 1. ∫ z exp(− bz )erf 2 (az + β)dz = − ∫ z exp(bz )erf 2 (az − β)dz = −β a −∞

2 2a 2 − b 2 − 2abβ  b 2 + 4abβ    2b  =   −   + exp  1 erf   . 2a 2b 2  4a 2    4a 

2  b 2 + 8abβ   2b  +   −   { > > } exp 1 erf   a 0, b 0 . 2πab  8a 2   4a 

+∞ a + ββ ββ 2 2. β −2 +β = 11− + × ∫ zexp( z) 1 erf ( az1 ) dz exp aβ2 a 2πβa −β1 a  2  2 2  2  β − 8aββ1   2β   β − 2a − 2aββ1 β − 4aββ1 × exp  erf   +1 + exp  ×  2    2 2  2   8a    4a   2a β  4a 

2   β    2  × erf   +1 {a > 0}.   4a  

+∞  β 2   β   2 2 2    2  3. ∫ z exp(βz )[erf (a1z ) − erf (a2 z )] dz = exp erf   +1 + 2πa β  2  4a 0 2  8a2   2  

2 β−222a ββ2222 β + 2 exp erf+− 1 exp× 22 2  2 24aa22β 4a2 2πβa1 8a1

2 2 2   β   2a − β  β 2    β    2  1    2  × erf   +1 + exp erf   +1 {a1 > 0, a2 > 0}. 4a 2β 2  2  4a   1   2a1  4a1    1   +∞ 2  β 2 − 8aββ   2 4. z exp(βz ) [1− erf 2 (az + β )] dz = exp 1  + ∫ 1 β  2   −∞ a  8a   2π

β22 −22aa − ββ ββ2 2  +1 exp erf  {a > 0}. β 2  aa8a 4 

+∞  2  2 2 2  β − 8a2ββ 2  5. z exp(βz )[erf (a1z + β1 ) − erf (a2 z + β 2 )] dz = exp × ∫ a β  2  −∞ 2  8a2 

22 2 2  22β −22aa −22 ββ ββ2 β −8a ββ ×+2  − 11 × exp erf  exp 2π αβ 224aaβ   2 88aa2121 

148 22 2 2 β −22aa −11 ββ ββ2 ×+1  { > > }. exp erf a1 0, a2 0 2π αβ 2 4a 118a1 

∞ 22α2 + αββ − β 22 β −4 αββ 2 11 6. ∫ zexp(β z) erf ( α z +β1 ) dz = exp × 24αβ22 α2 −β1 α 

2  2    2β   2 β − 8αββ1   2β   × erf   ±1 − exp  erf   ±1    2      4α   2παβ  8α    4α  

22 { lim Re 2αz + 4 αβ1 zz − β +2ln z = +∞ , z→∞ ( )

lim Re(βzz) + ln = −∞ , lim Re( αz) = ±∞ }. zz→∞ →∞ ∞ 22β2 −8 αββ β 7. zexp(β z) 1 − erf 2 ( αz +β) dz = exp1 erf± 1 + ∫ 1 2  2παβ 8α 4α −β1 α 

2 β 2 − 2α 2 − 2αββ  β 2 − 4αββ   2β   α + ββ  ββ  + 1 exp 1  erf   ±1 + 1 exp − 1  2 2  2     2 2α β  4α   4α   αβ  α 

2 2 { lim [Re(α z + 2αβ1z − βz )+ ln z ]= z→∞

22 =lim Re( 2 αz +αβ−β+ 4 1 zz) 2ln z =+∞ , lim Re(αz ) = ±∞ }. z→∞ z→∞

∞ 22ββ2  8. zexp(β z) erf22( α z) − erf ( α z) dz = exp erf±+ 1 ∫ 12πα β 2 4α 0 2 2 8α2 2

2 βα22− 2 ββ2222 β + 2 exp erf±− 1 exp× αβ22 α2  α α2 22 44 22 2πα1 β 81

22  2 22β2α −β ββ2  × ++1  + erf AAexp  erf  α44αα22βα 2 112411 

22 22 { lim Re α12zz −β +ln z = lim Re α zz −β +ln z = zz→∞ ( ) →∞ ( )

22 22 =lim Re 2 α−β+12zz2ln z = lim Re 2 α−β+zz2ln z =+∞; zz→∞ ( ) →∞ ( )

A = 1 if lim Re(α1z ) = +∞ , A = −1 if lim Re(α1z ) = −∞ ; z→∞ z→∞

lim Re(α2z) = ±∞ }. z→∞

149 β− αβ α2 ( 221) ( ) 22 2 β−α−αββ221 9. ∫ zexp(β z) erf ( α z +β1) dz = × 2αβ22 −β1 α

β22 −24 αββ ββ2 β − αββ  ×+exp11erf 2 exp erf + 22  24αα22ααπ αβ 

22α2 + αββ − β 22 β −4 αββ 24β + 11experf 2 −× 22 2  αβ 4α 4α 2π αβ

 β 2 − 8αββ   2β  × exp 1 erf   .  2     8α   4α 

2 (β−4αβ1 ) (4α ) 2 2 2 3β − 8α − 8αββ1 10. ∫ z exp(βz )erf (αz + β1 )dz = × α 2β 2 −β1 α 4

β22 −4 αββ ββ2 3β − 16 αββ  ×+exp11erf 2 exp  erf + 22   4αα44ααπ αβ 16 

22α2 + αββ − β 22 β −4 αββ 22β + 11experf 2 −× 22 2  24αβ α 4α 2π αβ

 β 2 − 8αββ   2β  × exp 1 erf   .  2     8α   4α  2.18.5. +∞ 2 (18) 1. znerf( az +β) exp  −(az +β) dz = W( n, a , β , β ,1) {a > 0}. ∫ 1 2 1 12 −β1 a

+∞ 2m + β − 2 2 = (18) β − (18) β 2. ∫ z erf (az )exp( a z ) dz W1 (2m, a, , 0,1) W2 (2m, a, , 0) 0 {a > 0}.

+∞ 2 (18) 3. znerf( az) exp −( az +β) dz = W( n, a , 0,β ,1) {a > 0}. ∫ 1 0 +∞ 21n+ 4. zn −1 erf( az +β) exp  −+β(az) dz =−( 1) × ∫ 12 −β1 a

β1 a 2 ×zn −−1 erf( az −β) exp  −−β(az) dz = ∫ 12 −∞

150 (18) (18) =W31( na, , ββ12 , ,1) − W( na , , ββ12 , ,1) {a > 0}.

+∞ 21n+ 5. zn −1 erf( az +β) exp  −+β(az) dz =−( 1) × ∫  0

0 2 n! (18) ×zn −−1 erf( az −β) exp  −−β(az) dz = W( n,β ,1) {a > 0}. ∫ n+1 4 −∞ (−a)

+∞ 21n+ 6. zn 1 − erf( a z)  exp  −( az +β) dz =( −1) × ∫  0

0 2 (18) (18) ×zn −1 − erf( a z)  exp  −( az −β) dz = W( n,,0,,1 aβ) − W( n ,,0,,1 a β ) {a > 0}. ∫ 31 −∞

+∞ 2 (18) 7. znerf( az +β) exp  −(az +β) dz = W( n,,, a β β ) {a > 0}. ∫ 1 2 5 12 −∞

∞ n α + β − α + β 2 = (18) α β β ± 8. ∫ z erf ( z 1 )exp[ ( z 2 ) ] dz W1 (n, , 1 , 2 , 1) −β1 α

22 { lim 2Re αz + αβ12 z + αβ zn −( −2) ln z = z→∞ ( )

22 =lim Re α+αβ−−z 2 2 zn( 1) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2m α + β − α 2 2 = (18) α β ± − (18) α β 9. ∫ z erf ( z )exp( z ) dz W1 (2m, , , 0, 1) W2 (2m, , , 0) 0

{ lim [Re(α 2 z 2 + αβz )− (m −1)ln z ]= z→∞

=lim Re α−−22zmz( 2 1) ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 (18) 10. znerf(α z) exp  −( α z +β) dz = W( n, α , 0, β , ± 1) ∫ 1 0

{ lim Reα22z + 2 αβ zn −( − 1) ln z = z→∞ ( )

=lim 2Re α+αβ−−22z zn( 2) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 (18) 11. zn ±−1 erf( α+βz ) exp  −α+β( z) dz = W( n, αββ±− , , , 1) ∫ 1 2 3 12 −β1/ α

151 − (18) α β β ± W1 (n, , 1 , 2 , 1) 2 2 { lim [2 Re(α z + αβ1z + αβ 2 z )− (n − 2)ln z ]= +∞ , lim Re(αz) = ±∞ }. z→∞ z→∞

∞ 2 n! (18) 12. zn ±−1 erf( α+βz ) exp  −α+β( z) dz = W( n,β , ± 1) ∫ n+1 4 0 (−α)

{ lim 2Reα22z +αβ−− 2 zn( 2) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 2 (18) 13. zn ±1 − erf( αz)  exp  −( α z +β) dz = W( n, α , 0, β , ± 1) − ∫ 3 0

− (18) α β ± W1 (n, , 0, , 1)

{ lim 2Re α22z +αβ−− zn( 2) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

−β2 α 14. n α + β − α + β 2 = (18) α β β . ∫ z erf ( z 1 )exp[ ( z 2 ) ] dz W2 (n, , 1 , 2 ) −β1 α

−( β12 +β) (2 α) 2 (18) 15. znerf(α+β z ) exp  −α+β( z) dz = W( n,,, αββ ) . ∫ 1 2 6 12 −β1 α 2.18.6. +∞ β a n 1. ∫∫znnexp(− bz) erf 22( az +β=−) dz( 1) z exp( bz) erf ( az−β=) dz −β a −∞

2 n 44a b+β ab n !(18) b = exp  W( ma , ,β , +β , 1) 21∑ nm+− 1 π 4!am=0 mb 2a

{a > 0, b > 0}.

+∞ ββ n n! 2. zn exp(β z) 1 − erf 2 ( az +β) dz =exp − 1 × ∫ 1 ∑ nm+−1 a = −β −β1 a m 0 m!( )

m 2 β 4a ββ(18) × −1 − exp W( ma , ,β , β− , 1) {a > 0}.  2 1 11 aaπ 4a 2

+∞ 4 n n! 3. z n exp(βz ) [erf 2 (a z ) − erf 2 (a z )] dz = × ∫ 1 2 ∑ n−m 0 πβ m=0 m!(− β)

  2   2   β  (18)  β   β  × a2 exp W  m, a2 , 0, − ,1 − a1 exp ×   2  1  2a   2    4a2  2  4a1 

152 (18) β  ×− W1 ( ma ,1 , 0, ,1) {a12>>0,а 0} . 2a1 

+∞ 4a  β 2 − 4aββ  n n! 4. z n exp(βz ) [1 − erf 2 (az + β )] dz = exp 1  × ∫ 1  2  ∑ n−m −∞ πβ  4a m=0 m!(− β)

(18) β ×W(,, ma β , β− ) {a > 0}. 5 112a +∞ 4 n n! 5. z n exp(βz ) [erf 2 (a z + β ) − erf 2 (a z + β )] dz = × ∫ 1 1 2 2 ∑ n−m −∞ πβ m=0 m!(− β)

 2 β −4a ββ (18) β ×a exp22W(,,,) ma β β− −a × 2 2 5 2222a 1  4a2 2

2  β −4a ββ (18) β ×exp11W(,,,) ma β β−  {a > 0, a > 0}. 2 5 111 1 2 4a1 2a1 

∞ 4!α β2 −4 αββ n n 6. zn exp(β z) erf 2 ( α z +β) dz = exp1 × ∫ 1 21∑ nm+− π 4α = −β −β1 α m 0 m!( )

(18) β × αβ β − ± 22 Wm1 ( , ,11 , , 1) { lim Re( 2αz +αβ−β− 4 1 zz) ( n −3) ln z =+∞ , 2α z→∞ 

lim Re(βznz) + ln = −∞ , lim Re( αz) = ±∞ }. zz→∞ →∞

∞ m ββ n n! β 7. znexp(β z) 1 − erf 2 ( αz +β) dz =exp − 11 − − ∫ 1  ∑ nm+−1  αα = −β  −β1 α m 0 m!( ) 

2 4α ββ(18)  − expWm( ,αβ , , β − , ± 1)  2 1 11 α π 4α 2 

22 { lim Reαz + 2 αβ1 zz − β −( n −2) ln z = z→∞ ( )

22 =lim Re 2 αz +αβ−β−− 4 1 zz( n3) ln z =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

∞ 4!n n 8. znexp(β z) erf22( α− z) erf ( α z) dz = ∑ × ∫ 12π nm+−1 0 m=0 m!(−β)

 22 β(18) ββ × α  α − ± −α × 1exp Wm1 (, 12 ,0, ,1) exp  αα222α   44121 

153 (18) β  × α− Wm1 ( ,2 , 0, , A )  2α2 

22 22 { lim Re α−β−−12z zn( 2) ln z = lim Re α−β−−z zn( 2) ln z = zz→∞ ( ) →∞ ( )

= α 2 2 − β − − = α 2 2 − β − − = +∞ lim [Re(2 1 z z ) (n 3)ln z ] lim [Re(2 2 z z ) (n 3)ln z ] ; z→∞ z→∞

A = 1 if lim Re(α2 z) = +∞ ; A = −1 if lim Re(α2z) = −∞ ; z→∞ z→∞

lim Re(α1z) = ±∞ }. z→∞

2 (β−2αβ1 ) (2α )  2  n 2  β − 4αββ1  9. ∫ z exp(βz )erf (αz + β1 )dz = exp ×  α 2  −β1 α  4 

n  m n!4α(18) ββ −2 αβ1  ×∑  Wm(,,αβ , β − ) −× nm+−12 π 2 11 2α m=0 m!(−β)  2α

 β 2   β   ×   2 exp erf    .  4α 2   2α  

2 (β−4αβ1 ) (4α )  2  n 2  β − 4αββ1  10. ∫ z exp(βz )erf (αz + β1 )dz = exp ×  α 2  −β1 α  4 

n m n!4α(18) ββ −4 αβ1 2  β ×∑ Wm(,,,)αβ β − − erf . nm+−12π 6 11 24αα m=0 m!(−β) 4α 

Introduced notations:

2 E (n / 2 ) n−2k ( ) π n!   β − β   (− β ) 1) W 18 (n, α, β , β , A) = erf  1 2  + A 2 + 1 1 2 n+1   ∑ k 4α   2   k=0 4 k!(n − 2k )!

n− En( /2) nk+−12 k−1 n!1k!β (18) +2  ∑∑2 Wl(2,ββ , , A) − n+1 +− 7 12 (−α)  kl=10(2!kn) ( 12! k) = l !

En( /2) nk−2 k−1  β l! (18) −∑∑2 Wl(2+ 1, ββ , , A) , − kl− 7 12 kl=10kn!( 2! k) = 4( 2l + 1!) 

154 E (n / 2) n−2k ( ) πn! (− β) n! W 18 (n, α, β, β, A) = + × 1 n+1 ∑ k n+1 4α k=0 4 k!(n − 2k )! (− α)

− ( ) + −  A n E n / 2 k!β n 1 2k k −1 (2l )! ×  − ∑ ∑ l 2  2 k =1 (2k )!(n +1− 2k )!l=08 (l!)

En( /2) − 2 1 βnk2 k−1 (l!)  − ∑∑  , π kn!− 2! k 21kl+−  kl=10( ) = 2( 2l + 1!) 

2 (18) (2!n1) π β Wn(21 ,αβ , , 0, A) = erf +A + 1 nn11++1 21 4!n1 α 2 n −1 (2!n1) 1 k! (18) +2 ∑ Wk7 (2+β 1, , 0, A) , 21n11+− nk nk1!α+k=0 4( 2 1!)

n (18) n ! 1 1 (18) Wn2+ 1, αβ , , 0, A = 1 WkA2 ,β , 0, ; 1 ( 1 ) 22n + ∑ 7 ( ) α 1 k=0 k!

n− En( /2) nk+−12 (18) n! k!β 2) Wn,,,α β β = erf β −β 2 + 2 ( 12) n+1 ( 2 1) ∑ (−α) k=1 (2!kn) ( +− 12! k)

En( /2) nk−2 nn!!π β −β (−β ) +erf 2 21 2 +×2 n++11∑ kn 2α−2 k=0 4kn !( 2! k) (−α)

En( /2) −  βnk2 k−1 l! ×× ∑∑2 − kl−  kl=10kn!( 2! k) = 4( 2l + 1!)

n−E (n / 2 ) n+1−2k −  ( ) k!β k 11 ( ) ×W 18 (2l +1, β , β ) − ∑ 2 ∑ W 18 (2l, β , β ) , 8 1 2 ( ) ( + − ) 8 1 2 k=1 2k ! n 1 2k ! l=0 l! 

(2n )! π  β  (2n )! (18) α β = 1 2 − 1 × W2 (2n1 , , , 0) erf   2 2n1 +1   2n1 +1 n1 !(2α) 2 n1 !α n −1 1 k! (18) × Wk2+β 1, , 0 , ∑ nk− 8 ( ) k=0 41 ( 2k + 1!)

n (18) n ! erf (β) 1 1 (18) Wn2+ 1, αβ , ,0 =− 1 − Wk2 ,β ,0 ; 28( 1 ) 22n + ∑ ( ) α 1 2!k=0 k

En( /2) nk−2 (18) πn! (−β ) 3) Wn,,,,α β β A = 1 + A erf β −β  2 + 3 ( 12 ) nk+1 ( 1 2) ∑ 2α−k=0 4kn !( 2! k)

155 ( ) n−2k 2l+1 n!  E n / 2 β k−1l!(β − β ) + A exp[− (β − β )2 ]  ∑ 2 ∑ 1 2 + n+1 1 2 ( − ) k−l (− α)  k=1 k! n 2k !l=0 4 (2l +1)!

+ − n−E (n / 2 ) k!β n 1 2k k−1(β − β )2l  + ∑ 2 ∑ 1 2  , ( ) ( + − ) k=1 2k ! n 1 2k ! l=0 l! 

E (n / 2 ) n−2k ( ) πn! (− β) n! W 18 (n, α, β, β, A) = + A × 3 n+1 ∑ k n+1 2α k=0 4 k!(n − 2k )! (− α)

− ( ) + − n E n / 2 k!β n 1 2k × ∑ , k =1 (2k )!(n +1− 2k )!

π (2n )! (2n )! (18) α β = 1 + β − 1 × W3 (2n1 , , , 0, A) [1 A erf ( )] A 2n1 +1 2n1 +1 n1 !(2α) n1 !α − n1 1 k!β 2k +1` × exp(− β 2 ) , ∑ n −k k =0 4 1 (2k +1)!

2 n 2k ( ) n !exp(− β ) 1 β W 18 (2n +1, α, β, 0, A) = A 1 ; 3 1 2n +2 ∑ 2α 1 k=0 k!

En( /2) k−1 n+−12 kl + 2 (18) 2 1 l! β 4) W( nA,β ,) = exp −β  erf ( β) −A   ∑∑ − 4 ( )  kn!− 2! k kl−  kl=10( ) = 4( 2l + 1!)

− ( ) + − + n E n / 2 k! k−1β n 1 2k 2l  − ∑ ∑  − π[erf (β) − A]2 × k=1 (2k )!(n +1− 2k )!l=0 l! 

( ) − ( ) − E n / 2 β n 2k exp(− 2β 2 )  E n / 2 β n 2k k−1 (l!)2 × +  × ∑ k+1 ∑ k ∑ k=0 4 k!(n − 2k )! 2 π  k=1 4 k!(n − 2k )!l=0 (2l +1)!

l2!lr+ ββ2 r n− En( /2) krn+−12 k kl−−11(2!l) ! β2r+ 1  ×−∑ ∑ ∑∑  + r! 2!kn+− 12! k 2 3lr−− 23  r=0 k= 1( ) ( ) lr=10(l!) = 2( 2r + 1!) 

n− En( /2) erf( 2β−) A k!βnk+−12 k−1 (2!l) + ∑∑, +− l 2 2 kl=10(2kn) !( 1 2 k )! = 8!(l )

n −1 k 2 (18) π 1 1 2!(k ) W4 (2 nA1 ,0, ) =−+ ∑ , nn11++1 21 + 4nn11 !2 !π k=0 (2k 1!)

156 n (18) n ! 1 (2!k ) W(2 n+=− 1, 0, AA) 1 ; 4 1 ∑ k 2 2 2( 2n1 + 1!) k=0 8!(k )

E (n / 2 ) n−2k ( ) n! π  β − β  (− β ) n! 2 5) W 18 (n, α, β , β ) = erf  1 2  2 + × 5 1 2 n+1 ∑ k n+1 α  2  k=0 4 k!(n − 2k )! α

2 n+−12 k 2lr− 2 (β −β ) n− En( /2) kl!(−β ) kl−1(2!) (β −β ) ×−exp 12  ∑2 ∑∑12 − 2  (2!kn) ( +− 12! k) lr   k=1 lr=004l ! = 2 rl !2( − 2 r) !

En( /2) (−β )nk−2 kl−1 (β − β )2l+− 12 r − ∑2 ∑∑l! 12  , 21kr+  k=12kn !( − 2 k) !lr=00 = 2r !2( l+− 1 2 r) !

(18) (2!nn11) π β (2!2) Wn5 (21 ,αβ , , 0) = erf − × nn1121+21n1 ++ 21 n 1 4!nn11α 2 2 ! α  β 2 n1 −1 k β 2k +1−2l × exp −  k! ,   ∑ ∑ l  2  k =0 l=0 2 l!(2k +1− 2l )!

2 n k 22kl− (18) n ! ββ1 (2!k ) Wn(2+ 1, αβ , , 0 ) = 1 exp − ; 5 1 22n+ ∑∑kl 2α 1 2 kl=004k ! = 2 lk !2( − 2 l) !

(18) n! π 22β12 −β β 12 −β 6) Wn6 ( ,,,αβ12 β) = erf −erf × 4αn+1 2 2

( ) n−2k 2 E n / 2 (− β ) n!  (β − β )   β − β  × 2 + exp− 1 2 erf  1 2  × ∑ k n+1 k =0 4 k!(n − 2k )! α  4   2 

 E (n / 2) (− β )n−2k k−1l!(β − β )2l+1 ×  2 1 2 − ∑ 2k+1 ∑  k=1 2 k!(n − 2k )!l=0 (2l +1)!

n− En( /2) n+−12 k 2l En( /2) nk−2 k!(−β ) k−1 (β − β ) n! (−β ) −∑∑2 12−×2 ∑2 2!k n+− 12! k ln+1 kn!− 2! k kl=10( ) ( ) = 4!l α k= 1( )

k−1 l! (18) × Wl2+ 1, ββ , + ∑ kl− 9 ( 12) l=0 4( 2l + 1!)

n− En( /2) nk+−12 k−1  k!(−β ) 1 (18) + ∑∑2 Wl(2,ββ , ) , (2!kn) ( +− 12! k) l! 9 12 kl=10= 

157 (2n )! π   β   β  (18) α β = 1 2 − 2 + W6 (2n1 , , , 0) erf   erf   n1 +1 2n1 +1     2  4 n1 !α 2

(2n )!  β 2   β  + 1 exp − erf  × 2n1 +1  4   2  n1 !(2α)  

nn−−1121k+ 11kk!!β (2!n1) (18) ×∑∑ −2 Wk9 (2+β 1, , 0 ) , + 21n11+− nk kk=00(2k 1!) nk1!α+= 4( 2 1!)

22n k (18) nn!!β ββ1 Wn(2+ 1, αβ , , 0) =− 11exp− erf − × 6 1 22n++∑ kn22 2αα1142k=0 4!k

(18) n1 Wk(2 ,β ,0) × ∑ 9 ; k=0 k!

2 ( ) m !  (β − β )    β − β   7) W 18 (m , β , β , A) = 1 exp− 1 2  erf  1 2  + A × 7 1 1 2 m +1   2 1 2  2    2  

− Em( 1/2) mr1 2 (β21 −β ) m1! 2 × ∑ + exp −( β12 −β) × rm1+1  r=0 2!rm( 1 − 2! r) 2 π

( ) − +  E m1 / 2 (β − β )m1 2r r−1q!(β − β )2q 1 ×  ∑ 2 1 ∑ 2 1 + − r−q  r=1 r!(m1 2r )! q=0 2 (2q +1)!

m− Em( /2) mr1 +−12 rq− 2q 11r!2(β −β ) r−1 (β −β )  + ∑∑21 21  ; (2!rm) ( +− 12! r) q!  rq=101 = 

2 ( ) m !  (β − β )   β − β  8) W 18 (m , β , β ) = 1 exp− 2 1 erf  2 1  × 8 1 1 2 m 2 1 2  2   2 

− E (m1 / 2) (β − β ) m1 2r × 2 1 − ∑ r r=0 2 r!(m1 − 2r )!

mr−+2 21q Em( 1/2) 1 r−1 2 ββ−−q! ββ m1 ! ( 21) ( 21) −exp −−(ββ21) − ; m1 ∑∑rq 2 π rq=10rm!( 1 −+ 2 r) != 2( 2 q 1!)

m ! ()β −β2  β −β 9) Wm(18) ( ,ββ , ) = 1 exp − 21erf 21× 9 112 m +1  221 2 2

158 − E ( m1 / 2) (β − β ) m1 2r m !  (β − β )2  × ∑ 2 1 + 1 exp− 2 1  × r m1 +1 2 r=0 2 r!(m1 − 2r )! 2 π  

+ − m1 −E (m1 / 2) 2 r r!(β − β )m1 1 2r m ! × 2 1 − 1 exp[− (β − β )2 ]× ∑ m +1 2 1 r=1 (2r )!(m1 +1− 2r )! 2 1 π

− +  E (m1 / 2) (β − β )m1 2r r−1q!(β − β )2q 1 ×  ∑ 2 1 ∑ 2 1 + − r−q  r=1 r!(m1 2r )! q=0 2 (2q +1)!

m− Em( /2) mr1 +−12 rq− 2q 11r!2(β −β ) r−1 (β −β )  + ∑∑21 21  . (2!rm) ( +− 12! r) q!  rq=101 = 

±−nnαβ + − αβ +2 2.19. Integrals of ( 1) erf( zz) exp ( ) ,

+ + z 2m 1 [± 1 − erf (αz )]3 , z 2m 1 [± 1 − erf 3 (αz )],

21m+  3αα 3 2m 2 (α ) − α 2 2 zerf( 12 zz)  erf ( ) , z erf z exp( z ),

z 2m [1 − erf 2 (αz )]exp(− α 2 z 2 )

2.19.1.

+∞ π π 1. [1− erf 2 (az + β)]exp [− (a z + β)2 ] dz = [1− erf (β)]− [1− erf 3 (β)] ∫ 2a 6a 0 {a > 0}.

+∞ 2 π 2. ∫ [1− erf 2 (az + β)]exp [− (a z + β)2 ] dz = {a > 0}. −∞ 3a

∞ 2 ππ 3. 1− erf23( α+βz ) exp  −α+β( z) dz =[erf( β−)  1] [erf( β) 1] ∫ 62αα 0

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞ 2.19.2. +∞ 0 1  1 3 − 3  1. z[1− erf (az )]3 dz = z[−1− erf (az )]3 dz =  −  {a > 0}. ∫ ∫ 2  π  0 −∞ 2a  2 

159 +∞ 0 1  1 3  2. z[1− erf 3 (az )]dz = z[−1− erf 3 (az )]dz =  +  {a > 0}. ∫ ∫ 2  π  0 −∞ 2a  2  +∞ +∞ 3 3 1 3 3 3. ∫ z [erf (a1z ) − erf (a2 z )] dz = ∫ z [erf (a1z ) − erf (a2 z )]dz = 0 2 −∞    1 3  1 1  =  +  − {a1 > 0, a2 > 0} .  4 2π  2 2    a2 a1 

∞ 1  1 3 − 3  4. z [±1− erf (αz )]3 dz = ±  −  ∫ 2  π  0 2α  2 

{ lim Reα22zz + ln = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞ ∞ 1  1 3  5. z [±1− erf 3 (αz )] dz = ±  +  ∫ 2  π  0 2α  2 

{ lim Reα22zz + ln = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞ ∞ 13AA 6. zerf33(α z)  erf ( α z) dz =−+12 ∫ 1242π 22 0 αα12

22 22 { lim Reα+12zz ln = lim Re α+ zz ln =+∞; zz→∞ ( ) →∞ ( )

Ak =1 if lim Re(α k z ) = +∞ , Ak = −1 if lim Re(α k z ) = −∞ ; z→∞ z→∞

lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. zz→∞ →∞ 2.19.3. +∞ +∞ 1 11π 1. z2erf 2( az) exp −= a22 z dz z2erf 2( az) exp −= a22 z dz  + ∫∫( ) 26( ) 3  0 −∞ 2a 3π {a > 0}.

+∞ +∞ 1 2. z21− erf 2( az) exp −= a22 z dz z21 − erf 2( az) exp −= a22 z dz ∫∫( ) 2 ( ) 0 −∞

 π  1  1  =  −  {a > 0}. 2a3  3 3π 

∞ 11π 3. z2erf 2(α z) exp −α22 z dz = ± + ∫ ( ) 3 6 π 0 2α 3

160 { lim Reα22zz − ln = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞

∞ 1  π 1  4. z 2 [1− erf 2 (αz )]exp(− α 2 z 2 ) dz = ±  −  ∫ 3   0 2α  3 3π 

{ lim Re α22zz = +∞, lim Re( α) = ±∞ }. zz→∞ ( ) →∞

2.19.4. +∞ +∞ 1 1. z2mmerf 2( az) exp −= a22 z dz z2erf 2( az) exp −= a22 z dz ∫∫( ) 2 ( ) 0 −∞  (2!m) π 1 (19) = + Wm( ) {a > 0}. m! 21mm++ 211 32( a) 3π a

+∞ +∞ 1 2. z2mm1− erf 2(az) exp −= a22 z dz z21 − erf 2(az) exp −= a22 z dz ∫∫( ) 2 ( ) 0 −∞  (2!m) 21π (19) = − Wm( ) {a > 0}. m! 21mm++ 211 32( a) 3π a

+∞ 2m π 3. 1− erf 22m (az +β)exp − (az +β )  dz = {a > 0}. ∫    + −∞ 21ma

∞  (2!m) π 1 (19) 4. z2merf 2(α z) exp −α22 z dz = ± + W( m) ∫ ( ) m! 21mm++ 211 0 32( α) 3πα

{ lim Reα22zmz −( 2 − 1) ln = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞

∞  (2!m) 21π (19) 5. z2m 1− erf 2( αz) exp −α22z dz = ± − Wm( ) ∫ ( ) m! 21mm++ 211 0 32( α) 3πα

{ lim Re α22zm −( −1) ln z = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞ 2.19.5.

+∞ 0 ( ) 2m+1 − 3 = 2m+1 − − 3 = 19 { > } 1. ∫ z [1 erf (az )] dz ∫ z [ 1 erf (az )] dz W2 (a) a 0 . 0 −∞

161 +∞ 0 2. ∫ z 2m+1 [1 − erf 3 (az )] dz = ∫ z 2m+1 [−1 − erf 3 (az )] dz = 0 −∞

(2m +1)! 1 2 3 (19 )  =  + W (m +1) {a > 0}. + + 1 (m +1)!  (2a )2m 2 πa 2m 2 

+∞ +∞ 1 3. z21mm++erf 3(а z) −= erf 3( а z) dz z21erf 3( а z) −= erf 3( а z) dz ∫∫122 12 0 −∞     (2m +1)! 1 1 2 3 1 1 ( ) =  − +  − W 19 (m +1) (m +1)!  2m+2 2m+2 π  2m+2 2m+2  1   (2a2 ) (2a1 )  a2 a1  

{a1 > 0, a2 > 0} .

+∞ π 4. 1− erfn (az +β)  exp − (az +β )2  dz =[ 1 − erf ( β )] − ∫    2a 0

π + −1 −β erfn 1 ( ) {a > 0}. (2na+ 2) 

∞ 2m+1 ± − α 3 = ± (19 ) α 5. ∫ z [ 1 erf ( z )] dz W2 ( ) 0

{ lim 3Reα22zmz −( 2 − 3) ln = +∞ ; lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

∞  (2m + 1!) 1 23 (19) 6. ∫ z21m+ ±−1 erf 3( αz) dz =± + W( m +1) (m +1!) 22mm++ 221 0 (2α) πα

{ lim Reα22zmz −( 2 − 1) ln = +∞ , lim Re( αz) = ±∞ }. zz→∞ ( ) →∞

∞ + (2m +1)!  A A 7. z 2m 1 [erf 3 (α z )  erf 3 (α z )] dz = ±  2  1 + ∫ 1 2 (m +1)! 2m+2 2m+2 0  (2α 2 ) (2α1 )    2 3 A A (19 ) +  2  1 W (m +1) π  α 2m+2 α 2m+2  1   2 1  

22 22 { lim Reα−−1 zmz( 2 1) ln = lim Re(α2 zm) −( 2 − 1) ln z = +∞ ; z→∞ ( ) z→∞ 

Ar = 1 if lim Re(α r z ) = +∞ , Ar = −1 if lim Re(α r z ) = −∞ ; z→∞ z→∞

lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. zz→∞ →∞

162 ∞ π 8. (±− 1)nn erf( α+βz ) exp −α+β (z )2  dz =± ( 1)n [ ±− 1 erf ( β− )] ∫    2α 0 π −( ±− 1)nn++11 erf ( β ) (2n +α 2) 

{ lim Reα22z +αβ+ 2 zz ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞

Introduced notations:

mk−1 2 (19) (kl!) ( 2!) 1) Wm( )= ; 1 ∑∑2mkll−+ 2 kl=00(2k + 1!) = 2 3!(l )

m 2 k (19 ) (2m +1)!  1 3 (k!)  (2l )!  2) W (α)=  −  3 − . 2 2m+2 m+1 ∑ 2m−k ∑ l 2 (m +1)!α  4 2π k =0 (2k +1)!2  l=06 (l!) 

n 2.20. Integrals of z sin(βz + γ )[± 1 − erf (αz + β1 )] ,

n zzsin(β +γ)  erf ( α11 z +β)  erf ( α 22 z +β ) ,

n 2 z sin(αz + βz + γ ) [± 1 − erf (α1z + β1 )],

n 2 z sin(αz + βz + γ ) [erf (α1z + β1 )  erf (α 2 z + β 2 )]

2.20.1.

+∞ 0 1. ∫ sin(bz + γ )[1− erf (az + b1 )] dz = ∫ sin(bz − γ )[−1− erf (az − b1 )]dz = 0 −∞ γ  2  + cos 1  b    bb1   2ab1 ib  = [1− erf (b1 )]− exp −  cos − γ 1− Re erf   + b b  4a 2    a   2a 

 bb1   2ab1 + ib  + sin − γ  Im erf   {a > 0}.  a   2a 

+∞ cos γ 2. sin(bz + γ ) [erf (a z + b ) − erf (a z + b )] dz = [erf (b ) − erf (b )]+ ∫ 1 1 2 2 b 1 2 0

2  1 b  bb1  2a11 b+ ib  +exp −  cos−γ 1 − Re erf  + ba2 2 a 4a1  11  

163 2 bb1 2a11 b+ ib  1 b +sin −γ  Im erf  −exp − × a2 ab 2 11   4a2

 bb2  22a22 b++ ib  bb2 a22 b ib  ×cos −γ 1 − Re erf  +sin −γ Im erf  a2 22 aa 22  a 2 

{a1 > 0, a 2 > 0} . +∞ 3. ∫ sin(bz + γ ) [erf (a1 z + b1 ) − erf (a 2 z + b2 )] dz = −∞

  2   2   2 b  bb  b  bb  = exp − cos 1 − γ − exp − cos 2 − γ  {a > 0, a > 0} .  2   2  1 2 b   a1   a 2    4a1   4a 2  

∞ 2 1  β     ββ1  4. sin(βz + γ )[± 1 − erf (αz + β )] dz = exp −  exp i γ −  × ∫ 1 2β  2   α  0  4α     

  2αβ1 − iβ     ββ1    2αβ1 + iβ   × erf    1 + expi − γ  erf    1 −   2α     α    2α   cos γ − [erf (β )  1] β 1

22 { lim Reαz +αβ− 21 z Im( β+ zz) 2ln =+∞ , lim Re( α=±∞z) }. zz→∞ ( ) →∞ ∞ cos γ 5. sin(βz + γ ) [erf (α z + β )  erf (α z + β )] dz = [erf (β )  erf (β )]+ ∫ 1 1 2 2 β 1 2 0

  2  1   β + 4iα1ββ1   2α1β1 − iβ  + exp iγ − A − erf     2  1  2β α   2α1    4 1 

 2   β + 4iα 2ββ 2    2α 2β 2 − iβ   exp iγ − A − erf   +  2   2  α   2α 2   4 2 

 2   β − 4iα1ββ1   2α1β1 + iβ  + exp − iγ −  A1 − erf     α 2   2α   4 1  1

 2    β − 4iα 2ββ 2   2α 2β 2 + iβ   exp − iγ − A − erf     2  2  α   2α 2   4 2  

α22 + αβ − β + = { lim Re1 z 211 z Im( zz) 2ln z→∞ ( )

164 = α+αβ−22 β+ =+∞ lim Re2 z 222 z Im( zz) 2ln ; z→∞ ( )

Ak = 1 if lim Re(α k z ) = +∞ , Ak = −1 if lim Re(α k z ) = −∞ ; z→∞ z→∞

lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. zz→∞ →∞ 2.20.2.

+∞ 0 22 22 1. ∫∫sin (a z +γ)  1 − erf (a11 z)  dz =− sin ( a z +γ)  −1 − erf (a z)  dz = 0 −∞

1 21a++( ia) 21a++( ia) = (sinγ− cos γ) Re ln 11+(sin γ+ cos γ) Imln 22πa21a11−+( ia) 21a−+( ia)

{a1 > 0}.

+∞   22 1  21a1 ++( ia) 2. ∫ sin (a z+γ) erf( a12 z) − erf ( a z)  dz = (cosγ− sin γ) Re ln − 0 22πa  2a1 −+( 1 ia)

21a++( ia) 21a++( ia) 21 a++( ia)  −Re ln 2+(sin γ+ cos γ) Im ln 21−Im ln  21a2−+( ia) 21a21−+( ia) 21 a−+( ia) 

{a1 > 0, a2 > 0} . 3. +∞ 2π   b 2  sin(a 2 z 2 + bz + γ ) [erf (a z + b ) − erf (a z + b )] dz = cos − γ  − ∫ 1 1 2 2  2  −∞ 2a   4a 

22   b2  (21ab11−+ ab) ( i) ( 2ab2− ab 2) ( 1 + i) −sin  −γ  Re erf  −Re erf + 2    4a  88a a22++ ia a a22 ia  12  

 2 2π bb22 (21ab22−+ ab)( i) + sin−γ +cos −γ Imerf − 22  2a 44aa 8a a22+ ia  2

2  (21a b11−+ ab) ( i)  − { > > } Imerf  a1 0, a2 0 . 8a a22+ ia  1 

∞ 2 1+ i 21α−1 ( +i) α 4. sin αz + γ ±1 − erf ( α1z)  dz = exp(iγ) ln + ∫ ( ) π α α+ + α 0 42 21 ( 1i)

1− i 21α−( −i) α + exp(−γi ) ln 1 42π α 2α+1 ( 1 −i) α

165 22 2 { lim Reα1 z − Im α zz + 2ln = +∞ , z→∞ ( ) ( )

α 2 ≠ α α 2 ≠ − α ± α> → ∞ 1 i , 1 i ; Re( 1z) 0 if z }. ∞ 2 1+ i  2α1 + (1+ i ) α 5. ∫ sin(αz + γ ) [erf (α1 z )  erf (α 2 z )] dz = exp(iγ ) ln  0 4 2π α  2α1 − (1+ i ) α

2α 2 + (1+ i ) α  1− i  ln  + exp(− iγ )× 2α 2 − (1+ i ) α  4 2π α

 2α + (1− i ) α 2α + (1− i ) α  × ln 1  ln 2   2α1 − (1− i ) α 2α 2 − (1− i ) α 

α22 −α 2 + = { lim Re1 z Im zz 2ln z→∞ ( ) ( )

22 2 =lim Re α2z − Im α zz + 2ln = +∞ , z→∞ ( ) ( )

α 2 ≠ α α 2 ≠ α α 2 ≠ − α α 2 ≠ − α ± α ⋅ α > → ∞ 1 i , 2 i , 1 i , 2 i ; Re( 1 z ) Re( 2 z ) 0 if z }.

∞(T2 ) 2 21π−( i) 6. ∫ sin (α+β+γz z ) erf ( α+β11z )  erf ( α+β= 2z 2) dz × 4 α ∞(T1)

       β 2   (2αβ − α β)(1− i ) (2αβ − α β)(1− i )  × expi γ −  A erf  1 1  A erf  2 2  +    1    2     4α   α 2 − α α α 2 − α α    8 1 i   8 2 i 

21π+( i) β2 + exp i−γ × α 4 α 4

   (21αβ − α β)( + ii) ( 2αβ − α β)( 1 + ) × 11 2 2  BB12erf   erf  α22 +α α α +α α 8812ii  

{ α22 + α β − α2 +β + = lim Re( 1z 2 11 z) Im( zz) 2ln z zT→∞( 1) 

= α22 + α β − α2 +β + = lim Re( 2z 2 22 z) Im( zz) 2ln z zT→∞( 1) 

= α22 + α β − α2 +β + = lim Re( 1z 2 11 z) Im( zz) 2ln z zT→∞( 2 ) 

= α22 + α β − α2 +β + lim Re( 2z 2 22 z) Im( zz) 2ln z= +∞ ; zT→∞( 2 ) 

166 22  Ak = 1 if lim Reαkk −αiz =− lim Re α −αiz =+∞, zT→∞( 21) zT→∞( ) 

22  Ak = −1 if lim Reαkk −αiz =− lim Re α −αiz =−∞, zT→∞( 21) zT→∞( ) 

22  Ak = 0 if lim Reαkk −αiz ⋅ lim Re α −αiz =+∞, zT→∞( 12) zT→∞( ) 

22  Bk = 1 if lim Reαkk +αiz =− lim Re α +αiz =+∞, zT→∞( 21) zT→∞( ) 

= − if  α 2 + α  = −  α 2 + α  = −∞ , Bk 1 lim Re k i z  lim Re k i z  z→∞(T2 )   z→∞(T1 )  

22  Bk = 0 if lim Reαkk +αiz ⋅ lim Re α +αiz =+∞; zT→∞( 12) zT→∞( ) 

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞(T1 ) and z → ∞(T2 )} .

ν 2 7. ∫ sin(αz ) [erf (α1z )  erf (α 2 z )] dz = 0 . −ν

2.20.3.

+∞ 0 2m 2m 1. ∫ z sin(bz + γ )[1− erf (az + b1 )]dz = ∫ z sin(bz − γ )[−1− erf (az − b1 )]dz = 0 −∞ (2m)! = − m γ − − γ ⋅ (20 ) + ( 1) cos [1 erf (b1 )] (2m)! [sin ReW1 (2m, a, b, b1 , 1) b 2m+1 ( ) + γ ⋅ 20 > cos ImW1 (2m, a, b, b1 , 1)] {a 0}.

+∞ 0 2m+1 2m+1 2. ∫ z sin(bz + γ )[1− erf (az + b1 )]dz = − ∫ z sin(bz − γ )[−1− erf (az − b1 )] dz = 0 −∞ (2m +1)! = − m γ − + + γ ⋅ (20 ) + + ( 1) sin [erf (b1 ) 1] (2m 1)![sin ReW1 (2m 1, a, b, b1 , 1) b 2m+2

( ) + γ ⋅ 20 ( + ) > cos ImW1 2m 1, a, b, b1 , 1 ] {a 0}. +∞ 2m 3. ∫ z sin(bz + γ ) [erf (a1 z + b1 ) − erf (a 2 z + b2 )] dz = 0

167 m (2m)! = (−1) cos γ [erf (b1 ) − erf (b2 )]+ b 2m+1

+ γ (20 ) − (20 ) + (2m)!{ sin [ReW1 (2m, a1 , b, b1 , 1) ReW1 (2m, a 2 , b, b2 , 1)]

(20) (20) +γcosImW( 2,,,,1 ma bb) − Im W( 2, ma ,, bb ,1) {a > 0, a > 0} . 1111 2 2 } 1 2

+∞ 2m+1 4. ∫ z sin(bz + γ )[erf (a1 z + b1 ) − erf (a 2 z + b2 ) ]dz = 0

m+1 (2m + 1!) =( −1) sinγ erf(b12) − erf( bm) +( 2 + 1) ! × b22m+

× γ (20 ) ( + ) − (20 ) ( + ) + {sin [ReW1 2m 1, a 2 , b, b2 , 1 ReW1 2m 1, a1 , b, b1 , 1 ]

+ γ (20 ) + − (20 ) + cos [ImW1 (2m 1, a 2 , b, b2 , 1) ImW1 (2m 1, a1 , b, b1 , 1)]}

{a1 > 0, a2 > 0} .

+∞ n 5. n +γ  +− + =−× ∫ zsin( bz)  erf( a11 z b) erf ( a 2 z b 2) dz( 1) n ! −∞

× γ ⋅ (20 ) ( ) + γ ⋅ (20 ) ( ) − [sin ReW2 a1 , b, b1 cos ImW2 a1 , b, b1 ( ) ( ) − γ ⋅ 20 − γ ⋅ 20 > > sin ReW2 (a2 , b, b2 ) cos ImW2 (a2 , b, b2 ) ] {a1 0, a2 0} . ∞  n exp(iγ )  1 6. z n sin(βz + γ ) [±1− erf (αz + β )]dz = (−1) n!  [erf (β ) 1]− ∫ 1 2i n+1 1 0  (iβ)  (20)  n+1 exp(−γi ) −Wn( , αββ ,, , ± 1) +( − 1) n ! × 1 1 2i 

n+1 i (20) × erf( β)  1 −Wn( , α , −β , β , ± 1) β 111 

22 { lim Reαz +αβ− 21 z Im( β−− zn) ( 2) ln z =+∞ , lim Re(αz) = ±∞ }. z→∞ ( ) z→∞

∞ + exp(iγ ) 7. z n sin(βz + γ ) [erf (α z + β )  erf (α z + β )] dz = (−1)n 1 n! × ∫ 1 1 2 2 2i 0

 1 × [erf (β ) erf (β )]−  + 1  2  (iβ)n 1

168 (20) (20)  −±Wn( ,α ,, ββ , AWn) ( ,α ,, ββ , A) + 1 1 11 1 2 2 2  n+1 n exp(−γi )  i +( −1) n !   erf( β12)  erf ( β) − 2i β  

 (20) (20)  −W11( n,,,, α1 −β β 11 AW) ±( n ,,,, α2 −β β 2 A 2)  

22 { lim Reα1z + 2 αβ 11 z − Im( β zn) −( − 2) ln z = z→∞ ( )

22 =lim Re α+αβ−β−−2z 2 22 z Im( zn) ( 2) ln z =+∞ ; z→∞ ( )

Ak =1 if lim Re(α k z ) = +∞ , Ak = −1 if lim Re(αk z) = −∞ ; z→∞ z→∞

lim Re(α12zz) ⋅ lim Re( α) = ±∞ }. zz→∞ →∞

2.20.4.

+∞ 0 2mm 22 2 22 1. ∫∫zsin ( a z +γ) 1 − erf (a11 z)  dz =− zsin ( a z +γ) −1 − erf (a z)  dz = 0 −∞ (2m)! ( ) ( ) = γ ⋅ 20 2 − γ ⋅ 20 2 >> [sin ReW3 (a , a1 ) cos ImW3 (a , a1 )] {aa0,1 0}. m! π +∞ 2m 2 2 2. ∫ z sin(a z + γ ) [erf (a1 z ) − erf (a 2 z )] dz = 0

(2!m) (20) (20) =γ−+22 sin ReW33( aa ,21) Re W( aa , ) m! π { 

(20) (20) +γcos ImW aa22 ,− Im W aa , {a > 0, a > 0, a > 0}. 33( 12) ( ) } 1 2

+∞ 2m+1 2 2 3. ∫ z sin (a z + γ ) [1− erf (a1 z + b)]dz = 0 0 2m+ 1 22 = ∫ zsin ( a z + γ) −1 − erf (a1 z − b)  dz = −∞ mm!! =  −  γ⋅mm − γ⋅ + × + 1 erf(bi)  cos Re( ) sin Im( i) 2a22m 2

169 (20) (20) ×cos γ⋅ ImW a22 , ab , ,1− sin γ⋅ Re W a , ab , ,1 {a > 0}. 44( 11) ( ) 1

+∞ 2m+1 2 2 4. ∫ z sin (a z + γ ) [erf (a1 z + b1 ) − erf (a 2 z + b2 )]dz = 0 m! =  −  γ⋅mm − γ⋅ + + erf(bb12) erf( )  cos Re( i) sin Im( i) 2a22m 

m! (20) 22(20) +γsinReW aab ,,,1Re− W aab ,,,1 + 2 44( 11) ( 2 2)

m! (20) 22(20) +γcosImW aab ,,,1Im− W aab ,,,1 {a1 > 0, a2 > 0} . 2 44( 2 2) ( 11)

+∞ n 2 2 5. ∫ z sin(a z + bz + γ ) [erf (a1 z + b1 ) − erf (a 2 z + b2 )] dz = −∞

= γ (20 ) 2 − (20 ) 2 + sin [ReW5 (n, a , a1 , b, b1 ) ReW5 (n, a , a 2 , b, b2 )]

+ γ (20 ) 2 − (20 ) 2 cos [ImW5 (n, a , a2 , b, b2 ) ImW5 (n, a , a1 , b, b1 )]

{a > 0, a1 > 0, a2 > 0}. ∞ 2m 2 (2m)! 6. ∫ z sin(αz + γ ) [±1− erf (α1 z )]dz = × 0 m! π

 exp(iγ ) (20 ) exp(− iγ ) (20 )  × W (− α, α ) − W (α, α )  2i 3 1 2i 3 1 

22 2 2 2 { lim Reα1 z − Im α zmz −( 2 − 2) ln = +∞ , α≠0 , α1 +i α≠0 , α1 −i α≠0; z→∞ ( ) ( )

±Re( α>1z) 0 if z → ∞}.

∞ 2m 2 (2m)! 7. ∫ z sin(αz + γ )[erf (α1 z )  erf (α 2 z )] dz = × 0 m! π

 exp(− iγ ) (20 ) (20 ) ×  [W (α, α ) W (α, α )]−  2i 3 1 3 2

exp(iγ) (20) − −α α(20) −α α WW33( ,,12)  ( )  2i 

22 2 { lim Reα1 z −α−− Im zmz( 2 2) ln = z→∞ ( ) ( )

170 22 2 =lim Re α2z − Im α zmz −( 2 − 2) ln = +∞ , z→∞ ( ) ( )

α≠ 2 2 α2 + α≠ α2 − α≠ 0 , α1 +i α≠0 , α1 −i α≠0 , 2 i 0 , 2 i 0 ;

± Re(α1 z )⋅ Re(α 2 z ) > 0 if z → ∞}.

∞ m! ( ) 8. z 2m+1 sin(αz 2 + γ ) [±1− erf (α z + β)] dz = exp(− iγ ) [W 20 (α, α , β, A ) + ∫ 1 4i 4 1 1 0

erf (β) 1 m!  ( ) erf (β) 1  +  − exp(iγ)W 20 (− α, α , β, A ) +  + 4 1 2 + (iα)m 1  4i  (− iα)m 1 

22 2 { lim Reα11z +αβ− 2 z Im α z −( 2 mz − 1) ln =+∞ ; z→∞ ( ) ( )

2 2 A1 = 1 if lim Reα1 +iz α = +∞ , A1 = −1 if lim Reα1 +iz α = −∞ , z→∞  z→∞ 

2 2 A2 = 1 if lim Reα1 −iz α = +∞ , A2 = −1 if lim Reα1 −iz α = −∞ ; z→∞  z→∞ 

±Re( α1z +β) > 0 if z → ∞}.

∞ m! exp(− Aiγ ) 9. z 2m+1 sin(Aiα 2 z 2 + γ ) [±1− erf (αz + β)]dz = A ⋅ × ∫ m+1 4i 0 (− α 2 )

(20) exp( Aiγ) erf( β)  1 (20)  ×erf β 1 +W β − Am! +W −α i 2 , α , β , ± 1 ( )  64( ) + ( ) 4i α22m

22 { lim 2Re αz + αβ z −(2 m − 1) ln z = lim Re( αβzmz) − ln = +∞ ; zz→∞ ( ) →∞ A = 1 or A = −1; ±Re( αz +β) > 0 if z → ∞}.

∞ 21m+ 2 m! 10. zsinα+γ z  erf ( α+β11z ) erf ( α+β= 2z 2) dz erf( β1) erf ( β× 2)  ∫ ( ) 4i 0

 exp(iγ ) exp(− iγ )  m! ×  −  + exp(iγ )× + + {  (− iα)m 1 (iα)m 1  4i

× (20 ) − α α β (20 ) − α α β − [W4 ( , 1 , 1 , A1 ) W4 ( , 2 , 2 , A2 )]

171 − (− γ ) (20 ) (α α β ) (20 ) (α α β ) exp i [W4 , 1 , 1 , B1  W4 , 2 , 2 , B2 ] }

22 2 { lim Reα1z + 2 αβ 11 z − Im α z −( 2 mz − 1) ln = z→∞ ( ) ( )

22 2 =lim Re α+αβ−α−2z 2 22 z Im z( 2 mz − 1) ln =+∞ ; z→∞ ( ) ( )

2 2 Ak = 1 if lim Reαk −iz α = +∞ , Ak = −1 if lim Reαk −iz α = −∞ , z→∞  z→∞ 

2 2 Bk = 1 if lim Reαk +iz α = +∞ , Bk = −1 if lim Reαk +iz α = −∞ ; z→∞  z→∞ 

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞}.

∞ 2m+1 2 2 11. ∫ z sin(Aiα z + γ ) [erf (αz + β)  erf (α1 z + β1 )]dz = 0

m! βerf( )  erf ( β) (20) (20)  =Aexp Aiγ 1 +Wi −α22,,, α β BWi−α,,, α β B +  ( )22m+ 44( )  ( 111) 4i  α exp(− Aiγ ) + (− )m (β) (β ) + (20 ) (β) ± 1 [erf  erf 1 W6 ] α 2m+2

(20)  ± − γ α2 αβ exp( Ai) W4 ( i,,,111 A )  

{ lim 2Re α22z + αβ zm −( 2 − 1) ln z = z→∞ ( )

22 22 =lim Re α1z + 2 αβ 11 z − Re α zmz −( 2 − 1) ln = z→∞ ( ) ( )

=lim Re( αβzmz) − ln = +∞ ; z→∞

22 A = 1 or A = −1; A1 = 1 if lim Reα1 − αz = +∞ , z→∞ 

22 A1 = −1 if lim Reα1 − αz = −∞ , B = 1 if lim Re(αz ) = +∞ , z→∞  z→∞

22 B = −1 if lim Re(αz) = −∞ , B1 = 1 if lim Reα1 + αz = +∞ , z→∞ z→∞ 

22 B1 = −1 if lim Reα1 + αz = −∞ ; ±Re( αzz +β) Re( α11 +β) >0 if z → ∞}. z→∞ 

172 ∞ 2m+ 1 22 12. ∫ zsin ( Aiα z +γ) erf( α+β−z ) erf ( α+βz1) dz = 0

Am! m = expAiγ erf β− erf β+− 1 exp −γ×Ai + { ( )( ) ( 1) ( ) ( ) 4iα22m ( ) ( ) Am! × [erf (β) − erf (β ) +W 20 (β) −W 20 (β )] }+ exp( Aiγ )× 1 6 6 1 4i

× (20 ) − α 2 α β ± − (20 ) − α 2 α β ± [W4 ( i , , , 1) W4 ( i , , 1 , 1)]

{ lim 2Re α22z + αβ zm −(2 − 1) ln z = z→∞ ( )

2 2 = lim [2 Re(α z + αβ1 z )− (2m −1)ln z ]= lim [Re(αβz ) − mln z ] = z→∞ z→∞

=lim Re( αβ1zmz) − ln = +∞ ; A = 1 or A = −1; z→∞ lim Re(αz) = ±∞ }. z→∞

∞(T2 ) n 2 exp(iγ) 13. zsin α+β+γ z z erf ( α+β11z )  erf ( α+β= 2z 2) dz × ∫ ( ) 2i ∞(T1)

(20 ) (20 ) exp(− iγ ) × [A W (n, − α, α , − β, β )  A W (n, − α, α , − β, β )]− × 1 5 1 1 2 5 2 2 2i

× (20 ) α α β β (20 ) α α β β [B1W5 (n, , 1 , , 1 )  B2W5 (n, , 2 , , 2 )]

α22 +αβ− α+β−−2 = { lim Re( 1z 2 11 z) Im( zzn) ( 2) ln z zT→∞( 1) 

= α22 +αβ− α+β−−2 = lim Re( 1z 2 11 z) Im( zzn) ( 2) ln z zT→∞( 2 ) 

= α22 +αβ− α+β−−2 = lim Re( 2z 2 22 z) Im( zzn) ( 2) ln z zT→∞( 1) 

= α22 +αβ − α+β−−2 =+∞ lim Re( 2z 2 22 z) Im( zzn) ( 2) ln z , α ≠ 0 ; zT→∞( 2 ) 

22  Ak = 1 if lim Reαkk −αiz =− lim Re α −αiz =+∞, zT→∞( 21) zT→∞( ) 

22  Ak = −1 if lim Reαkk −αiz =− lim Re α −αiz =−∞, zT→∞( 21) zT→∞( ) 

173 22  Ak = 0 if lim Reαkk −αiz ⋅ lim Re α −αiz =+∞, zT→∞( 12) zT→∞( ) 

22  Bk = 1 if lim Reαkk +αiz =− lim Re α +αiz =+∞, zT→∞( 21) zT→∞( ) 

22  Bk = −1 if lim Reαkk +αiz =− lim Re α +αiz =−∞, zT→∞( 21) zT→∞( ) 

22  Bk = 0 if lim Reαkk +αiz ⋅ lim Re α +αiz =+∞; zT→∞( 12) zT→∞( ) 

±Re( α11zz +β) ⋅ Re( α 2 +β 2) >0 if z → ∞(T1 ) and z → ∞(T2 )} .

ν 2m 2 14. ∫ z sin (αz ) [erf (α1 z )  erf (α 2 z )]dz = 0 . −ν

Introduced notations:

2 ( )  β + 4iαββ    2αβ − iβ   1) W 20 (n, α, β, β , A) = exp − 1  erf  1  − A × 1 1  2     4α    2α  

k −2l n 1 E (k / 2) (2αβ − iβ) 1 n 1 × 1 + exp(− β 2 ) × ∑ k n+1−k ∑ 2k −2l 1 ∑ k n+1−k k =0 2 (iβ) l=0 l!(k − 2l )!α π k =12 (iβ)

kEk− ( /2) lr+−1 k−−12 lr + 2 Ek( /2) l!1l 42( αβ −i β) × ∑∑1 −× ∑  (2!l) ( k+− 12! l) 2k−− 12 lr + 2 lk!( − 2! l)  lr=11= (r −α1!) l=1

l k −1−2l+2r 2 (r −1)!(2αβ − iβ)  (20) iββ × ∑ 1  , Wn( ,αβ , , , A ) = exp × 2k −1−2l+2r 1 α 2 r=1 (2r −1)!α  2 4α

− ( ) ( )  2 n E n / 2 k! E n / 2 1  ×  − A  ; ∑ n+2−2k 2k −1 ∑ n+1−2k 2k  π k =1 (2k )!(iβ) α k =0 k!(iβ) (2α) 

(20) (20) (20) = −− 2) ReW21( abbkk ,,) Re W( nabb ,,,,1Rekk) W 1( nabb ,,,k k ,1) ,

(20) (20) (20) = +− ImW21( abbkk ,,) Im W( nabb ,,,,1Imkk) W 1( nabb ,,,k k ,1) ;

174 ( ) 1 2α − (1− i ) α 3) W 20 (α, α ) = ln 1 − α × 3 1 2m+1 m 1 2 i(iα) iα 2α1 + (1− i ) α

m−1 (k!) 2 × ; ∑ k +1 k =0 + α m−k α 2 + α (2k 1)!(4i ) ( 1 i )

 2     ( ) α iαβ  α β  4) W 20 (α, α , β, A)= 1 exp −   A − erf 1  × 4 1  2     α 2 + α α + iα  α 2 + α  1 i  1    1 i 

22kl− mk(2!k ) (αβ) α × 1 +1 exp −β2 × ∑∑m+−12 k kl− ( ) kl=00ki!( α) = l 2 π 4lk !2( − 2 l) !( α1 +α i)

 m kl2k−− 12 lr + 2 (2!kr)  1 !(αβ1 ) ×−∑ ∑∑ m+−12 k lk!2( − 2 l) ! − klr−+ k=1ki!( α)  lr= 11= 4lr( 2!ri) α2 +α  ( 1 )

 kl2k−− 12 lr + 2 (l −1!) (αβ1 )  −∑∑  , (2l− 1!2) ( kl +− 1 2) ! 2klr−+ lr=11= (ri−1!) α2 +α  ( 1 ) 

m (20) α (2!k ) Wαα, , 0, AA = 1 ; 4 ( 1 ) ∑ k α2 +αi k=0 k 21mk+− 2 1 4!(ki) ( α) ( α1 +α i)

2   ( ) n! π  iβ   2iαβ − iα β  5) W 20 (n, α, α , β, β ) = exp erf 1 1 × 5 1 1 n     2 iα  4α   α α 2 + α   2 i 1 i 

E (n / 2 ) n−2k  2 2  (− β) n! β + 4iαβ − 4iα1ββ1 × + exp − 1  × ∑ k n−k  2  k =0 k!(n − 2k )!i α α n α 2 + α 4α + 4iα (2 ) 1 i  1 

 n+−12 k kl+−1 n− En( /2) k!(−β) k (−4il) ( 2 − 2!) ××∑∑  +− −  kl=11(2!kn) ( 12! k) = ( l 1!) 

l−1 k −l+2r 2l−1−2r 2l−2−2r α α (2αβ1 − α1β) × 1 + ∑ 2l−2−r r=0 − − α 2 + α r!(2l 2 2r )!( 1 i )

175  En( /2) nk−2 kl−1 kl−+2 r 22 l − r 2l−− 12 r (−β) kl−−1 α α1(2 αβ 11 − α β)  +∑∑(li−−1) !( ) ∑  , kn!( − 2! k) 21lr−− kl=11= r= 0rl!2( − 1 − 2 r) ! α2 +α i  ( 1 ) 

 (20) (2!m) π iαβ Wm(2 ,αα , , 0, β) = erf 1 + 5 11 m  mi!4( αα) i α α2 +α ii1

(2!m) iαβ2 m + exp−1 ∑ (ki −−1) ! ( )mk−−1 × 2m 2 α2 +αi mi!2( α) α1 +α 1 k=1

2kl−− 12 k−1 αmk−+222 l α k − l(2 αβ ) × 11, ∑ 21kl−− l=0 2 lk!2( − 1 − 2 l) !( α1 +α i)

2 (20) m! iαβ1 Wm5 (2+ 1, αα ,11 , 0, β) = exp − × mm++12 1 2 α2 +αi 4 α α1 +αi 1

m+−1 k 22kl− mk(2!4ki) (− ) αmk− +2 l α 2 k +− 12 l(2 αβ ) × 11, ∑∑ 2kl− kl=00k! = 2 lk!2( − 2 l) !( α1 +α i)

2 (20) ααn! iβ Wn(,,,,)αα β11 β= exp× 5 1  24ααnnα+12 α +α  2 1 i

n+−12 k kl− n− En( /2) k!(−β) k−1 (2!li) (− 4) αkl+ × ; ∑∑l kl=10(2!kn) ( +− 12! k) = 2 2 (li!) (α1 +α)

2 ( ) exp(− β ) m (2k )! 6) W 20 (β) = . 6 ∑ k 2k +1 π k =0 (− 4) k!β

176 APPENDIX Some useful formulas for obtaining other integrals

νν1 1. ∫∫f( z) erfi (αβ z+=) dz f( z) erf ( iα z + i β) dz . µµi

νν n 2. ∫∫fz( ) erfinn(α+β z) dz =−( i) fz( ) erf ( izα+β i) dz. µµ

νν∂  3. f( z) cos α z22 +β z +γ dz =  f( z) sin α z +β z +γ dz . ∫∫( ) ∂γ ( ) µµ

νν 4. ∫∫f( z) cos(α z22 +β+γ z) dz = f( z) sin( α z +β+γ+π z2) dz . µµ

νν m 5. ∫∫fz( ) sinhmm(α z22 +β+γ z) dz =−( i) fz( ) sin ( izα +β+γ izi) dz. µµ

νν 6. ∫∫fz( ) cosh(α z22 +β+γ z) dz = fz( ) sin( iz α +β+γ+π izi2) dz. µµ

νν 7. ∫∫fz( ) coshmm(α z22 +β+γ z) dz = fz( ) cos ( izα +β+γ izi) dz. µµ

νν(2!m) 8. f( z) sin22m α z +β z +γ dz = f( z) dz + ∫∫( ) m 2 µµ4!(m )

k (2!m) m (− 1) ν + ∑ f( z) cos 2 kα z2 + 2 k β+ z 2 k γ dz . 21m− −+∫ ( ) 2 k=1(mk)!!( mk) µ

k ν (2m +− 1!) m ( 1) 9. f( z) sin21m+ αz 2 +β z +γ dz = ∑ × ∫ ( ) m − ++ µ 4 k=0 (mk)!( m 1! k)

ν × +α++β++γ2 . ∫ f( z)sin (2 k 1) z (2 k 1) z (2 k 1) dz µ

νν(2!mm) ( 2!) 10. f( z) cos22m α z +β z +γ dz = f( z) dz + × ∫∫( ) m 2 21m− µµ4!(m ) 2

177 ν m 1 ×∑ f( z) cos 2 kα z2 + 2 k β+ z 2 k γ dz . −+∫ ( ) k=1(mk)!!( mk) µ

ν (2m + 1!) m 1 11. f( z) cos21m+ αz 2 +β z +γ dz = ∑ × ∫ ( ) m − ++ µ 4 k=0 (mk)!( m 1! k)

ν × +α++β++γ2 . ∫ f( z)cos (2 k 1) z (2 k 1) z (2 k 1) dz µ

mk− νν(2!mm) (2!) m (− 1) 12. f( z) sinh22m α z +β z +γ dz = f( z) dz + ∑ × ∫∫( ) mm2 21− −+ µµ(−4!) (m ) 2 k=1(mk)!!( mk)

ν ×∫ f( z)cosh( 2 kα z2 + 2 k β+ z 2 k γ) dz . µ

mk− ν (2m +− 1!) m ( 1) 13. f( z) sinh21m+ αz 2 +β z +γ dz = ∑ × ∫ ( ) m − ++ µ 4 k=0 (mk)!( m 1! k)

ν × +α++β++γ2 . ∫ f( z) sinh(2 k 1) z (2 k 1) z (2 k 1) dz µ

νν(2!mm) (2!) 14. f( z) cosh22m α z +β z +γ dz = f( z) dz + × ∫∫( ) m 2 21m− µµ4!(m ) 2

ν m 1 ×∑ f( z) cosh 2 kα z2 + 2 k β+ z 2 k γ dz . −+∫ ( ) k=1(mk)!!( mk) µ

ν (2m + 1!) m 1 15. 21m+ α2 ++ βγ = × ∫ f( z) cosh ( z z) dz m ∑ µ 4k=0 (mk−) !( m ++ 1! k)

ν × +α++β++γ2 . ∫ f( z) cosh(2 k 1) z (2 k 1) z (2 k 1) dz µ

ν 22 16. ∫ f( z) sin(α1 z +β+γ 11 z ) sin( α 2z +β+γ 2 z 2) dz = µ

νν 1122 = ∫∫f( z) cos(α3 z +β 33 z +γ) dz − f( z) cos(α4 z +β 44 z +γ ) dz 22µµ

{α3=−=−=− α 1 αβ 2, 3 β 1 βγ 23 ,, γ 1 γ 2

α4=+=+=+ α 1 αβ 2,, 4 β 1 βγ 24 γ 1 γ 2}.

178 ν 22 17. ∫ f( z) sin(α1 z +β+γ 11 z ) cos( α 2z +β+γ 2 z 2) dz = µ

νν 1122 = ∫∫f( z)sin(α3 z +β 33 z +γ) dz + f( z)sin(α4 z +β 44 z +γ ) dz 22µµ

{α3=−=−=− α 1 αβ 2, 3 β 1 βγ 23 ,, γ 1 γ 2

α4=+=+=+ α 1 α 2,, β 4 β 1 βγ 24 γ 1 γ 2}.

ν 22 18. ∫ f( z) cos(α1 z +β+γ 11 z ) cos( α 2z +β+γ 2 z 2) dz = µ

νν 1122 = ∫∫f( z) cos(α3 z +β 33 z +γ) dz + f( z) cos(α4 z +β 44 z +γ ) dz 22µµ

{α3=−=−=− α 1 αβ 2, 3 β 1 βγ 23 ,, γ 1 γ 2

α4=+=+=+ α 1 αβ 2,, 4 β 1 βγ 24 γ 1 γ 2}.

ν 22 19. ∫ f( z) sinh (α1 z +β+γ 11 z ) sinh ( α 2z +β+γ 2 z 2) dz = µ

νν 1122 = ∫∫f( z) cosh(α3 z +β 33 z +γ) dz − f( z) cosh(α4 z +β 44 z +γ ) dz 22µµ

{α3=+=+=+ α 1 αβ 2, 3 β 1 βγ 23 ,, γ 1 γ 2

α4=−=−=− α 1 α 2,, β 4 β 1 βγ 24 γ 1 γ 2}.

ν 22 20. ∫ f( z) sinh(α1 z +β+γ 11 z ) cosh( α 2z +β+γ 2 z 2) dz = µ

νν 1122 = ∫∫f( z) sinh (α3 z +β 33 z +γ) dz + f( z) sinh (α4 z +β 44 z +γ ) dz 22µµ

{α3 =α−α 1 23,,, β =β−β 1 23 γ =γ−γ 1 2

α4=+=+=+ α 1 α 2,, β 4 β 1 βγ 24 γ 1 γ 2}.

ν 22 21. ∫ f( z) cosh(α1 z +β+γ 11 z ) cosh ( α 2z +β+γ 2 z 2) dz = µ

179 νν 1122 = ∫∫f( z) cosh(α3 z +β 33 z +γ) dz + f( z) cosh (α4 z +β 44 z +γ ) dz 22µµ

{α3=−=−=− α 1 αβ 2, 3 β 1 βγ 23 ,, γ 1 γ 2

α4=+=+=+ α 1 αβ 2,, 4 β 1 βγ 24 γ 1 γ 2}.

ν 1 22. fz( ) sinm α+β+γ zz22cos α+β+γ zzdz = × ∫ ( ) ( ) + µ m 1

∂ ν × f( z) sinm+12α z +β z +γ dz . ∂γ ∫ ( ) µ

ν 1 23. fz( ) cosm α+β+γ zz22sin α+β+γ zzdz =− × ∫ ( ) ( ) + µ m 1

∂ ν × f( z) cosm+12α z +β z +γ dz . ∂γ ∫ ( ) µ

ν 1 24. fz( ) sinhm α+β+γ zz22cosh α+β+γ zzdz = × ∫ ( ) ( ) + µ m 1

∂ ν × f( z) sinhm+12αz +β z +γ dz . ∂γ ∫ ( ) µ

ν 1 25. fz( ) coshm α+β+γ zz22sinh α+β+γ zzdz = × ∫ ( ) ( ) + µ m 1

∂ ν × f( z) coshm+12αz +β z +γ dz . ∂γ ∫ ( ) µ

ν 1 26. fz( ) sinm α+β+γ zz2cos 22 α+β+γ zzdz = × ∫ ( ) ( ) + µ m 1

ν 1 × f( z) sinm+22α z +β z +γ dz + × ∫ ( ) ++ µ (mm12)( )

∂2 ν × f( z) sinm+22α z +β z +γ dz . 2 ∫ ( ) ∂γ µ

180 ν 1 27. fz( ) cosm α+β+γ zz2sin 22 α+β+γ zzdz = × ∫ ( ) ( ) + µ m 1

ν 1 × f( z) cosm+22α z +β z +γ dz + × ∫ ( ) ++ µ (mm12)( )

∂2 ν × f( z) cosm+22α z +β z +γ dz . 2 ∫ ( ) ∂γ µ

ν 1 28. fz( ) sinhm α+β+γ zz2 cosh22 α+β+γ zzdz = × ∫ ( ) ( ) ++ µ (mm12)( )

νν ∂2 1 × f( z) sinhmm++22αz +β z +γ dz − f( z) sinh 22αz +β z +γ dz . 2 ∫∫( ) m +1 ( ) ∂γ µµ

ν 1 29. fz( ) coshm α+β+γ zz2 sinh22 α+β+γ zzdz = × ∫ ( ) ( ) ++ µ (mm12)( )

νν ∂2 1 × f( z) coshmm++22αz +β z +γ dz − f( z) cosh 22αz +β z +γ dz . 2 ∫∫( ) m +1 ( ) ∂γ µµ

ν k m! m (−1) 30. f( z) sinm α z2 +β z +γ dz = ∑ × ∫ ( ) m − µ (2i) k=0 kmk!!( )

ν × − α+−2 β+− γ . ∫ f( z) exp( m 2) ki z ( m 2) kiz ( m 2) ki dz µ

ν m!1m 31. f( z) cosm α z2 +β z +γ dz = ∑ × ∫ ( ) m − µ 2 k=0 kmk!!( )

ν × − α+−2 β+− γ . ∫ f( z) exp( m 2) ki z ( m 2) kiz ( m 2) ki dz µ

ν k m! m (−1) 32. f( z) sinhm α z2 +β z +γ dz = ∑ × ∫ ( ) m − µ 2 k=0 kmk!!( )

ν × − α+−2 β+− γ . ∫ fz( ) exp( mkz 2) ( mkzmk 2) ( 2) dz µ

181 ν m!1m 33. f( z) coshm α z2 +β z +γ dz = ∑ × ∫ ( ) m − µ 2 k=0 kmk!!( )

ν × − α+−2 β+− γ . ∫ fz( ) exp( mkz 2) ( mkzmk 2) ( 2) dz µ

Note that the formulas in this Appendix can obviously be written also for improper and indefinite integrals. Also note that in formulas 3 and 22–29, fz( ) does not depend on γ .

182