CONSERVING AND RESTORING WILDLIFE IN FRAGMENTED URBAN LANDSCAPES: A CASE STUDY FROM BRISBANE, AUSTRALIA

AthesissubmittedforthedegreeofDoctorofPhilosophyatTheUniversityofQueenslandin December2006 by Jenni Garden, BSc. (Hons)

SchoolofGeography,PlanningandArchitecture, TheUniversityofQueensland,Brisbane4072,Qld.Australia

STATEMENT OF ORIGINALITY, CONTRIBUTION TO

JOINTLY PUBLISHED WORK, AND CONTRIBUTION OF

OTHERS

STATEMENT OF ORIGINALITY

Theworkpresentedinthisthesisis,tothebestofmyknowledgeandbelief,originalandmy ownwork,exceptwhereotherwisestatedinthetext.Thismaterialhasnotbeensubmitted, eitherinwholeorinpart,foradegreeatthisoranyotheruniversity.

CONTRIBUTION TO JOINTLY PUBLISHED WORK

Twojointlypublishedpapers,andthreejointlypreparedpapersinreviewarereproducedin theirentiretyaschaptersformingpartofthisthesisandmycontributiontothesewasas follows:

Chapter 2. Garden J., McAlpine C., Peterson A., Jones D., Possingham H. (2006) Review of the ecology of Australian urban fauna: A focus on spatially-explicit processes. Austral

Ecology, 31, 126-148.

Originalidea,literaturesearchandcompilation,andallwrittenwork.

ii

Chapter 3. Garden J.G., McAlpine C.A., Possingham H.P., Jones D.N. (in review) Using multiple survey methods to detect terrestrial and mammals: What are the most successful and cost efficient combinations? Wildlife Research.

Originalidea,alldatacollectionandanalysis,andallwrittenwork.

Chapter 4. Garden J.G., McAlpine C.A., Possingham H.P., Jones D.N. (in press) Habitat structure is more important than vegetation composition for local-level management of native terrestrial and small mammal living in urban remnants: A case study from Brisbane, Australia. Austral Ecology.

Originalidea,alldatacollectionandanalysis,andallwrittenwork.

Chapter 5. Garden J.G., McAlpine C.A., Possingham H.P. (in review) What’s more important for wildlife in fragmented urban landscapes – local, patch, or landscape-level influences? A reptile and small mammal case study from southeast Queensland,

Australia. Biological Conservation.

Originalidea,alldatacollectionandanalysis,andallwrittenwork.

Chapter 6. Garden J.G., Peterson A., McAlpine C.A., Possingham H.P. (in review)

Conserving native terrestrial reptiles and small mammals in urban landscapes: The need for a multi-scaled, multi-species approach to planning and management. Landscape and

Urban Planning.

Originalidea,alldataanalysis,andallwrittenwork.

iii

CONTRIBUTION OF OTHERS

DrCliveMcAlpineandProf.HughPossinghamcontributedtothediscussionand developmentofallideas,andcommentedonallwrittenmaterialanddataanalysis.Michiala

BowenandBarbaraTriggsprovidedexpertanalysisofhairandscatsamples,which contributedtospeciesidentificationsusedinthemainanalyses.Thecontributionsofothersto eachchapterwere:

Chapter 2:DrAnnPeterson,Assoc.Prof.DarrylJonesandtwoanonymousreviewers providedcommentsonthewrittenmaterial.

Chapter 3: Assoc.Prof. DarrylJones,DrNickClemann,andtwoanonymousreviewers commentedonthewrittenmaterial.Assoc.Prof.DarrylJonesalsoprovidedadviceon trappingmethodsduringfieldsurveys.

Chapter 4:DrGrantWardellJohnson,DrBenLawson,andHusseinBashirprovidedadvice andfeedbackonPATNanalysis.Assoc.Prof.DarrylJones,twoanonymousreviewers,and

DrMichaelBull(managingeditorofAustralEcology)commentedonthewrittenmaterial.

Chapter 5:SeanHoughconductedFRAGSTATSanalysisofdata.

Chapter 6:DrAnnPetersonhelpeddevelopideasandcommentedonwrittenmaterial.

……………………………………………. …………………… JenniG.Garden Date

……………………………………………. …………………… DrCliveA.McAlpine(PrimaryAdvisor) Date

iv

ACKNOWLEDGEMENTS

Iwouldfirstliketothankmysupervisoryteam,CliveMcAlpine,HughPossingham,Ann

Peterson,andDarrylJones,fortheirconstantsupport,encouragementandenthusiasmoverthe lastfouryears.ToClive,especially,thankyouforallyourtimeandeffort.Thanksalsotothe membersofTheEcologyCentre,theLandscapeEcologygroup,andCRSSISforenlightening discussionsanddebatesduringmyPhDcandidature.IalsothankBrisbaneCityCouncilfor theirfinancialandinkindsupportthroughouttheproject.ToStaceyMcLeanandKristy

Buchannan,inparticular,thankyouforyoursupportoftheprojectandenthusiasmforit.

Also,thankstoGrahamWoodsforallyourhelpandforlookingoutformysafetyinthe southernbushlandsites.IalsoacknowledgefinancialsupportprovidedbyaUniversityof

Queenslandpostgraduatescholarship,andTheEcologyCentre.

ToRedlandShireCouncilWaterandWasteDivision,particularlyBruceFischer,thankyou forallowingmeaccesstocouncilproperty,forprovidingmapsandkeys,andforbeing completelyaccommodatingofanyrequests.Toalltheprivatelandownerswhosupportedthis project–thankyouforallowingmeaccesstoyourpropertyandforbeingsopassionateabout yourrespectivepatchesofbushland.

Ialsothank:MichialaBowenandBarbaraTriggsforanalysinghairandscatsamples;Dr

GrantWardellJohnson,DrBenLawson,andHusseinBashirforhelpingunlockthemystery ofPATN;and,SeanHoughforrunningtheFRAGSTATSanalysis.Specialthanksalsogoto

v numerousvolunteerswhohelpedwiththefieldwork.Thankyouforgivingyourweekends andearlymorningstohelpmedigpitfallholes,checktraps,andremovetraps.Your assistancewasverymuchappreciated.

Mysafetyandsanityduringthefaunaandhabitatsurveyswasmaintainedthankstomy researchassistants,MichelleWaltonandAlisonHowes.Thankyouboth,somuch,foryour help,support,constantenthusiasm(especiallyduringthe2amstarts!),braveryinthefaceof numerousspiders,humour,companionship,andyourfriendship.Iamsoveryluckytohave hadtwosuchwonderfulassistantstoshareinthejoysoffieldwork!

Tomyofficemates,andfriends,SaravananSubramanianandLeonieSeabrook,thankyoufor takingthisrollercoastertripwithme–youmadetheridesomuchmoreenjoyable.Thank youforcreatingsuchafriendly,relaxing,motivating,andcompetitiveenvironmentinwhich towork.

Tomyotherfriends,thankyouforyoursupportandencouragementthroughoutmyPhD candidature.Thanks,especiallytoTimO’DonnellforteachingmeaboutthewondersofGIS, foryourcompanyandunderstandingathome,andformanyhoursofmuchneededlaughter therapy.

Finally,tomyfamily–‘thankyou’seemsbarelyadequateforallyou’vedoneforme.Iam forevergratefulforyourloveandencouragement.Thankyouforalwaysbelievinginmeand supportingme–IknowIwillneverfallfarwithyouasmysafetynet.

vi

LIST OF PUBLICATIONS RELEVANT TO THIS THESIS

Garden J.,McAlpineC.,PetersonA.,JonesD.,PossinghamH.(2006)Reviewoftheecology

ofAustralianurbanfauna:Afocusonspatiallyexplicitprocesses.AustralEcology,31,

126148.

Garden J.G.,McAlpineC.A.,PossinghamH.P.,JonesD.N.(inreview)Usingmultiple

surveymethodstodetectterrestrialreptilesandmammals:Whatarethemostsuccessful

andcostefficientcombinations?WildlifeResearch.

Garden J.G.,McAlpineC.A.,PossinghamH.P.,JonesD.N.(inpress)Habitatstructureis

moreimportantthanvegetationcompositionforlocallevelmanagementofnative

terrestrialreptileandsmallmammalspecieslivinginurbanremnants:Acasestudyfrom

Brisbane,Australia.AustralEcology.

Garden J.G.,McAlpineC.A.,PossinghamH.P.(inreview)What’smoreimportantfor

wildlifeinfragmentedurbanlandscapes–local,patch,orlandscapelevelinfluences?A

reptileandsmallmammalcasestudyfromsoutheastQueensland,Australia.Biological

Conservation.

Garden J.G.,PetersonA.,McAlpineC.A.,PossinghamH.P.(inreview)Conservingnative

terrestrialreptilesandsmallmammalsinurbanlandscapes:Theneedforamultiscaled,

multispeciesapproachtoplanningandmanagement.LandscapeandUrbanPlanning.

vii

PREFACE

WiththeexceptionsofChapter1(GeneralIntroduction)andChapter7(GeneralDiscussion), thisthesisispresentedasacompilationoflogicallyconnectedpublished,inpress,orinreview manuscripts.Forthemostpart,thecontentofChapters26arepresentedintheformatthey weresubmittedorpublished,withthejournalacknowledgedatthestartofeachchapter.

Minorstylisticchangeshavebeenmadeforthepurposesofmaintainingcontinuityinthis thesis.Forinstance,figuresandtableswithinchaptershavebeenrelabelledtoensure consistencywiththesischapters,‘inpress’or‘submitted’referenceshavebeenupdatedwhere possible,andintextreferencingstyleshavebeenformattedtosuitthethesis.The acknowledgementsandreferencessectionsforeachmanuscripthavebeenremoved;instead overallacknowledgementsforthethesisareprovidedonpagesvvi,contributionsbyothersto eachchapterareshownonpagesiiiv,andasinglereferenceslistforthethesisispresentedat theendofChapter7(pp.204).

AsChapters26werewrittenasstandalonearticlesforscientificjournals,thereissome repetitionbetweenchapters,particularlyintheIntroduction,andMaterialsandMethods sections.Wherenecessary,permissionwasobtainedtoreproducepublishedpapersinthis thesis.

Atthestartofeachchapterandthereferencessection,apageofphotographicplatesis included,withabriefdescriptionofeachphoto.Informationforeachdescriptionwasderived

viii from:QueenslandMuseum(1995),Cogger(2000),MenkhorstandKnight(2001),Wilsonand

Swan(2003),andWilson(2005).Theseplatesandtheirdescriptionsarenotanintegralpart ofthethesis,andarenotreferredtointhetext.Instead,theyareincludedforinterest’ssake, andasaphotographicrecordofthefieldsurveysandthespeciesdetectedduringthisstudy.

Allphotosweretakenbyme,exceptwhereotherwiseacknowledged.

AllfaunasurveyswereconductedunderUQAECpermitGSP/030/04/BCC/UQGS,and

QueenslandGovernmentEPAscientificpurposespermitWISP01975204.Surveysofprivate propertieswereconductedwiththelandholder’sconsent.

ix

ABSTRACT

Theenvironmentalconditionsthatmakealocationsuitableforurbandevelopmentoften coincidewiththosethatsupporthighspeciesdiversityandendemism.Theresultingloss, fragmentation,anddegradationofnaturalhabitatshavesignificantramificationsforurban wildlife.Nativewildlifepopulationsfragmentedbyurbandevelopmentundergopopulation declinesandlocalisedextinctionsoftenlongafterthedevelopmentoccurs.Native biodiversityisthereforeunderthreatasurbanareascontinuetoexpandandreplacenatural habitats,yettheprocessesenablingwildlifetopersistinurbanareasarenotwellunderstood.

Consequently,urbanplanningandmanagementdecisionsoftenfailtoensurethelongterm conservationofurbanbiodiversity.Thisprojectappliedaspatiallyexplicit,multiscaled landscapeapproachtodeterminetherelativeimportanceofsite,patch,andlandscapelevel attributesfortheoccurrenceofreptileandsmallmammalspecieslivinginfragmentedforest remnantsofBrisbaneCity,Queensland,Australia.

Thestudytestedasetofapriorimodelstoinvestigatetheimportanceofsitelevelhabitat attributesrelativetopatchsizeandshape,andlandscapecompositionandconfigurationfor nativereptileandsmallmammalspecies.Fieldbasedfaunaandhabitatsurveyswere conductedat59sites,withfaunasurveysrepeatedforspring/summerovertwoconsecutive years.Faunasurveysusedacombinationoflivetrapping,directobservation,andtrace analysistoincreasethedetectionprobabilityoftherangeoftargetspecies.Thefieldsurveys providedinformationaboutreptileandsmallmammalspeciesoccurrences,andthelocallevel

x habitatstructureandcompositionwithineachsite.Comparativeanalysiswasusedto investigatethedetectionsuccessandcostsassociatedwiththedifferentsurveymethods employed.Clusteranalysisandmultidimensionalscalingordinationwereusedtoinvestigate relationshipsbetweenspeciesoccurrencesandlocallevelhabitatcharacteristics.Generalised linearmodellingandhierarchicalpartitioningwereusedtodeterminetheimportanceofthe areaofforesthabitatanditsconfigurationrelativetopatchsizeandshape,andlocal vegetationcompositionandstructure.

Atotalof19reptileandninemammalspecieswereidentified.Allsurveymethodsmadea contributiontooveralldetectionsuccessbydetectingatleastonespeciesnotidentifiedbyany othermethod.Pitfalltrapsanddirectobservationswerethemostsuccessfulandcostefficient methodcombinationfordetectingreptilespecies.Incontrast,mammalsweremost successfullyandefficientlydetectedusingacombinationofhairfunnelsandElliotttraps(for smallbodiedmammals),orcagetraps(formediumsizedmammals),withtheoneexception beingthemoresuccessfuluseofpitfalltrapsfordetectingplanigales(Planigalemaculata).

Atthelocallevel,Ifoundthatspeciescompositionforbothtaxawasinfluencedmostby habitatstructureratherthanvegetationcomposition.Reptilespeciescompositionwas correlatedwith:theamountoffallenwoodymaterial,thepresenceoftermitemounds,soil compaction,andtheweedinessofsites.Mammalspeciesassemblagesweremostcorrelated withthepresenceofgrasstreesandsoilcompaction.Whentheimportanceoflocallevel habitatattributeswasexaminedrelativetopatchandlandscapelevelattributes,Ifoundthat attributesacrosseachspatiallevelwereimportantfordeterminingspeciesrichness.Overall, patchlevelattributes,suchassizeandshape,werelessimportantthanlandscapecontextand

xi localattributesofhabitatquality,suchashabitatstructuralcomplexity.Reptilespecies respondedtoattributesatboththelocalandlandscapelevels,withtheareaofforesthabitat anditsconfigurationinthesurroundinglandscape,andsoilcompactionandweedcoveratthe locallevel,beingcorrelatedwithspeciesrichness.Incomparison,mammalspeciesresponded toattributesatallthreespatiallevels.Thekeyfactorsinfluencingmammalspecieswerethe amountofforestandrural/lowdensityurbanhabitatatthelandscapelevel,habitat compositionatthelocallevel,andpatchsizeandshapeatthepatchlevel.

Theresearchoutcomeshighlighttheneedtoadoptamultispecies,multiscaledapproachto researchandurbanconservationplanningandmanagement.Themajoroutcomesofthis projectaresynthesisedintoasetofguidelinesandadecisionsupporttreethatwillenable urbandecisionmakerstotargetpriorityhabitatandlandscapeattributesfortheconservation ofnativereptileandsmallmammalcommunitiesinurbanlandscapes.

xii

TABLE OF CONTENTS

LIST OF TABLES…………………………………………………………………………xvii

LIST OF FIGURES..……………………………………………………………………….xix

LIST OF PLATES……………………..………………………………….……………….xxii

CHAPTER 1. GENERAL INTRODUCTION……………………………………………...2

1.1. BACKGROUND…...………………………………………………………….….2

1.2.PROBLEMSTATEMENT……..………………………………………...………4

1.3.AIMSANDOBJECTIVES……………………………………………………….5

1.4.APPROACH………………………………………………………………………6

1.5.STRUCTUREOFTHESIS……………………………………………………….6

CHAPTER 2.REVIEW OF THE ECOLOGY OF AUSTRALIAN URBAN FAUNA: A FOCUS ON SPATIALLY-EXPLICIT PROCESSES……………………………………..10

2.1.ABSTRACT……………………………………………………………………...10

2.2.INTRODUCTION……………………………………………………………….11

2.3.REVIEWCRITERIA…………………………………………………………….15

2.4.REVIEWOFAUSTRALIANURBANFAUNARESEARCH…………………27

2.4.1.BIRDS……………………………………………………………………...27

2.4.2.MAMMALS…………………………………………………………………33

2.4.3.REPTILESANDAMPHIBIANS……………………………………………….36

2.4.4.INVERTEBRATES…………………………………………………………...38

2.4.5.AQUATIC…………………………………………………………………..41

2.5.PRINCIPLES…………………………………………………………………….42

xiii

2.6.CONCLUSIONS…………………………………………………………………49

CHAPTER 3. USING MULTIPLE SURVEY METHODS TO DETECT TERRESTRIAL REPTILES AND MAMMALS: WHAT ARE THE MOST SUCCESSFUL AND COST EFFICIENT COMBINATIONS?...... 52

3.1.ABSTRACT……………………………………………………………………...52

3.2.INTRODUCTION……………………………………………………………….53

3.3.METHODS………………………………………………………………………56

3.3.1.STUDYAREAANDSURVEYDESIGN………………………………………...56

3.3.2.TRAPPINGANDDETECTIONMETHODS……………………………………..58

3.3.3.COSTANALYSIS……………………………………………………………61

3.3.4.COSTVERSUSSUCCESS…………………………………………………….63

3.4.RESULTS………………………………………………………………………..64

3.4.1.SPECIESDETECTED………………………………………………………..64

3.4.2.SURVEYMETHODSUCCESS……………………………………….………..64

3.4.3.COSTOFDETECTIONMETHODS…………………………………….………70

3.4.4.EFFECTIVENESSANDCOSTEFFICIENCY………………………….………..72

3.5.DISCUSSION……………………………………………………………………74

3.5.1.REPTILES…………………………………………………………………..76

3.5.2.MAMMALS…………………………………………………………………78

3.5.3.CONCLUSION…………………………………………………………..…...80

CHAPTER 4. HABITAT STRUCTURE IS MORE IMPORTANT THAN VEGETATION COMPOSITION FOR LOCAL-LEVEL MANAGEMENT OF NATIVE TERRESTRIAL REPTILE AND SMALL MAMMAL SPECIES LIVING IN URBAN REMNANTS: A CASE STUDY FROM BRISBANE, AUSTRALIA...... 83

4.1.ABSTRACT……………………………………………………………………...83

4.2.INTRODUCTION……………………………………………………………….84

4.3.METHODS………………………………………………………………………88

xiv

4.3.1.STUDYAREA………………………………………………………………88

4.3.2.SITESELECTION…………………………………………………………...90

4.3.3.SITEDESIGN……………………………………………………………….91

4.3.4.WILDLIFESURVEYS………………………………………………………..91

4.3.5.HABITATSURVEYS………………………………………………………...92

4.3.6.STATISTICALANALYSIS……………………………………………………95

4.4.RESULTS………………………………………………………………………..98

4.4.1.FAUNASPECIESASSEMBLAGES……………………………………………98

4.4.2.HABITATVARIABLESCOLINEARITY…………………………………….100

4.4.3.REPTILEGROUPSANDHABITATASSOCIATIONS…………………………100

4.4.4.MAMMALGROUPSANDHABITATASSOCIATIONS………………………..103

4.5.DISCUSSION…………………………………………………………………..106

4.5.1.REPTILES…………………………………………………………………107

4.5.2.MAMMALS………………………………………………………………..112

4.5.3.MANAGEMENTIMPLICATIONS……………………………………………115

CHAPTER 5. WHAT’S MORE IMPORTANT FOR WILDLIFE IN FRAGMENTED URBAN LANDSCAPES – LOCAL, PATCH, OR LANDSCAPE-LEVEL INFLUENCES? A REPTILE AND SMALL MAMMAL CASE STUDY FROM SOUTHEAST QUEENSLAND, AUSTRALIA…………………………………………...120

5.1.ABSTRACT…………………………………………………………………….120 5.2.INTRODUCTION……………………………………………………………...122 5.3.APRIORIMODELS……………………………………………………………127 5.4.METHODS……………………………………………………………………..130

5.4.1.STUDYAREA……………………….…………………………………….130

5.4.2.HABITATMAPPING,STRATIFICATIONANDSITESELECTION…....…..……132

5.4.3.WILDLIFESURVEYS………………..………………………………….….133

5.4.4.EXPLANATORYVARIABLES………………………………………………133

5.4.5.STATISTICALANALYSES………………………………………………….136 5.5.RESULTS………………………………………………………………………139

5.5.1.SPATIALEXTENTSOFLANDSCAPEINFLUENCE……………………………139

xv

5.5.2.SUBSETOFEXPLANATORY

VARIABLES…………………………………...1410

5.5.3.EFFECTOFEXPLANATORYVARIABLES………...….………………………143

5.5.4.INDEPENDENTEFFECTSANDRANKINGOFEXPLANATORYVARIABLES……145

5.5.5.SPATIALAUTOCORRELATIONANDMODELFIT……………………………149

5.6.DISCUSSION…………………………………………………………………..151

5.6.1.APPROACHANDLIMITATIONS……………………………………………157

5.6.2.IMPLICATIONSFORCONSERVATION………………………………………158

CHAPTER 6. CONSERVING NATIVE TERRESTRIAL REPTILES AND SMALL MAMMALS IN URBAN LANDSCAPES: THE NEED FOR A MULTI-SCALED, MULTI-SPECIES APPROACH TO PLANNING AND MANAGEMENT……………161

6.1.ABSTRACT……………………………………………………………………161

6.2.INTRODUCTION……………………………………………………………...162

6.3.QUEENSLANDPLANNINGFRAMEWORK………………………………..165

6.4.BRISBANECASESTUDY……………………………………………………167

6.4.1.SYNTHESISOFSTUDYFINDINGS………………………………………….170

6.5.MANAGEMENTGUIDELINES………………………………………………173

6.6.CONCLUSION…………………………………………………………………192

CHAPTER 7. GENERAL DISCUSSION………………………………………………...195

7.1.OVERVIEW……………………………………………………………………195

7.2.BROADCONTRIBUTIONTOECOLOGICALTHEORY…………………..199

7.3.IMPLICATIONSFORURBANPLANNINGANDMANAGEMENT……….202

7.4.FUTURERESEARCH…………………………………………………………203

7.5.CONCLUSION…………………………………………………………………204

REFERENCES……………………………………………………………………………...206

xvi

LIST OF TABLES

Table 2.1. Summaryof63Australianurbanecologystudiesconductedbetween1990and 2005……………………………………………………………………………………………18

Table 2.2.Examplesofhabitatcharacteristicsoperatingatthreeecologicallevels…………29

Table 3.1.Collatedspecieslistshowingthemethod/sbywhicheachspecieswas detected………………………………………………………………………………………..65

Table 4.1.Habitatvariablesrecordedateachsite……………………………………………93

Table 4.2.Cumulativespecieslistfromwildlifesurveys……………………………………99 Table 4.3. RelativeassociationsbetweenordinationGroupsandnativereptile/mammal speciesandhabitatvariables…………………………………………………………………105 Table 5.1. Keyexplanatoryvariables,asdeterminedfollowinginitialexploratoryanalyses, thatwereusedintheanalysisofreptileandmammalspeciesrichness...…………...... 134 Table 5.2. Habitat classesandtheirperceivedfunctionforreptileandmammalspecies…..136 Table 5.3. CorrelationmatrixofSpearman’srankcorrelationcoefficientsforkeyexplanatory variablesfor:(a)reptilespeciesrichness,and(b)mammalspeciesrichness………………..142

xvii

Table 6.1. Cumulativelistofnativereptilesandsmallmammalsdetectedduringthe Brisbanecasestudyfaunasurveys…………………………………………………………..172

Table 6.2. Summaryofthekeyhabitatattributes,ateachspatiallevel,forreptilesandsmall mammalsinBrisbane’slowlandremnanthabitatfragments……………….………………..173

xviii

LIST OF FIGURES

Figure 1.1.Schematicofthesisstructure,showinginterrelationsbetweenchapters………….8

Figure 2.1. Proportionoffaunagroupsandecologicallevelsexaminedacross63urbanfauna studies…………………………………………………………………………………………30 Figure 2.2.Hypotheticalcurveoftherelationshipsbetweenhabitatarea,habitatcondition (quality)andtheprobabilityofaspeciesbeingpresent………………………………………46 Figure 3.1. Mapofstudyareashowinglocationof(a)Brisbaneandcentralbusinessdistrict (CBD),andsitelocationswithin(b)southsuburbsand(c)southeastsuburbs..…………….57 Figure 3.2. Schematicoftraplayoutalongthethreetransectsateachsurveysite..………...59

Figure 3.3. Surveymethoddetectionsuccess………………………………………………..66 Figure 3.4.RelativecostofeachsurveymethodinisolationasusedduringtheBrisbanecase study…………………………………..…………………………………………………….....71 Figure 3.5.Optimalsurveymethods,calculatedastheaveragespeciesdetectionand individualcapturesuccessofeachsurveymethodpersite,perdollar. ………………..…….73

Figure 4.1. (a)LocationofBrisbaneCityCouncil(BCC)localgovernmentarea(LGA)on Queensland’ssoutheastcoast.(b)MapofBCCLGAshowingthelocationofthesurveyareas inrelationtotheCBD…………………………………………………………………………89

xix

Figure 4.2.SSHMDSordinationsforreptiles(ac)(stress=0.1832)andmammals(df) (stress=0.1283)………………………………………………………………………….…..101 Figure 4.3. RelativespeciescompositionsforeachofthereptileandmammalsiteGroups, showingtheproportionofsiteswithineachGroupatwhichspeciesweredetected………...102 Figure 5.1. Conceptualmodelshowingfactorsinfluencingspeciesrichnessinfragmented urbanlandscapes……………………………………………………………………………..126 Figure 5.2. MapofBrisbaneCitylocalgovernmentareashowingcentralbusinessdistrict (CBD)relativetothestudyareawithinwhichfaunasurveyswereconducted……………...131 Figure 5.3. Keylandscapelevelpredictorsfromthefinalmodel,atincreasingspatialextents (5005000m)fromsurveysitesfor:(ad)reptilespeciesrichness,and(e)mammalspecies richness………………………………………………………………………………………141 Figure 5.4. Pathdiagramsshowingaverageparameterestimatesandunconditionalstandard errorsoftheestimatesforeachexplanatoryvariablepresentinallmodelcombinationsfor(a) reptiles,and(b)mammals……………………………………………………………………144 Figure 5.5. Pathdiagramsshowingindependenteffectofeachexplanatoryvariableasa percentageofoverallpercentexplainedinallmodelcombinationsofkeyexplanatory variables……………………………………………………………………………………...144 Figure 5.6. Relativeimportanceofkeyexplanatoryvariablesfor(a)reptilespeciesrichness, and(b)mammalspeciesrichness…………………………………………………………....148 Figure 5.7. Distributionofmodelresidualsfor:(a)reptilespeciesrichness,and(b)mammal speciesrichness……………………………………………………………………………....150

xx

Figure 6.1. LocationoftheBrisbanecasestudyareainthesouthandsoutheastperiurban suburbsoftheBrisbaneCitylocalgovernmentarea………………………………………...169 Figure 6.2. Integratingecology,planning,andmanagementatmultiplespatiallevels.…....176 Figure 6.3. Decisionsupporttreeforplanningandmanagement.……………………….....178 Figure 6.4. StructuralhabitatcomplexityatselectedsurveysitesfromtheBrisbanecase study…………………………..……………………………………………………………...183 Figure 6.5. ComptonRoad,Brisbane:(a)theoriginaltwolaneroadatthestartofthe upgrade,and(b)thefinalfourlaneroadfollowingtheupgrade……………..……………...187

xxi

LIST OF PLATES

Plate 1.(a)BrisbaneCityasviewedfromMt.Coottha,withapproximatelocationofsouth andsoutheastsurveyareasindicated;(b)Examplesofregionalecosystem(RE)type12.9 10.4..…………..………………………………………………………………………………...1

Plate 2.Dasyurids:(a)Yellowfootedantechinus;(b)Subtropicalantechinus;(c)Common dunnart;(d)Commonplanigale………………………………………………………………...9

Plate 3. Nativerodentsandbandicoots:(a)Bushrat;(b)Swamprat;(c)Northernbrown bandicoot;(d)Longnosedbandicoot…………………………………………………………51 Plate 4. Melomysanddragons:(a)Grasslandmelomys;(b)Tommyroundhead;(c)Eastern waterdragon;(d)Beardeddragon…………………………………………………………….82 Plate 5.Gecko,monitor,and:(a)Easternstonegecko;(b)Lacemonitor;(c)Verreaux’s ;(d)Coppertailedskink……………………………………………………………….119 Plate 6.Snakesandsnake:(a)Burton’ssnakelizard;(b)Redbelliedblacksnake;(c) Commontreesnake;(d)Carpetpython……………………………………………………...160 Plate 7.Skinks:(a)Scutesnoutedcalyptotisskink;(b)Treebaselitterskink;(c)Openlitter rainbowskink;(d)Fenceskink………………………….…………………………………...194 Plate 8.Skinks:(a)Storr’srainbowskink;(b)Easternwaterskink;(c)Secretiveskink;(d) Gardenskink…………………………………………………………………………………205

xxii

(a)

CBD South-east survey area South survey area

(b)

Plate 1.(a)BrisbaneCityasviewedfromMt.Coottha,withapproximatelocationofsouthandsoutheastsurveyareasindicated;(b) Examplesofregionalecosystem(RE)type12.910.4.

1

CHAPTER 1

GENERAL INTRODUCTION

1.1. BACKGROUND

Urbanareasarecharacterisedworldwidebyhighlymodifiedenvironmentsthathavemajor consequencesfornativeecosystemcompositionanddynamics.Whereasendogenous disturbanceshavelongbeenrecognisedtobenefitnativeecosystems,exogenousdisturbances resultingfromhumanlanduse,fragmentandisolatenaturalhabitatstothedetrimentofmany speciesandecosystempatternsandprocesses.Theprocessofurbanisationisamongstthe mostextremeandrapidlyexpandingformofgloballandtransformation(Vitouseketal.1997).

Itismostpronouncedintropicalandsubtropicalregions,wheretherateofhumanpopulation growthisfasterthaninanyotherregionoftheworld(Barrow1991).Atpresent,almosthalf theEarth’shumanpopulationlivesinurbanenvironments,withthispercentageexpectedto increasetoapproximately60%by2030(UnitedNations2006).

Suchintensemodificationofnativeecosystemsproducesanenvironmentsodifferentfromits originalstatethatevenifanthropogenicactivitieswereremoved,completerecoverywouldbe highlyunlikely(Lugo2002).Lugo(2002)questionswhetherwecansustainablymanage humandominatedtropicallandscapes,concludingthatlandscapescouldbemanagedinhighly

2 developedareas,andthat‘…deforestationandfragmentationarenotunidirectional processes…’(pp.610).However,Lugo(2002)furthernotesthatforanthropogenicactivities tocontinue,wemustacceptthatthealteredenvironmentwillbe‘…awholenewsuiteof ecosystemswithspeciescompositiondifferentfromthoseofournaturalareas…”(pp.611).It isthereforecrucialthatwedevelopasoundunderstandingofurbanisationimpactson ecosystemprocessesandwildlifepopulationsifwearetoconservenativebiodiversityin urbanlandscapes.

Urbanlandscapeecologyhasattractedattentionfromnumerousdisciplinesincludingecology, sociology,wildlifemanagement,andgovernmentsectorsanddevelopers.However,despite anincreaseindisciplinaryinterestandtechnologicaladvances(Johnson1995;Bastinand

Thomas1999;MarzluffandEwing2001),thereremainsalackofunderstandingoftheeffects ofurbanisationonecosystemprocesses,thebehaviourandpersistenceofwildlifepopulations, andhowtheseeffectsvaryatmultiplespatialscales.Furthermore,thefindingsfromthe majorityofstudiesarenoteffectivelyintegratedintourbanlanduseplanning(Risser1993,

1996).Consequently,thereisapaucityofinformationavailabletoguidethedevelopmentand managementofurbanlandscapesforconservation,resultingincontinuinguninformedand, often,detrimentalconservationdecisionsforbiodiversity.

Thekeyissuethenishowtorespondtotheseproblemssothatimpactsonurbanbiodiversity areminimisedandnativebiodiversityconservationwithintheurbancontextissuccessful.

Theanswerliesinaninterdisciplinary(Johnson1995;KlopatekandGardener1999), hierarchicallystructured(Cousins1993;Childressetal.1999;Whiteetal.1999),andadaptive approach(LiuandTaylor2002;RutledgeandLepczyk2002).Inaddition,ecological

3 knowledgemustbebetterintegratedintourbandecisionmakingprocesses;todosorequires ecologistsconveyinga‘…loudclearmessagetodecisionmakers…’(Villard2002,pp.320).

1.2. PROBLEM STATEMENT

Biodiversityisunderthreatfromacceleratingurbanisation,yettheprocessesenablingwildlife topersistinurbanareasarenotwellunderstood.Consequently,urbanplanningand managementdecisionsareoftenineffectiveorincompatibleforthelongtermconservationof nativeurbanbiodiversity.Torectifythisproblem,urbanecologymustinvestigatemulti scaledinfluencesonarangeofnativespecies,particularlythosethatcurrentlyreceivelittle attention.Ecologistsmustalsotakestepstointegrateecologicalfindingsintoplanning frameworksandmanagementstrategies,bytranslatingpriorityecologicalrequirementsintoa formatthatmaybeeasilyunderstoodandadoptedbydecisionmakers.

Forinstance,keydecisionsforconservingurbanbiodiversityinclude:shouldplanningand managementactionsandlimitedresources(time,moneyandpersonnel)bedirectedtowards attributesatthelocallevel(<1ha),patchlevel(1–100sha),orlandscapelevel(100s–

1000sha)?Furthermore,ifforinstancepatchlevelattributesareofgreatestimportance,what particularattributesaremostimportant?Thatis,howshouldactionsbeprioritisedfor conservingwildlifespecies?

4

1.3. AIMS AND OBJECTIVES

Theprojectaimstodisentangletherelativeimportanceofsite,patch,andlandscapelevel variablesontheoccurrenceofnativeterrestrialreptilesandsmallmammalslivingina fragmentedurbanlandscapeofAustralia.Inparticular,theprojectwilladdressthequestions:

(i) Islocallevelhabitatstructuremoreimportantthanhabitatcomposition?

(ii) Howimportantisthelandscapecontextrelativetolocallevelhabitatfactors?

(iii) Howcanecologicalinformationbestbeintegratedintourbanlandscapeplanning

andmanagement?

Themainobjectivesofthisprojectareto:

(i) ReviewtheAustralianurbanecologyliteratureinordertoidentifygapsinthe

currentknowledgebasethatshouldtakepriorityinfutureresearch.

(ii) ConductfaunasurveyswithinlowlandremnantvegetationfragmentsofBrisbane

City,usingvarioussurveymethods,andinvestigatethesuccessandcostefficiency

ofcombinationsofdifferentsurveymethods.

(iii) Determinetherelativeimportanceoflocallevelhabitatstructureandhabitat

compositionforinfluencingreptileandsmallmammalcompositions.

(iv) Investigatetheimportanceofpatchandlandscapelevelinfluencesforreptilesand

smallmammals,relativetolocallevelinfluences.

(v) Developguidelinesforpromotingecologicallysensitiveurbandesignand

managementdecisionsandactions.

(vi) Proposehowbiodiversityconservationmaybeintegratedintolocal,regional,and

stateplanningandmanagementstrategies.

5

1.4. APPROACH

Theprojectappliesahierarchical,spatiallyexplicit,multiscaleapproachtotestasetof a priori predictivemodelsbasedonthehabitatrequirementsofmultiplespeciesinfragmented urbanlandscapes.ThefocalurbanlandscapewasBrisbane,SoutheastQueensland,Australia.

Acombinationoflivetrapping,directobservation,andtraceanalysismethodswereused duringfaunasurveystodetecttherangeoftargetreptileandsmallmammalspecies.Local levelhabitatcharacteristicswereassessedfromhabitatsurveysconductedateachsite.The importanceofhabitatstructureandcompositionforreptilesandsmallmammalswas investigatedusingclusteranalysisandmultidimensionalscalingordinationtechniques.High resolutionQuickbirdsatelliteimageryandArcGISwereusedtocalculatepatchandlandscape levelmetrics,andhierarchicalpartitioningandmodelaveragingenabledtherelative importanceoflocal,patch,andlandscapelevelelementstobedetermined.Asetofguidelines andadecisionsupporttreewerethenformulatedtofacilitatetheintegrationoftheproject’s findingsintolocal,regional,andstateplanningframeworksandmanagementstrategies.

1.5. STRUCTURE OF THESIS

WiththeexceptionofChapters1and7,thethesisispresentedasaseriesoflogicallyordered published,inpress,andinreviewjournalpaperswhichpresentthefindingsfromtheproject’s mainobjectives(Figure1.1).Chapter2providesareviewofthecontemporaryecological knowledgeregardingAustralianurbanwildlife.Thischapterdrawsonurbanecologyresearch

6 publishedbetween1990and2005,inordertodeterminegapsinthecurrentknowledgebase, andsoidentifyareasofresearchpriority.InChapter3,Iexaminethesuccessandcost efficiencyofthevariousmethodsusedduringfaunasurveys.Chapter4detailsthelocallevel attributesthatwerefoundtobemostimportantforreptilesandmammals,andChapter5 examinestheimportanceoflocallevelattributes,relativetopatchandlandscapelevel attributes.ThesefindingsarethenpresentedinChapter6asaseriesofguidelinesfor planningandmanagingurbanlandscapesforthebenefitofbiodiversity.InthischapterIalso proposehowtheseguidelinesmaybeintegratedintostate/regionalandlocalplanning frameworksandmanagementstrategies.Themajorfindingsandmanagementimplications fromtheprojectarethencollatedinChapter7,whereIalsooutlinetheproject’slimitations, andmakerecommendationsforfutureresearch.

7

CHAPTER 1 Project background, problem statement, aims and objectives

CHAPTER 2 CHAPTER 3 Literature Review Fauna survey methods

CHAPTER 4 CHAPTER 5 Key local-level attributes Key multi-level attributes

CHAPTER 6 Planning & management guidelines

CHAPTER 7 Major findings, limitations and recommendations

Figure 1.1.Schematicofthesisstructure,showinginterrelationsbetweenchapters.

8

(a) Yellow -footed antec hinus (Antechinusflavipes ) • Family:Dasyuridae • Carnivorous,nocturnalmarsupial. • Sizerange:HBL90160mm,TL65140mm,2075g. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia,WesternAustralia. • InBrisbane:absentfrominnercity;uncommonelsewhere, restrictedtosuitableremnantbushlandhabitat. Inthisphotoamaleantechinusisbeingreleasedfromobservationbag. (b) Subtropical antechinus (Antechinusstuartii ) • Family:Dasyuridae • Insectivorous,nocturnalmarsupial. • Sizerange:HBL93130mm,TL92120mm,1860g. • Distribution:Queensland,NewSouthWales. • InBrisbane:commonwherespecificsuitableremnant foresthabitatoccurs. Photofrom:http://www.abc.net.au/goulburnmurray/st ories/s1439616.htm PhotobyIanMcCann (c) Common dunnart (Sminthopsismurina ) • Family:Dasyuridae • Insectivorous,nocturnalmarsupial. • Sizerange:HBL65100mm,TL6890mm,1228g. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia. • InBrisbane:uncommon,restrictedtosuitableremnant bushlandhabitatinperiurbanlandscapes. Inthisphoto,theindividual’stailtiphasbeentemporarilymarkedwhite (d) Common planigale (Planigalemaculata ) • Family:Dasyuridae • Insectivorous,nocturnalmarsupial. • Sizerange:HBL7095mm,TL6090mm,612g. • Distribution:Queensland,NewSouthWales,Northern Territory,WesternAustralia. • InBrisbane:restrictedto,butreasonablycommonin, suitableremnantbushlandhabitat. Inthisphoto,therimofapitfallbucketisvisiblebehindtheplanigale. Plate 2. Dasyurids:(a)Yellowfootedantechinus;(b)Subtropicalantechinus;(c)Common dunnart;(d)Commonplanigale.

9

Chapter 2

REVIEW OF THE ECOLOGY OF AUSTRALIAN URBAN

FAUNA: A FOCUS ON SPATIALLY-EXPLICIT PROCESSES

Citation:GardenJ.,McAlpineC.,PetersonA.,JonesD.,PossinghamH.(2006)Reviewofthe

ecologyofAustralianurbanfauna:Afocusonspatiallyexplicitprocesses.AustralEcology,

31,126148.

2.1. ABSTRACT

CitieshaveamajorimpactonAustralianlandscapes,especiallyincoastalregions,tothe detrimentonnativebiodiversity.Areassuitableforurbandevelopmentoftencoincidewith thoseareasthatsupporthighlevelsofspeciesdiversityandendemism.However,thereisa paucityofreliableinformationavailabletoguideurbanconservationplanningand management,especiallyregardingthetradeoffbetweeninvestinginprotectingandrestoring habitatatthelandscapelevel,andinvestinginprogramstomaintaintheconditionofremnant vegetationatthelocal(site)level.WereviewtheliteratureonAustralianurbanecology, focusingonurbanterrestrialandaquaticvertebrateandinvertebratefauna.Weidentifyfour mainfactorslimitingourknowledgeofurbanfauna:1)alackofstudiesfocusingatmultiple ecologicallevels;2)alackofmultispeciesstudies;3)analmosttotalabsenceoflongterm

(temporal)studies;and,4)aneedforstrongerintegrationofresearchoutcomesintourban

10 conservationplanningandmanagement.Wepresentasetofkeyprinciplesforthe developmentofaspatiallyexplicit,longtermapproachtourbanfaunaresearch.Thisrequires anunderstandingoftheimportanceoflocallevelhabitatqualityandconditionrelativetothe composition,configuration,andconnectivityofhabitatswithinthelargerurbanlandscape.

Theseprincipleswillultimatelystrengthenurbanfaunamanagementandconservation planningbyenablingustoprioritiseandallocatelimitedfinancialresourcestomaximisethe conservationreturn.

Keywords: Australia,habitatcondition,ecologicallevel,governmentdecisionmaking, landscapestructure,urbanfauna.

‘Thefutureisnotjustwhatliesahead;itissomethingthatwecreate.’ (FormanandCollinge1997,p.129)

2.2. INTRODUCTION

Theprimarydriveroftheglobaldeclineofbiodiversityishabitatlossandfragmentation resultingfromanthropogenicpressuresonnaturalecosystems.Urbanisationisarguablythe mostdamaging,persistentandrapidlyexpandingformofanthropogenicpressure(Vitouseket al.1997;Lugo2002;McKinney2002;MillerandHobbs2002).Almosthalf(49.2%)the world’spopulationcurrentlyresidesinurbanareas(UnitedNations2006).Asthehuman populationcontinuestoincrease,sotoododemandsforresidential,industrial,commercial, andrecreationalspace.Consequently,theEarth’slandscapesarebecomingincreasingly

11 urbanised;by2010humanswillbeapredominantlyurbanspecies,with51.3%predictedtobe livinginurbanareas(UnitedNations2006).

Theprimaryimpactsofurbandevelopmentonbiodiversityareextensivehabitatlossand fragmentation,whichsignificantlyaltersthestructureofurbanlandscapes,andthe compositionandstructureofecosystemsembeddedintheselandscapes(Forman1995;Baskin

1998;Wilcoveetal.1998;MarzluffandEwing2001;Faulkner2004).Consequently,urban landscapesaredominatedbythebuiltenvironmentcomposedofbuildings,bridges,roads,and pavedareas,interspersedwith‘green’habitatpatchesrangingfromcultivatedparksand gardenstoremnantbushland,allofwhichvaryinsize,shape,andcondition(Burgmanand

Lindenmayeretal.1998;Angoldetal.2001).Thecumulativeimpactsofurbandevelopment onfaunaspeciesarenotrestrictedtourbanareas,butmayextendvaryingdistancesinto neighbouringlandscapesandaffectspeciesandecologicalprocessesinadjacentecosystems

(Quarlesetal.1974;Rees1997;Bisonnette2002;YeomanandMacNally2005). Asthis urbanfootprintcontinuestoexpandandintensify,remnantvegetationpatchesandtheir dependentbiotaaresubjecttofurtherhabitatloss,fragmentation,anddegradation(Fahrig

1997,2001).Suchintenseandwidespreadmodificationofnaturallandscapesandecosystems producesanenvironmentsodifferentfromitsnaturalstatethatevenifanthropogenic activitieswereremoved,completerecoverywouldbeunlikely(Lugo2002).

Despitethesignificantdestructionanddegradationofhabitats,urbanareashavethecapacity tosupportawidediversityofvertebrateandinvertebratefaunaspecies,perhapsduetothe rangeofdiversenaturalandartificialhabitatnichesandconditionsthatoccurinurbanareas

(Niemelä1999a,1999b;Collinsetal.2000).Kühnetal.(2004),however,arguesthathigh

12 speciesdiversityinurbanareasoccursnotbecauseofbutinspiteofurbanisation,withurban developmentoftencoincidingwithareasofnaturallyhighspeciesdiversityandendemism, suchascoastalandtropicalregions.Thisdiversityoffaunaspeciesexhibitsvaryingresponses tourbanisation.Themagnitudeanddirectionofurbanimpactsoneachspeciesdependson thatspecieslifehistoryattributes,sensitivitiestoenvironmentaldisturbances,interspecies interactions,anddispersalability(DickmanandDoncaster1989;Coxetal.2003;Tischendorf etal.2003).Thisdiversityofresponseshaspreviouslybeenusedtocategorisespeciesbased onsimilaritiesintheirresponsesto,andabilitiestopersistwithin,theurbanenvironment(e.g.,

Baskin1998;McKinney2002;Catterall2004).Forthepurposesofthispaper,speciesare discussedaseither:‘matrixoccupying’,‘matrixsensitive’,or‘urbansensitive’.Matrix occupyingspeciesarethosethatcommonlydominatetheurbanmatrixduetotheirabilityto movethroughandlivewithinthebuiltmatrix.Conversely,matrixsensitivespeciesperceive thebuiltmatrixas:unsuitablehabitatwithalackoffoodandshelterresources,abarrierto movement,andanareaofincreasedriskofpredation.Consequently,matrixsensitivespecies areoftenrestrictedtovegetationpatchesofsuitablehabitat,resultinginfragmentationof populationsandincreasingtheriskoflocalisedextinctions.Speciesclassedasurbansensitive areunabletopersistinurbanlandscapes,eveninremnantpatchesofnativevegetation.

Characteristicssharedbythesespeciesincludelimiteddispersalabilities,andnarrowor specialiseddietaryrequirements

Priortothe1990s,urbanareaswerelargelyoverlookedorignoredinecologicalstudiesas theywereconsideredtobenonviablehabitatforfaunapopulationsandthereforeofnousefor conservationefforts(BotkinandBeveridge1997;McDonnelletal.1997;Savardetal.2000).

Asaresult,theimpactsofurbanisationonfaunapopulationsarenotwellunderstood,often

13 resultinginpoorlytargetedconservationactions(Niemelä1999a;Recher2002).Theresults ofstudiesconductedinnonurbanenvironments(e.g.,forest,agricultural)arenotnecessarily transferabletourbanareasbecauseoftheincreasedrateandcomplexityofenvironmental changes,coupledwithadditionalurbanbasedpressuressuchasincreaseddensitiesof transportnetworksandassociatedusage,domesticdogandcatpredation,andsignificantly alteredabioticfactors(e.g.,water,noise,air,andsoilpollution).Thereforemanagement actionsbasedonknowledgeaccruedfromnonurbanresearchmaybeinappropriatewithinthe urbanenvironment.Thislackofappropriateecologicalknowledgehindersthelongterm successofexistingandproposedurbanconservationactions.Thisisofparticularconcernfor tropicalandcoastalregionsthatcommonlysupporthighlevelsofbiodiversity,yetwherethe rateofurbandevelopmentisalsohigherthaninanyotherregion(Barrow1991;Kühnetal.

2004).

SuchissuesareparticularlyevidentinAustralia,wherethecapitalcitiesandmostmajorurban developmentsarelocatedalongthenation’sseaboard,especiallytheeasternseaboard

(CommonwealthofAustralia2003a).Australia’shumanpopulationisalreadypredominantly urban,withmorethan90%residinginurbanareas(UnitedNations2006).Thefractionof peoplelivingincitiescontinuestoincrease,withthehighestrateofrecenturbandevelopment occurringalongtheeasterntropicalandsubtropicalcoast,whichalsosupportshighspecies diversityandendemism(QueenslandMuseum1995;CommonwealthofAustralia2003b).

TheplightofbiodiversityinAustralia’surbanlandscapeshasbeenrecognisedbyAdams

(1994),Jones(2003),andLunneyandBurgin(2004).Tominimisethisloss,urbanecological researchers,bothinternationallyandinAustralia,needtounderstandandpredictspecies

14 habitatrelationshipsatmultipleecologicallevels,anddeterminetherelativeimportanceofthe amountofhabitat,itsspatialconfiguration,anditsconditiononspeciessurvival.This knowledgeisaprerequisiteforurbanplannersandconservationmanagerstoeffectively conserveandrestoreurbanbiodiversity.

ThispaperprovidesaconstructivereviewofthescientificliteratureofAustralianbasedurban ecologicalresearchinordertohighlightthestrengthsandlimitationsofexistingresearch knowledge.Wefocusonterrestrialvertebrateandinvertebratefauna,withanemphasison spatialprocessesandlongtermtrends.Somestudiesonaquaticfaunaarealsoincluded.Our primarytargetaudienceisurbanecologists,butwealsohighlighttheneedforresearchtomeet theinformationneedsoflocalgovernmentandregionalplanningauthoritiesresponsiblefor urbanbiodiversityconservationandwhomalsofundsomeecologicalresearch.Thepaperis dividedintothreesections.First,weoutlinecriteriausedtoselectthepapersreviewed,witha focusonrecentAustralianurbanfaunastudies.Next,existingresearchstrengthsandgapsare identified.Third,wedevelopasetofkeyprinciplestoaddressthesegapsandguidethe developmentofaspatiallyexplicit,longtermapproachtothestudyofAustralia’surban fauna,andtherebyimprovetheconservationofAustralia’surbanfauna.

2.3. REVIEW CRITERIA

Theresearchpapersreviewed(Table2.1)wereselectedbasedonthefollowingcriteria:

15

1. Focusonfauna(vertebrateandinvertebrate)habitatrelationshipswithinAustralianurban areas :

Forthepurposesofthisreview,urbanareasaredefinedas‘areasofintensehumaninfluence, dominatedbythebuiltenvironmentandsupportingapopulationclusterofmorethan1000 people’.ThisdefinitionisbasedonpreviousdefinitionsbyFormanandGodron(1986),

Pickettetal.(2001),andtheAustralianBureauofStatistics(CommonwealthofAustralia

2003a).Paperswereselectediftheyaddressedfauna(vertebrateandinvertebrate,terrestrial andaquatic)habitatrelationshipswithinAustralianurbanareas.Weacknowledgethe relevanceofotherstudiesofurbanecologyissuessuchas:nativeandexoticpestspecies management(e.g.,MarksandBloomfield1999;Matthewsetal.2004;Moriarty2004;Ross

2004),humanfaunainteractionsandconflicts(e.g.,JonesandEverding1991;Milleretal.

1999;ShineandKoenig2001;WarneandJones2003),changesinspeciesbehaviour,diet,and fecundity(e.g.,SmithandCarlile1993;StathamandStatham1997;Websteretal.1999;Fearn etal.2001;ParryJonesandAugee2001;RollinsonandJones2002;HoyeandSpence2004;

MarkusandHall2004;Temby2004;EverdingandJones2006),wildlifemortalitiesdueto vehiclecollisionsandpredation(e.g.,Barratt1997;Koenigetal.2002;Diqueetal.2003;

TaylorandGoldingay2004),urbanisationimpactsonfloraspecies(e.g.,Rose1997;Buistet al.2000;Leishmanetal.2004;Stenhouse2004),andabioticinfluencessuchasair,light,and waterpollutiononurbanfloraandfaunapopulations(e.g.,McDonnelletal.1993;Rileyand

Banks1996;Angold1997;Spooneretal.2003).

2.Publishedbetween19902005:

Thesurgeofurbanbasedfaunaecologystudiesoverthelast1015yearsinfluencedthe decisiontoreviewonlythosearticlespublishedbetween1990and2005.Weacknowledge

16 thatseveralurbanfaunahabitatstudieswereconductedinAustraliapriorto1990,withthe majorityofthesefocussingonaviancommunities,particularlymatrixoccupyingassemblages

(e.g.,Jones1981;Ford1983;Jones1983;Green1984;Mason1985;Catteralletal.1989;

Munyenyembeetal.1989).However,theirexclusionisnotexpectedtosignificantlyimpact onthereviewcontentasmany‘modernday’studiesdrawandexpandonthefindingsof earlierstudies.

3.Keywordsearchesandaccessibility:

Weselectedpublicationsinrefereedjournals,books,andconferenceproceedingsthatwere accessibleviaonlinedatabasesandlibrarysearches.Onlinedatabasesweresearchedusinga combinationofthefollowingkeywords:urban,suburban,city,town,wildlife,fauna,/s, mammal,bird,avian,reptile,amphibian,herpetofauna,aquatic,invertebrate,insect,coast/al, fragmentation,ecology,habitat,site,patch,landscape/s,scale,level,environment,mosaic, development,Australia.Anexaminationofcitationswithinselectedpaperswasusedto identifyfurtherreferences.Wherepossible,ifarelevantpaperwasnotavailableviaonline databasesorlibrarysearches,authorswerecontactedandacopyofthepaperrequested.

17

Table 2.1. Summaryof63Australianurbanecologystudiesconductedbetween1990and2005.Studiesaregroupedaccordingto:birds,mammals, herpetofauna(reptilesandamphibians),invertebrates,andaquatic.EcologicallevelsareassignedaccordingtodefinitionsprovidedinTable2.2. Studiesthatwerenotspatiallyexplicitareclassifiedas:PVA(PopulationViabilityAnalysis),longterm(fieldstudyrepeatedover>10years), historical(comparisonofhistoricalrecordstopresentspeciesdistributionpatterns),orreview(ofcurrentknowledgebase).†Indicatesstudiesof multipletaxathatarerepeatedineachrelevantsectionofthistable,withkeyfindingsdiscussedrelativetoeachspecifictaxon. Ecological Species Location Key Findings and Habitat Features Reference Level/s BIRDS

- Habitatlosscoupledwithfirefrequency. Brookerand Splendidfairywren (near)Perth, PVA - Habitatfragmentation. Brooker Maluruss.splendens WA - Secondarypressuressuchasnestpredation. (1994) Powerfulowl Melbourne, Cookeetal. Site - Requiresstructurallydiversevegetation. Ninoxstrenua VIC (2002) - Habitatloss–preferscleared,wellwateredareassuchasurbanlawns AustralianMagpie Perth, WoodandRecher Longterm andopenparks. Gymnorhinatibicen WA (2004) - Distributionalchangesovertime. RainbowLorikeets - Habitattype(streetscapespreferred). Trichoglossushaematodus Melbourne, Fitzsimonsetal. Site - Vegetationcomposition(nativespeciespreferred). MuskLorikeets VIC (2003) - Vegetationage(wellestablishedstreetscapespreferred). Glossopsittaconcinna Williewagtail Rhipiduraleucophrys - Vegetationdensity. Majoretal. Site Various Piedcurrawong - Interspeciesinteractions(predation). (1996) Streperagraculina - Habitatlossandfragmentation–extensivebushlandareasmustbe Multiple Kavanagh Review Sydney,NSW conserved. owlspecies (2004) - Preyspecieshabitatareamustalsobeconserved.

18

Multiple Frenchetal. Site Sydney,NSW - Vegetationcomposition(nativeplantsmoreimportantthanexotics). nectarivorousspecies (2005) Site Southeast - Overallrelativeimportance:spatial,thenhabitatcharacteristics. Bentleyand Multiplespecies Patch, QLD - Specificallyspecialistspecies:connectivityandpatchshape. Catterall Landscape (3100km 2) - Specificallymigrantsandgeneralistspecies:sitecharacteristics. (1997) - Patchsize,vegetationabundanceandcomposition,spatialconfiguration Patch, Brisbane, Catterall Multiplespecies ofhabitats. Landscape QLD (2004) - Interspeciesinteractions. Patch, Brisbane, - Vegetationstructure. Catteralletal. Multiplespecies Landscape QLD - Habitatlossandalteration. (1998)

- Patcharea. Site, Brisbane, GroverandSlater Multiplespecies - Habitatheterogeneity. Patch QLD (1994) - Vegetationstructureanddensity(particularlyunderstoreydensity). - Nochangesinoverallspeciesrichness. - Significantchangesinspeciescomposition. Townsville, JonesandWieneke Multiplespecies Longterm - Changesinspeciesdistributionsattributedtochangesinvegetation QLD (2000) structureandcompositionovertime(speciesspecificpreferences)and associatedinterspeciesinteractions. Parsonsetal. Multiplespecies Patch Sydney,NSW - Habitatheterogeneity. (2003) - Vegetationcomposition. ParsonsandMajor Multiplespecies Site Sydney,NSW - Interspeciesinteractions. (2004)

- Habitatcomplexityandvegetationstructure–nativeplants,notexotics. Site, Perth, - Patchisolationandhabitatfragmentation. Recher Multiplespecies Patch, WA - Urbanmatrixandresourceavailabilitywithinsuburbs. (2004) Landscape - Firemanagement,vehicularmortalityandpredation

19

- Vegetationstructure–maintaincomplexunderstorey. Recherand Perth, Multiplespecies Patch - Groundcover. Serventy WA - Resourceavailabilityfromresidentialgardens. (1991) - Vegetationstructure–retainoldgrowthcanopytrees. Brisbane, Sewelland Multiplespecies Patch - Vegetationcomposition–remnantvegetationmoreimportantthan QLD Catterall(1998) revegetatedpatches. GoodeBeach, - Vegetationcompositionandstructure. Smith Multiplespecies Site WA - Interspeciesinteractions. (2002) Melbourne, - Vegetationcompositionandstructure. Whiteetal. Multiplespecies Site VIC - Habitatcondition(developmentdisturbance). (2005) - Wetlandpollution. - Habitatheterogeneity–especiallymaintainwetlands. Site, Wollongong, Wood Multiplespecies - Vegetationstructureandheterogeneity. Landscape NSW (1993) - Habitatconnectivityandbuffers. - Disturbancesfromhumanrecreationalactivitiesandpets. Site, Melbourne Yeomanand - Patchsize. Multiplespecies Patch, andGeelong, MacNally - Densityofurbandevelopment. Landscape VIC (2005) - Small,isolatedpatches(1ha)importantforurbanbirds–including migratoryspecies. Site, Perth, Cooper Multiplespecies † - Vegetationcomposition(nativeremnantsvegetationbetterthanexotic Patch WA (1995) plantings). - Speciesspecificresponses. - Patcharea(andedgeeffects):~4hathresholdforgeneralist/urban Patch, Drinnan Multiplespecies † Sydney,NSW tolerantspeciesand~50haforfragmentationsensitivespecies. Landscape (2005) - Functionalconnectivitybetweenhabitatpatches. - CompositionalchangessinceEuropeansettlement. Perth, HowandDell Multiplespecies † Historical - Combinationofhabitatlossandfragmentation,alteredfireregimes, WA (1993) introducedexoticspecies,wetlandmodification.

20

- Speciescompositionvariessignificantlyovertime. - Habitatlossandfragmentation. - Vegetationcompositionandstructure. Taitetal. Multiplespecies † Historical Adelaide,SA - Edgeeffects. (2005) - Interspeciesinteractions. - Speciesspecificresponses. MAMMALS Longnosedbandicoot - Urbanisationthreatstoadultmortalitymoreimmediatelyimportantthan Banks PVA Sydney,NSW Peramelesnasuta managinghabitatavailability(althougheffectsareadditive). (2004) Longnosedbandicoot NorthHead, Chambersand Site - Vegetationstructuralcomplexityandhabitatheterogeneity. Peramelesnasuta NSW Dickman(2002)

Longnosedbandicoot - Vegetationstructuralcomplexityandhabitatheterogeneity. Scottetal. Site Sydney,NSW Peramelesnasuta - Mortalitiesduetovehiclecollisionsandpredationbyexoticspecies. (1999)

Easternbarredbandicoot Hamilton, - Vegetationstructuralcomplexityandhabitatheterogeneity. Dufty Site Peremelesgunnii VIC - Utilisebothnaturalandartificialmaterialsforshelter. (1994) Site, - Functionalconnectivitybetweenhabitatpatches. Northernbrownbandicoot Brisbane, FitzGibbonetal. Patch, - Patcharea. Isoodonmacrourus QLD (submitted) Landscape - Habitatquality(especiallygroundcoverdensity). - Habitatlossandfragmentation. Koala KoalaCoast, Diqueetal. Landscape - Habitatconnectivityessential,especiallybetweenlargepatches. Phascolarctoscinereus QLD (2004) - Connectivitybetweenurbanremnantsandexurbanremnantbushland. - Habitatlossandhabitatquality. Koala Patch, NoosaShire, McAlpineetal. - Patcharea. Phascolarctoscinereus Landscape QLD (2005) - Densityofsealedroads. Site, Koala QLDand - Combinationofenvironmentalvariablesacrossthreespatiallevels. McAlpineetal. Patch, Phascolarctoscinereus NSW - Presenceandabundanceoffoodtreesmostimportantoverall. (2006a) Landscape

21

- Remnanthabitatspatialconfigurationandconnectivity. Port Koala - Roaddensity. Rhodesetal. Landscape Stephens, Phascolarctoscinereus - Firefrequencyandintensity. (2006) NSW - Relativeimportanceofthesefactorsvariesspatially. Koala Patch, Noosa, Seabrooketal. - Habitatlossandfragmentation. Phascolarctoscinereus Landscape QLD (2003) - Habitatloss. Site, Warringah - Patchconnectivity. Koala SmithandSmith Patch, Shire, - Habitatquality,especiallyfoodtreedensity. Phascolarctoscinereus (1990) Landscape NSW - Managementofmortalitiesduetopetpredationandvehiclecollisions. - Mitigationofdispersalbarrierssuchasfencesandwalls. - Habitatlossandconnectivity. Koala Site, WardandClose Sydney,NSW - Vegetationcompositionandsubstrate. Phascolarctoscinereus Landscape (2004) - Fireregimes,vehicleanddogmortalitiesand,weedinvasions. - Utilisebothnaturalwaterwaysanddrainagechannels. Platypus Melbourne, - Burrowlocationinfluencedbyphysicalattributesofbanks(concave Serenaetal. Site Ornithorhynchusanatinus VIC profilepreferredoverconvexprofiles)andassociatedriparianvegetation (1998) densityandstructure. Rhodesand Whitestripedfreetailbat Brisbane, - Hollowbearingtreecharacteristics(e.g.,height,diameter,senescence). Site WardellJohnson Tadaridaaustralis QLD - Surroundinglocalvegetation(i.e.treedensityandundergrowth). (2006) - Habitatloss. - Patchisolationandarea. Goldingayand Squirrelglider Brisbane, PVA - Functionalconnectivitybetweensuitablepatches. Sharpe Petaurusnorfolcensis QLD - Habitatquality(bothpatchesandconnectingvegetationcorridors). (2004) - Roaddensity. Site, - Vegetationcompositionandstructure. Squirrelglider Brisbane, Rowstonetal. Patch, - Remnanthabitatareaandaltitude. Petaurusnorfolcensis QLD (2002) Landscape - Habitatisolationandconnectivity.

22

Wyongand - Vegetationstructure,compositionandage. Various Lake SmithandMurray Site - Firefrequencyandinterspeciesinteractions. (glidersandpossums) Macquarie, (2003) - Speciesspecificresponses. NSW - Speciesspecificresponses. Melbourne, - Habitatlossandfragmentation. vanderRee Multiplespecies Historical VIC - Patchconnectivityandhabitatquality. (2004) - Predationbyintroducedspecies. - Habitatlossandfragmentation. - Vegetationstructure. Taitetal. Multiplespecies † Historical Adelaide,SA - Interspeciesinteractions. (2005) - Speciesresponsesvary. - Speciescompositionvariessignificantlyovertime.

Perth, - Combinationofhabitatlossandfragmentation,alteredfireregimes, HowandDell Multiplespecies † Historical WA introducedexoticspecies,wetlandmodification. (1993)

Patch, Perth, HowandDell Multiplespecies † - Habitatfragmentation. Landscape WA (2000)

Site, Perth, - Nonativemammalsfoundinstudypatch(1ha)althoughrepresentatives Cooper Multiplespecies † Patch WA fromothergroupswere. (1995)

HERPETOFAUNA Northeast - Riparianvegetationclearinganthropogenicdevelopments. Estuarinecrocodile KofronandSmith Site coastline, - Secondaryimpacts:motorboatdisturbance,commercialnettingand Crocodylusporosus (2001) QLD individualremovals.

Multiple Site, Cumberland Andersonand - Edgeeffectsinfluencespeciesdistributionswithinpatch. skinkspecies Patch Plain,NSW Burgin(2002)

23

Site, - Vegetationstructureandcomposition(nativeplantsbetterthanexotics). Multiple Hobart, Jellineketal. Patch, - Patchgeologyandaspect. lizardspecies TAS (2004) Landscape - 1speciesinfluencedbypatchsize;nonebyhabitatfragmentation. - Combinationof:habitatlossandfragmentation,locallevelhabitat Multiple Perth, HowandDell Historical degradation,alteredfireregimes,andwetlandmodification. reptilespecies † WA (2000) - Speciesspecificresponses. - Combinationoflargeandsmallremnantsimportant. Multiple Perth, HowandDell Patch - Largeremnantsespeciallyimportantforurbansnakes. reptilespecies WA (1994) - Speciesspecificresponses. - Patchareaimportantforallreptilesexceptskinks. - Smallremnants(assmallas1ha)importantforreptiles–althoughneed Multiple Patch, Perth, HowandDell tomanageforfireandpredatorexclusion. reptilespecies † Landscape WA (1993) - Annualvariationinlizardassemblages. - Speciesspecificresponses.

- Patcharea:thresholdsat~4haforgeneralist/urbantolerantspeciesand Multiple Patch, ~50haforintolerantspecies. Drinnan Sydney,NSW amphibianspecies † Landscape - Edgeeffects. (2005) - Functionalconnectivitybetweenhabitatpatches. - Small,isolatedpatches(1ha)–nolargereptilesalthoughhistorically Multipleherpetofauna Site, Perth, Cooper presentinthearea;butimportantforsmallreptilesandamphibians. species † Patch WA (1995) - Remnanthabitat.

- Reptilespeciescomposition(notrichness)variessignificantlyovertime. Multipleherpetofauna - Substratetypeandvegetationstructure. Taitetal. Historical Adelaide,SA species † - NonativeamphibianlossessinceEuropeansettlement. (2005) - Speciesspecificresponses.

24

- Decreaseinspeciesrichnessforbothreptilesandamphibians. - Largereptiles(e.g.,goannas)locallyextinctinurbanremnantpatches. - Amphibiansinfluencedbydegradationofwaterquality. Multiple WhiteandBurgin Historical Sydney,NSW - Arborealamphibiansmorenegativelyimpactedthanterrestrials. herpetofaunaspecies (2004) - Speciesspecificresponses. - Secondaryimpactssuchaspredation,alteredfireregimesandhuman interventioninfluencebothreptileandamphibianspecies. INVETEBRATES - Fewerburrowsonurbanbeachesthannonurbanbeaches. Ghostcrab Barros Site Sydney,NSW - Humanactivityanddunemodificationaffectsspeciesdistribution–not Ocypodecordimana (2001) yetclearlyunderstood.

- Vegetationcompositionandstructure. WesternJewelbutterfly Perth, Doverand Site - Habitatcondition–preferdegraded,postfirehabitats. Hypochrysopshalyaetus WA Rowlingson(2005) - Interspeciesinteractions(mutualantpartner). Africanrhinocerosbeetle KrellandHangay Site Sydney,NSW - Exoticvegetationhassupportedsuccessfulinvasionandestablishment. Temnorhynchusretusus (1998)

Multiple Perth, - Treeage. BhullarandMajer Site arthropodspecies WA - Treespecies(nativebetterthanexotics). (2000) - Habitatfragmentation. Site, - Patchsize. Multiple GibbandHochuli Patch, Sydney,NSW - Habitatconditionandalteredfireregimes. arthropodspecies (2002) Landscape - Proximitytourbanmatrix. - Speciesspecificresponses. Burwelland Multiple Brisbane, - Habitatheterogeneity. Site Grimbacher antspecies QLD - Interspeciesinteractions. (2005)

25

- Smallremnantvegetationpatchesasimportantaslargeones. Multiple Clark Review Sydney,NSW - Vegetationtype,habitatlossandfragmentationandhabitatcondition. snailspecies (2004) - Speciesspecificresponses. Multiple EmeryandEmery Site Sydney,NSW - Vegetationdiversity. insectspecies (2004) Multiple - Patchsize. Hochulietal. Patch Sydney,NSW insectspecies - Interspeciesinteractions. (2004)

Multiple - Vegetationcomposition(especiallyexoticweeds). NewandSands Review Various butterflyspecies - Inappropriatefireregimes. (2002) AQUATIC - Anthropogenicactivitiessignificantlyalterfishhabitats. Multiple Site, BotanyBay, Gibbs - Abletousesignificantlymodifiedurbanestuarinehabitatsinthe estuarinefishspecies Landscape NSW (2004) absenceofdispersalbarriers(connectivity).

Multiple Melbourne, NewallandWalsh Landscape - Waterquality(electricalconductivity)anddrainageconnections. epilithicdiatoms VIC (2005)

Multiple Melbourne, - Urbandensityandstormwaterdrainageconnections. Walshetal. Landscape amphipodspecies VIC - Sealedroadsandassociatedrunoffalsothreatenspeciessurvival. (2004)

Multiple YermanandRoss Landscape Sydney,NSW - Adjacenthabitattypeandlanduse. macrofaunaspecies (2004)

26

2.4. REVIEW OF AUSTRALIAN URBAN FAUNA RESEARCH

Thereviewwasstratifiedbasedonfivebroadfaunagroupings:birds,mammals,herpetofauna

(reptilesandamphibians),invertebrates,andaquatics.Withtheexceptionoftheaquatic group,allstudiesdiscusseitherterrestrialorarborealspecies,includingspeciesthatutilise bothaquaticandterrestrialsystems(e.g.,platypus,crocodiles,frogsandcrabs).Aquatic studiesincludebothfreshwaterandoceanicspecies,andmicroscopicorganisms.Table2.1 segregatesstudiesbasedonthesefaunagroupings,andindicatestheecologicallevel/sat whichstudieswereconducted,aswellasthelocationandkeyfindingsofeachstudy.Weuse theterm‘level’torefertolevelsofecologicalorganisation,asopposedtotheterm‘scale’, whichreferstospatialresolutionandextentoftheanalysis( sensu Turneretal.2001).Three levelsareidentified:siteor insitu (<1ha),patch(1100sha)andlandscape(100s1000sha).

ExamplesofenvironmentalcharacteristicsoperatingateachlevelareprovidedinTable2.2.

2.4.1. Birds

Birdsarebyfarthemostobviousandreadilyidentifiablefaunaelementofurbanhabitatsand, assuch,havereceivedmoreresearchattentionthanotheranimalgroups(35%ofallpapers,

Figure2.1a).Australianurbanbirdassemblagesaregenerallyspeciesrich,yetindividual localcommunitiesmaybecharacterisedbyeitherlowspeciesrichnesswithhighabundance or,highspeciesrichnesswithlowabundanceofindividualspecies(Wood1993).The increaseinabundanceofsomebirdspeciesisattributedtotheirabilitytoutiliseplentifuland novelresources(e.g.,foodandnestinglocations)andhabitatsthatoccurinhumanmodified environments(JonesandWieneke2000;Catterall2004).Suchspeciesusuallycomprise

27 matrixoccupyingassemblages,whichdominatethebuilturbanmatrixandarecomprisedof bothintroducedspeciesandnativespecies(JonesandWieneke2000;Catterall2004;Taitet al.2005).Thesematrixoccupyingassemblagesaredominatedbybehaviourallyaggressive, mediumbodiedandlargebodiedspeciessuchas,Australianmagpies( Gymnorhinatibicen), butcherbirds( Cracticusspp .),currawongs( Streperaspp .)noisyminers( Manorina melanocephala ),andlorikeets( Trichoglossusspp .)(JonesandWieneke2000;Fitzsimonset al.2003;Jones2003;WoodandRecher2004;Catterall2004).Thispatternofdomination differsfromthegeneraltrendobservedincitiesoftheNorthernhemispherewhereexoticand smallbodiednativestendtodominatetheurbanmatrix( sensu JonesandWieneke2000).

Muchoftherecentecologicalresearchconductedonmatrixoccupyingspecieshas investigateddietandbehaviouraladaptationstotheurbanenvironment,aswellashuman avianconflictmanagementissues(JonesandEverding1991;SmithandCarlile1993;Majoret al.1996;FultonandFord2001;HasebeandFranklin2003;Ross2004).

Someresearchhasalsoinvestigatedtheinfluenceofhabitatonthedistributionandabundance ofAustralianavianmatrixoccupiers,showingthatdespitetheirdominancewithinthebuilt environment,avianmatrixoccupiersarerarelyubiquitousacrosstheurbanmatrix,with distributionsbeinginfluencedby insitu habitatfactorssuchasvegetationcompositionand structure.Lorikeets,forexample,appeartopreferwellestablishedstreetscapesplantedwith floweringnativetreespecies(Fitzsimonsetal.2003),whileAustralianmagpiesthrivein highlydisturbed,vegetatedareaswithlittlecanopycoversuchaswellwateredresidential lawns,managedparksandsportingovals(WoodandRecher2004).Noisyminers,incontrast, tendtodominatemoderatelydisturbed‘edge’habitatswithneitherdensenorpredominantly clearedvegetationcover(e.g.,Catterall2004;Taitetal.2005).

28

Table 2.2. Examplesofhabitatcharacteristicsoperatingatthreeecologicallevels. Ecological Level Environmental Characteristics • Vegetationcompositionandstructure Site/Local • Groundcovertypeandproportion • (<1ha) Soilcompaction • Nutrientlevels

• Sizeandshape Patch • Perimeter:arearatio(edgeeffects) • (1100sha) Distancetolandscapefeatures(e.g.,patch,river,road) • Timesinceisolation

• Totalhabitatarea(habitatloss) Landscape • Numberofhabitatpatches(habitatfragmentation) • (>100ha) Degreeofconnectivitybetweenpatches • Densityoflandusetypes(e.g.,roads,residentialareas,parks)

Insitu habitatfactorshavealsobeenshowntobeimportantfordeterminingthepresenceand

distributionofmatrixsensitivespecies,whichinAustraliaareoftensmallbodied,

insectivorousandnectarivorousbirdspecies(Whiteetal.2005).Moststudiesthathave

investigated insitu habitatrelationshipsagreethatconserving,andpotentiallyincreasing,

urbanavianrichnessinhabitatpatchesisprimarilydependentoncreatingandmaintaining

structurallycomplexandfloristicallydiversehabitats,withnativeplantspeciesbeing

recommendedoverexoticspecies(e.g.,RecherandServenty1991;Cookeetal.2002;Parsons

etal.2003;Frenchetal.2005;Whiteetal.2005).SewellandCatterall(1998)further

recommendedthattheretentionofremnantvegetationhabitats(moresothanrevegetationof

29 nativespecies)wascentraltothesuccessfulrecoveryandmaintenanceofinsectivorousbird speciesinurbanareas.

(a) 40 35 30 25 20 15 10 5 Proportion of Papers (%) 0 B M H I Aq Fauna Group

(b) 50 45 40 35 30 25 20 15 10

Proportion of Papers (%) 5 0 1 level 2 levels 3 levels Aspatial Ecological Level

Figure 2.1. Proportionoffaunagroupsandecologicallevelsexaminedacross63urbanfauna studies(seeTable2.1).(a)Relativeproportionoffaunagroups:B=birds;M=mammals; H=herpetofauna;I=invertebrates;Aq=aquatic.Herpetofaunacolumnshowstherelative numberofstudiesthatexamined:reptiles(whitearea),amphibians(blackarea),andboth reptilesandamphibians(dashedarea).(b)Relativeproportionofecologicallevels(seeTable 2.2):onelevel,twolevels,threelevelsor,aspatial(noexplicitlevelexamined).Thesingle levelcolumnshowstherelativenumberofstudiesthatexamined:sitelevel(whitearea),patch level(blackarea)andlandscapelevel(dashedarea).AspatialincludesPVA,longterm, historicalandreviewstudiesasindicatedinTable2.1.

30

Bothpatchandlandscapelevelvariableshavealsobeenfoundtoinfluencethepresenceof birdswithinurbanlandscapes.Kavanagh(2004)recommendedthattheconservationof variousurbanowlspeciesnecessitatestheretentionandprotectionoflargeareasofcontiguous bushland.Similarly,YeomanandMacNally(2005)concludedthatpatchsize,ratherthan vegetationstructure,influencedtheavifaunaofcoastalmoonah( Melaleucalanceolata ) woodlandsintheMelbourneandGeelongregionsofVictoria,althoughthedensityofurban developmentalsoappearedtoaffectbirdspeciesrichness.Similarly,otherstudieshave reportedtheinfluenceofvariouscombinationsofmultilevelhabitatfactorssuchas,patchsize andarea,spatialconfiguration,connectivityandisolationofpatches,patchcontextandhabitat heterogeneityandalso,insitu vegetationstructureandcomposition(e.g.,Wood1993;Cooper

1995;Catterall2004;Recher2004;Drinnan2005).Therelativeinfluenceofthesefactors, however,appearstovarybetweenspecies.BentleyandCatterall(1997),forinstance,found thatbothspatialandhabitatcharacteristicsinfluencedavianassemblagesoverall,although spatialcharacteristicssuchasfragmentation,isolation,andthematrixwereespecially importantforhabitatspecialistspecies,whereas,migrantandhabitatgeneralistspecieswere influencedmorebysitecharacteristicssuchasthestructuralcomplexityofvegetation(see also:Wood1993;Cooper1995;Catterall2004;Drinnan2005;Taitetal.2005).

Theinfluenceofinterspeciesinteractions,associatedwithenvironmentalvariables,isalsoa contributingfactortospeciesdistributionandabundanceacrossurbanareas.Forexample,

Majoretal.(1996)foundthatpiedcurrawong( Strepera graculina )populationsincreased significantlyasvegetationdensitydecreased,whichinturnincreasedtheirabilitytopredate thenestsofwilliewagtails( Rhipiduraleucophrys ),reducingthelongtermlocalviabilityof

31 williewagtailpopulationsinurbanareas.Smith(2002)suggestedthatinGoodeBeach,

WesternAustralia,redwattlebirds( Anthochaeracarunculata )becamethedominantlarge honeyeaterspeciesinareaswherevegetationstructureandcompositionwassuitablefortheir nestingrequirements.Thisdominationcoupledwiththeirinherentaggressivebehaviour contributedtothedisappearanceofsmallerbodiedbirdspeciesfromthesameareas.Catterall

(2004)reportedinvasionsofflocksofbehaviourallyaggressivenoisyminersadjacentto moderatelydisturbedforestedgesexcludedsmallerbodiedbirdsfromtheseareas,despitethe presenceofsuitablehabitatsforsuchspecies(seealso:Low2002;ParsonsandMajor2004).

Thecumulativeeffectofspeciesspecificresponsestootherspeciesandenvironmental variablesresultsinurbanavifaunaassemblagesthatdiffersignificantlyfromnonurbanand preurbanassemblages.Whatismore,asurbanareasareinacontinualstateofflux(habitat destruction,degradation,andrestoration),sotooaretheassociatedavianassemblages.Asthe timesincedevelopmentincreases,avianassemblagestendtobecomemoredistinctfrompre urbanandnonurbanassemblages,yetmoresimilartothoseinotherurbanenvironments

(JonesandWieneke2000;ChaceandWalsh2006).Studiesofsuchlongtermchangesin

Australianurbanavifaunaassemblagesarelesscommonintheliterature,withnotable exceptionsoccurringinPerth(e.g.,RecherandServenty1991;Smith2002;Recher2004;

WoodandRecher2004),Adelaide(Taitetal.2005),andTownsville(JonesandWieneke

2000).Giventherestrictednumberofstudieswithalongtermfocus,coupledwiththe inherentdifferencesbetweensitesintermsofbiophysicalandclimaticinfluences,itisunclear whetherobservedtrendsareconsistentacrossdifferenturbanenvironments(Jonesand

Wieneke2000).Thislackofhistoricalknowledge,coupledwithspeciesspecificresponsesto

32 urbanenvironmentalchange,makesitparticularlyproblematictopredictchangesinavifauna populationslivingwithinAustralia’sexpandingurbanenvironments.

2.4.2. Mammals

Nativemammals,particularlymediumsizedspecies,arewidelyconsideredinAustraliatobe thefaunagroupmostdetrimentallyaffectedbyhabitatchangesresultingfromurbanisation andassociatedsecondaryimpactssuchasintroducedspeciespredation,interspecies competition,andmortalityfromvehiclecollisions(HowandDell1993;Taitetal.2005).

Veryfewmammalspeciesbecomehumancommensals,withexceptionsofexoticspecies, suchasthehousemouse( Musmusculus ),rabbit( Oryctolaguscuniculus ),andredfox( Vulpes vulpes ),andthenativebrushtailpossum( Trichosurusvulpecula ).Toeffectivelyconserverich andviableurbanmammalassemblagesitisessentialthatspecieshabitatrelationshipsare clearlyunderstoodforarangeofspecieswithdifferenthabitatrequirementsanddispersal abilities.Todate,muchoftheresearchconductedonurbanmammalianassemblageshas examinedvariousaspectsofspeciesdietandbehaviour(e.g.,MarkusandHall2004),with significantlyfewerstudiesspecificallyinvestigatingmultilevelhabitatrelationshipswithin thedynamicurbanenvironment.

Themostcommonlystudiedmammalspeciesarethosethatareeasilyobservedandidentified, aswellasthosethatelicitanemotivepublicresponse.Accordingly,possumandglider species(e.g.,SmithandMurray2003;GoldingayandSharpe2004;Matthewsetal.2004), koalas Phascolarctoscinereus (e.g.,Lunneyetal.2002;Diqueetal.2004;WardandClose

2004;McAlpineetal.2005),andbandicootspecies(e.g.,Dufty1994;ChambersandDickman

33

2002;Banks2004)arethemostfrequentlystudiedAustralianurbanmammals.Morecryptic, rareorsurveyintensivespecies,suchasdunnarts(Sminthopsisspp.),antechinus(Antechinus spp .),nativerodents(e.g.,Rattusfuscipes , Xeromysmyoides ),andvolantspecies(bats)have receivedsignificantlylessresearchfocus.Thisbiasisaparticularconcernformanyof

Australia’snativemarsupialsandrodents,whichareoftenbothbehaviourallycryptic,and unrecognisedordislikedbythepublic.

Terrestrialmammalspeciesand,toalesserextent,glidingspecies,havealowerprobabilityof survivalinurbanenvironmentsduetotheirlimitedlocomotionanddispersalabilitieswhich makethemeitherunableorunwillingtotraversetheurbanmatrixandtransportnetworks betweenoftenhighlyfragmentedandisolatedremnantpatches(DickmanandDoncaster1987,

1989;HowandDell1993;GoldingayandSharpe2004;Taitetal.2005).Individuals dispersingbetweenremnantvegetationpatchesfaceanthropogenicbarrierssuchaswalls, fences,androads,aswellasincreasedriskofpredationfromexoticspecies(e.g.,cats Felis catus ,dogs Canislupisfamiliaris ,redfoxes Vulpesvulpes ),orcollisionswithvehicles

(Andrews1990;SmithandSmith1990;Barratt1997;Forman1999;Lunneyetal.2002;

Diqueetal.2003;Banks2004).

Aswithavifauna,attainingacomprehensiveunderstandingofthehabitatrelationshipsof mammalassemblagesinurbanareasisparticularlychallenging.Thischallengestemsfrom thediverserangeofhabitatanddisturbancefactors,operatingatmultipleecologicallevels, whichimpactspeciesdistribution,abundance,andspeciesspecificresponsestohabitatchange andpredationpressures.HowandDell(2000),forexample,suggestedthatmammalsin generalaremostinfluencedbyhabitatfragmentationyet,McAlpineetal.(2005)concluded

34 habitatlossismoreimportantthanhabitatfragmentationandroaddensityforkoala populationslivinginsemiurbanlandscapesofsoutheastQueensland.Withintheirhome range,though,koalaspreferparticularEucalyptusspecies,especiallythoseoccurringonfertile soils(e.g.,SmithandSmith1990;Mooreetal.2004;WardandClose2004).Bandicoots, however,preferspatiallyheterogenousandstructurallycomplexhabitatstosupportforaging andshelterrequirements(e.g.,Dufty1994;Scottetal.1999;ChambersandDickman2002).

Fornorthernbrownbandicoots( Isoodonmacrourus )livinginBrisbane,Queensland,

FitzGibbonetal.(submitted),showedthecombinedinfluenceofpatchlevelcharacteristics suchaspatchsizeandfunctionalconnectivitybetweenpatchesatthelandscapelevelwere important.Functionalconnectivitywasidentifiedasthemostimportantfactorfor conservationactionstargetingbandicootpopulations.ForgliderspecieslivinginBrisbane, however,itisrecommendedthatmitigatingtheimpactsofhabitatlossandfragmentationat thelandscapelevelisthehighestmanagementpriority,followedbyhabitatconditionandedge effectsatthelocallevel(GoldingayandSharpe2004).

Rhodesetal.(2006)hasfurtherdemonstratedthattherelativeimportanceofenvironmental factorsmayalsovaryforindividualspecies,dependingonthelevelofobservation.They foundthathabitatlossandfragmentation,connectivity,patchsize,vegetationcompositionand roaddensityallinfluencedurbankoalapopulationdynamicsinPortStephensShire,New

SouthWales.However,atthesitelevel,treespeciescompositionwastheprimaryfactor, whiletheamountofhabitatanditsconnectivitywereimportantatthelandscapelevel.Such knowledgehasimplicationsfortargetingfaunamanagementactionsanddeterminingthe levelsofgovernmentresponsiblefortheseactions(D.Lunneypers.comm.,2004).

35

Determiningeffectivemanagementstrategiesforurbanmammalpopulationsisfurther complicatedbythelackofknowledgeregardingpopulationtrendsovertime.Veryfew studieshaveexplicitlyconsideredpopulationtrendsandviability,whilstthosethathavetried toaddressthisproblemhavebeenlimitedbytheconsistencyofhistoricalrecords(e.g.,How andDell1993;vanderRee2004;Taitetal.2005).Toachieveeffectivelongterm conservationofmammalsinurbanareas,itisessentialthaturbanresearchersbroadentheir currentfocustoincludemultiplespecies;especiallythosecurrentlyunderrepresentedinthe scientificliterature,anddeterminetheinfluenceandrelativeimportanceofenvironmental variablesacrossmultipleecologicallevels.Thesefactorsmustalsobeexaminedwithina temporalcontextinordertofacilitateaccuratepredictionsofpopulationresponsestoongoing urbandevelopmentandassociatedenvironmentalchange.

2.4.3. Reptiles and Amphibians

Reptilesandamphibiansmaybecollectivelyreferredtoasherpetofauna,althoughthetaxa exhibitsignificantlydifferentresponsestourbanisationandassociatedenvironmentalchanges.

Ofthepapersreviewed,14%focussedonurbanherpetofaunaspecies,withreptilespecies examinedmorefrequentlythanamphibians(Figure2.1a).Thismaybeaconsequenceofmore reptilespecies(thanamphibians)beingeasilyobservedinurbanlandscapes,thecrypticnature ofmanyamphibians,andtheconcomitantdifficultiesassociatedwithamphibiansurveys

(Hazell2003).Atpresent,therearemajorknowledgegapsintheunderstandingofthehabitat requirementsofbothreptileand,particularly,amphibianpopulationswithinurban environments.Forinstance,itisapparentthatcertainherpetofaunaspeciesareabletoadaptto urbanenvironments,whilstothersarerestrictedtoremnantvegetationpatchesordisappear

36 locally.However,thispatternofpersistenceandlossappearstovaryregionallybetween urbanenvironments.Largereptilespecies,particularlysnakes,havebeenrepeatedlyreported asthemostdetrimentallyimpactedreptilespeciesinbothPerthandSydney(e.g.,Howand

Dell1994;Cooper1995;HowandDell2000).Yet,Fearnetal.(2001),documentedthe abundanceofcarpetpythons( Moreliaspilota )inhighlydisturbedurbanareas,reportingon theremovalof258‘nuisance’pythonsfromBrisbaneandIpswich(Queensland)overasix yearperiod.BothreptileandamphibianassemblagesinSydneyhaveexperiencedlossesof speciessinceEuropeansettlement(WhiteandBurgin2004),yetTaitetal.(2005)reported onlyreptile,notamphibian,specieshavedeclinedinAdelaidedespitesignificantand widespreadhabitatalterationsandwaterqualitydegradation.

Aswithbirdsandmammals,thereisapaucityofinformationregardingtherelative importanceofhabitatfactorsoperatingatmultipleecologicallevelsforherpetofauna assemblages.Itappearsthattherelativeimportanceofhabitatfactorsvariesbetweenreptiles andamphibians,aswellasbetweenspeciesofeachgroup(e.g.,HowandDell2000;Anderson andBurgin2002;Jellineketal.2004).Forexample,accordingtoJellineketal.(2004) wereinfluencedmoreby insitu vegetationstructureandcompositionratherthanpatchsize

(exceptforonespecies).WhereasDrinnan(2005)foundpatchsizewasespeciallyinfluential foramphibianspecies.WhiteandBurgin(2004),however,suggestthatfrogsareimpacted primarilybychangesinwatercyclingandquality.Drinnan(2005)furthersuggestedthat habitatthresholdsexistedforamphibianspecies,withthreatenedandurbansensitivespecies requiringsignificantlylargerhabitatpatches(>50ha)forsurvivalthanmatrixsensitive speciesthatoccupiedmuchsmallerpatches(~4ha).

37

Thecurrentknowledgebaseclearlylacksasoundsgraspoftherelativeimportanceofhabitat factorsmeasuredatarangeofecologicallevelsandthepresenceofcriticalhabitatretention thresholdsforindividualreptileandamphibianspeciesandassemblages.Thereisalsoaneed tospecificallyexamineandcomparetemporalvariationsinherpetofaunaassemblageswithin andamongurbanenvironmentsacrossAustralia.Managementactionsbasedonthecurrent limitedknowledgebasemayfailtoaddresscriticalenvironmentalfactorsandsofallshortin achievingtheirlongtermconservationoutcomes.Clearly,muchmoreresearchisrequiredto betterunderstandbothreptileandamphibianpopulationdynamicsinurbanareasandhow thesedynamicsvaryacrossmultipleecologicallevels.

2.4.4. Invertebrates

Invertebratesarerecognisedbythescientificcommunityasbeingthelargestandmostdiverse faunagroup,referredtoas‘theother99%’(PonderandLunney1999;Stanisic2005).

However , theyareoneoftheleastunderstoodgroups,bothinnonurbanandurban landscapes.Becauseinvertebratesplayasignificantroleinthefunctioningofecosystemsas decomposers,parasites,pollinatorsandpreyformanyhigherorderspecies(BhullarandMajer

2000),itisessentialthattheimpactsofurbanisationoninvertebratesareexplicitlyunderstood.

Asynthesisofcurrentresearchknowledgeshowsthatbothsmallandlargeremnantvegetation patches(GibbandHochuli2002;Clark2004;Hochulietal.2004),vegetationdiversity

(EmeryandEmery2004;BurwellandGrimbacher2005),andhabitatcondition(Gibband

Hochuli2002;NewandSands2002;DoverandRowlingson2005)arecriticalfactorsfor invertebrateconservation.Otherfactorsimportantforindividualspeciesinclude:alteredfire regimes(GibbandHochuli2002;NewandSands2002;DoverandRowlingson2005)and

38 interspeciesinteractions(Hochulietal.2004;BurwellandGrimbacher2005;Doverand

Rowlingson2005).Hochulietal.(2004),forexample,documentedthatinvertebrate herbivorecompositionvariedwithremnantpatchsize,withabundanceincreasinginsmaller patchesbecauseofalowerdensityofpredatoryandparasiticspeciesthataresensitiveto habitatfragmentation.Thisinteraction,inturn,resultedinsmallernativevegetationpatches, ingeneral,experiencingincreasedinsectherbivorycomparedtolargepatcheswherepredatory andparasiticspeciesacttomaintainherbivorousinsectpopulationsatasustainablelevel.The resultinglossofhabitatconditionislikelytohavefurtherimplicationsforthecompositionsof higherorderspeciessuchasbirds,mammalsandreptilesthatareparticularlysensitiveto changesinhabitatcondition.

Asforotherfaunagroups,theimpactsofurbanisationoninvertebratecommunitiesarehighly speciesspecific.Forexample,NewandSands(2002)recommendedthattheconservationof urbanbutterflyspeciesrequiredimprovingtheconditionofdegradedurbanhabitats, specificallybyaddressingweedandfireissues.DoverandRowlingson(2005),conversely, reportedthatimprovinghabitatconditionwouldnegativelyinfluencethealreadythreatened westernjewelbutterfly( Hypochrysopshalyaetus ),asthisspeciesappearedtopreferdegraded habitats,particularlythosedegradedbyfires.Subsequently,itwassuggestedthatthis particularbutterflyspeciesmaybenefitfromurbanisation,andthecommonlyassociated degradedhabitats,aslongasthespeciesmutualantpartnerisalsopresent(Doverand

Rowlingson2005).Similarinterspeciesinteractionshavebeenobservedforother invertebrates,althoughthisissometimesduetospeciesexclusionratherthanspecies mutualism.Hetericketal.(2000),forexample,concludedthatthecompositionofnativeant speciesinsuburbanPerthgardensvariedinverselytothepresenceofexoticantspecies,with

39 fewnativespeciesabletocoexistingardensdominatedbyintroducedantpopulations.

BurwellandGrimbacher(2005)reportedsimilarimpactsonnativeantassemblagesatonesite inBrisbaneastheresultofhabitatdominationbytheintroducedcoastalbrownant( Pheidole megacephala ).

Temporalvariationsininvertebrateassemblageshavereceivedsignificantlylessexamination, althoughBhullarandMajer(2000)reportedthatolder,native(especiallylocallyendemic) treesliningPerth’sstreetshostedbothincreasedabundanceanddiversityofarthropodspecies, comparedtorecentlyplantednativeandexoticspecies.However,theunderlyingmechanisms drivingthesevariablearthropodresponsesremainunclear.Suchknowledgehasimportant implicationsforlocalgovernmentmanagementdecisions,especiallyconsideringtheflowon effectofinvertebratepresenceinfluencinginvertebratepredatorsathighertrophiclevels.

Noneoftheotherinvertebratestudiesreviewedconsideredtemporaldimensionsandsothe influenceoftimeoninvertebratespeciesdynamicsremainsunclear.

Itisobviousthatimmediateattentionmustbepaidtobothinvestigatingandcomprehending theimpactsofurbanisationoninsectcommunities,andtheconcomitantinterspecies relationshipsandinvertebrateimpactsontheconditionofremnantpatchesandthepopulation dynamicsofotherinvertebrateandvertebratespecies.Byunderstandingsuchrelationships, urbanplannersandconservationmanagerswillbebetterabletomakeconservationdecisions thattargetandbenefitarangeofspeciesandspeciesgroups.

40

2.4.5. Aquatic

Aquaticecosystemsandassemblagesareoftenoverlookedinurbanecologystudiesinfavour ofthemoredominantterrestrialsystems,despitetheoverallconcessionbyresearchersthat aquaticecosystemsareundeniablyimpactedbyurbanisation.Aquaticfaunahavebeenshown tobeparticularlysensitiveto:alteredenvironmentalflows,increasedwaterpollution,turbidity andsedimentlevels,exoticspeciesintroductions,alteredvegetationpresenceandcomposition

(e.g.,seagrassesandmangroves),andbuiltstructuressuchaspiers,harbours,anddams(e.g.,

Hough1995;DowandDewalle2000;Gibbs2004).

Similartotheirterrestrialcounterparts,certainurbanaquaticspeciesareabletoadaptand persistinthemodifiedenvironmentsbetterthanothers.Gibbs(2004),forinstance,concluded thatmanyfishspecieswereabletoutilisesignificantlymodifiedurbanestuarinehabitats, providedotherfactorssuchaswaterflow,areeffectivelymanaged.Comparatively,Newall andWalsh(2005)reportedthatthebuiltenvironment,particularlyurbanstormwaterdrain designs,hadsignificantnegativeimpactsondiatomassemblages.Walshetal.(2004) reportedsimilarinfluencesofurbandevelopmentandstormwaterdrainageconnections,onthe distributionofanalreadythreatenedstreamdwellingamphipod( Austrogammarusaustralia ).

Walshetal.(2004)furthercommentedontheroleofsealedroadsinurbanareasindegrading amphipodhabitat(waterquality)byalteringstormwaterrunoffandtransportingurban pollutantsintowaterways.YermanandRoss(2004)examinedtheinfluenceofdifferent landscapetypesandusesonthecompositionofmangrovemacrofaunacommunitiesin

Sydney,concludingthatmangroveforestsadjacenttonaturalsaltmarshessupporthigher macrofaunadiversitythandomangrovessituatednexttomanmadeparksorbundwalls.

41

Thelimitednumberofstudiesonaquaticfaunahabitatrelationships(Figure2.1a) highlightsa paucityofinformationonaquaticecosystems.Thecurrentknowledgebaseprovideslimited, oftensuppositional,insightsintourbanisationimpactsonaquatichabitatsandtheassociated responsesoftheirfaunainhabitants.Animportantinitialstepforaddressingthisissueisto alterthewayinwhichurbanresearchers,publicmembersandurbanmanagers,alike,view aquaticecosystemsandfauna.Thereisaneedtointegratethemintotheurban ecosystems/faunaviewpoint,ratherthantreatingthemasaseparateentity.

2.5. PRINCIPLES

Urbanisationanditsimpactsonfaunapopulationsmustbecloselyexaminedandunderstood beforeurbanplannersandmanagerscanhopetosuccessfullyachievelongtermconservation goalsinurbanareas.Currently,Australia’sconservationactionsoftenfallshortoftheir intendedlongtermgoalsduetodecisionmakingprocessesthatareillinformedbysound scientificresearch.TherearenumerousgapsinAustralia’surbanecologyknowledgebase, withcertaingroupsandspeciesbeingconsiderablylessunderstoodthanothers.Toaddress theseissueswesuggestthefollowingfiveguidingprincipleswhendesigningandconducting researchintotheecologyofAustralia’surbanfauna.Bydoingso,futureresearchinthisfield willproduceamorecomprehensiveknowledgefoundationuponwhichtobaseconservation andmanagementdecisionsandtherebyhelpurbanplannersandmanagersmakebetter decisions.

42

Principle 1: Urban ecology studies need to adopt a hierarchical landscape approach that explicitly considers the structure of the urban landscape and the influence of the quality and quantity of habitat elements that constitute that landscape.

Theurbanenvironmentisacomplexmosaicoflandscapeelementsdominatedbythebuilt environmentandinterspersedwithremnantsofnaturalecosystemsandopenspace.Remnant ecosystempatchesprovidehabitatformanynativefaunaspecies,andvarywithrespectto shape,size,condition,connectivity/isolationanddisturbanceregime.Urbanlandscapesarein acontinual,andoftenrapid,stateoffluxasaresultofhumanlandusepressures.Accordingly, urbanfaunapopulationsthatinhabittheselandscapesaredynamic,andsensitivetochanging environmentalconditions.Oftheresearchpapersreviewed,49%focussedontheimpactof environmentalfactorsoperatingatasingleecologicallevel,multilevelstudieswereexamined in32%ofcases,andtheremaining19%wereaspatial(Figure2.1b).Ofthesinglelevel studies,morethanhalf(65%)wereconductedatthelocallevel(Figure2.1b).Thisbiaslimits ourabilitytodeterminetheecologicallevelthatmostinfluencespopulations,whichinturn limitsourabilitytomakerecommendationsaboutpriorityandcosteffectiveactionsfor conservation.

Increasingly,urbanresearchersaredemonstratingthaturbanfaunarespondtoacombination ofhabitatvariablesoccurringatmultipleecologicallevels(e.g.,HowandDell1993;Grover andSlater1994;GibbandHochuli2002;Rowstonetal.2002;Catterall2004;McAlpineetal.

2006a).Consequently,studiesconductedatasingleecologicallevel(e.g.,Dufty1994;

Fitzsimonsetal.2003;Hochulietal.2004;YermanandRoss2004)canexplainonlypartof theoverallimpactofurbanisationandmayindeedobscureorexaggerateregionaldeclinesthat arenowoccurringformanyspecies(Wiens1994;Hobbs1999).Thisdoesnotmeanthat

43 singlelevelhabitatattributesareunimportant,ratherthatitisnecessarytoconsiderthe structureofthewholelandscapeandtheinherenthierarchyofhabitatinfluenceswhen predictingtheeffectsofurbanisationonnativebiotaandchoosingconservationactions

(McGarigalandMcComb1995;Hokitetal.1999;Dorneretal.2002;McAlpineandEyre

2002).Studiesshouldalsorecognisethattheperceivedpermeabilityoftheurbanmatrix differsbetweenspeciesandisnotalwaysconsideredunsuitable(Opdametal.2003).Studies thatclassifyurbanlandscapesasbinary(i.e.suitablehabitatorunsuitablehabitat)risk misinterpretingtheinfluenceofurbanlandscapestructureonspeciesoccurrenceand abundance,andtheirinteractionswithotherorganisms.Itisimperativethaturbanecology researchersadoptaspatiallyexplicitapproachthatspecificallyconsidersthescaleof movementofthetargetspecies,andhowitperceivesandutilisesthedynamichabitat heterogeneityofurbanlandscapes(Pearsonetal.1996;Whiteetal.1999;Hostetlerand

Holling2000;Debinskietal.2001;McAlpineetal.2002).

Principle 2: Urban fauna studies should explicitly test a priori predictions of the relative importance of habitat amount, configuration and condition, the presence of critical habitat retention thresholds, and the interaction between these factors.

CriticalissuesformanyAustralianlocalgovernmentagenciesresponsibleforurban biodiversityconservationare:howmuchhabitatisenoughtosustainviablefauna populations?,howshouldthishabitatbespatiallyarrangedinthelandscape?and,whatisthe relativeimportanceofhabitatamount,configurationandcondition?Thesequestionsare importantforprioritisinginvestmentintheconservationandrestorationofurbanbiodiversity.

Therefore,understandingtherelativeimportanceofthesefactorsforvariousfaunaspecies

(terrestrialandaquatic,vertebrateandinvertebrate)isessentialforinformingthedecision

44 makingprocessandinvestmentprioritisation.Forexample,inBrisbaneCity,acommon dilemmaforlocalgovernmenturbanplannersandconservationmanagersiswhethertofocus effortsandresourcesonrestoringthequalityofhabitats(condition),oronincreasingthearea ofhabitatanditsconnectivity(S.McLean,pers.comm.,2003).Thisdecisionisoftenspecific toaparticularspecies,assemblageorlandscape/ecosysteminaparticularregion.Ifa landscapehasexperiencedextensivehabitatloss,andtheremaininghabitatisbelowacritical threshold,thenincreasingtheamountofhabitatanditsconnectivitymaydeliverthegreatest conservationoutcome.Conversely,iftheremaininghabitatwithintheurbanlandscapeis aboveacriticalthresholdandislocatedinafewlargepatches,thenmanaginghabitatquality forspeciesmayprovemorebeneficialforachievinglongtermconservationgoals.These managementissuesarefurthercomplicatedinurbanlandscapesbytheeffectofroads,human disturbancepressures(e.g.,vandalism,highfirefrequencies)andthehighdensityofexotic predatorspecies.

Improvingtheeffectivenessofurbanconservationstrategiesthereforeisreliantonbeingable toprioritisetheimportanceoftheamountofhabitat,itsconfigurationandcondition,whilst minimisingthenegativeimpactsofroads,predatorsandhumanactivity.Thehypothetical curvedepictedinFigure2.2representshowknowledgeabouttherelativeimportanceof environmentalvariablescouldbeusedtoassistthedecisionmakingprocessprioritising conservationactionsandinvestmentstoensureeffectivebiodiversityoutcomes.The effectivenessofsuchinvestmentsfirstlydependsonurbanresearchersexplicitlytestingthe relativeimportanceof,andinteractionsbetween,thesecriticalhabitatfactors.

45

High

Probability of Occupancy

Pristine Low

Habitat ConditionCondition Intact

Poor % Habitat Area

Highly Fragmented

Figure 2.2. Hypothetical curve of the relationshipsbetween habitat area, habitat condition (quality),andtheprobabilityofaspeciesbeingpresent.

Principle 3: Urban ecology studies need to consider the responses of multiple species to urban habitat conditions and dynamics.

Currenturbanbiodiversitymanagementdecisionsaretoooftenbasedonrecommendations accruedfromstudiesofasinglespeciesorasmallgroupofspecies.However,specieshave varyinghabitatrequirementsandsensitivitiestourbanlandscapechange(Table2.1).A single/fewspeciesapproach,therefore,islimitedinitsabilitytoconservethefullcomplement ofspeciesinthelandscape.Ifmaintainingspeciesdiversityistheultimategoal,then landscapesshouldnotbeplannedandmanagedbasedontherequirementsofasingleor limitedselectionofspecies.Oftenresearchresourcesareonlyavailabletosurveyasingle speciesortaxa(e.g.,birds).Thefindingsofthesestudiesneedtobeintegratedwithsimilar

46 designedstudiesinordertodevelopanintegrated,multispeciesapproachtourban biodiversityconservationandrestoration.

Analternativeapproachconsidersmultiplespeciesecological‘profiles’thatclassifyarangeof differentspeciesbasedonsimilaritiesintheirresponsestolandscapestructureandchange

(Opdametal.2002).Thedevelopmentofcomprehensiveecologicalprofilesisamajor,yet necessary,challengethatwillfacilitateurbanplanningandconservationmanagement decisionsthateffectivelytargetthehabitatrequirementsofseveralspeciesandtaxa,rather thanthosespecifictoasinglespeciesortaxon.Suchanapproachiscomplicatedbut particularlypertinentinurbanareasbecauseoffaunapopulationfluctuationsinresponseto theextreme,dynamicandcontinuallychangingurbanenvironment.

Principle 4: Urban ecological studies need to consider the temporal dimension as well as the spatial dimension of urban landscapes.

Urbanlandscapeshaveatemporalaswellasaspatialcomponent(sensu Marucci2000)

Followingclearingorothermajordisturbances,theremaininghabitatsoftenexperience declineinconditiontoastateoflowerhabitatquality.Theresponseoffaunapopulationsmay alsooccuroverlongtimeperiods,withcertainspeciesexhibitingatimelagofdecadesor centuriesintheirresponses(Tilmanetal.1994;Hanski1998;PossinghamandField2001;

Taitetal.2005).InAustralia’surbanlandscapes,itisparticularlyimportanttostudythelong termdynamicsoffaunapopulationsinordertopredictlongtermpopulationresponsesto urbandevelopmentsandplantomitigatetheimpactsofassociatedhabitatalterationsand secondarypressures.Forexample,manyAustralianbirdandmammalspeciesarelonglived andconsequently,nonviablepopulationsmaypersistformanyyearsintheurbanlandscape

47 beforesuddenlydisappearing.Yet,veryfewofthestudiesreviewedexplicitlyconsideredthe temporalaspect.Staticstudiescannotdeterminepopulationviabilityandmaymistakenly considerapopulationasbeingviable.Asaconsequence,valuableconservationresources maybeinvestedinappropriately.Further,changesinspeciescompositionsanddistributions acrossurbanhabitats,inresponsetourbanlandusechanges,mayalsobemoreaccurately predictedusingtemporalpatterns.JonesandWieneke(2000),forexample,demonstrate distinctcompositionalanddistributionalshiftsinTownsvillebirdcommunitiesovera16year periodinresponsetohabitatsuccessionandmodification,suchastransitionsfromopengrassy areas,torecentlyvegetatedareas,towellestablishedareas,andviceversa.Understandingthe mechanismsbywhichspeciestorespondtogivendisturbancesisimportantforpredictingthe longtermoutcomeforurbanfaunapopulations.Incorporatingatemporaldimensioninurban ecologyresearchwillhelpproduceinformationthatwillenableurbanplannersandmanagers tomakeeffectivedecisionsregardingtheimpactofprospectivedevelopmentactionsonthe longtermviabilityofurbanfaunapopulations.

Principle 5: Urban ecological research must be effectively communicated to urban planners and conservation managers so that recommendations are adopted and integrated into urban planning, management, conservation, and restoration strategies.

WithinAustralia,urbanconservationgoalsarelimitedbyalackofcollaborativeresearchand management( sensu Underwood1995;LiuandTaylor2002). Inordertopreserveurban biodiversity,planners,managersanddevelopersmustbeequippedwithappropriatescientific knowledgeonwhichtobasesoundconservationdecisionsandactions.Suchdecisionsare oftenresource(timeandmoney)limited.Acriticalgoalforresearchersistoprovide‘decision tools’andplanningguidelinesthatfacilitatetheprioritisationofconservationactionsaswell

48 astheidentificationofcostefficientmanagementalternatives.Furthermore,urbanecology researchersshouldaimtoaddresspriorityissuesforurbanmanagersandplannersandtakethe responsibilityforclearlycommunicatingtheirfindingsandrecommendationsinaformatthat iseasilyunderstoodbydecisionmakers.Inaddition,whenthemultipleuseofhabitatsis mandated,thesuccessfulpreservationandrestorationofurbanhabitatsforbiodiversity conservationrelyonacooperative,multidisciplinaryapproach(Johnson1995).Assuch, researchersarefurtherencouragedtoinstigatecollaborativeprojectsthatincorporateavariety ofdisciplines(e.g.,sociology,ecotourism)andkeystakeholders(e.g.,landholders,politicians, architectsanddevelopers)(e.g.,Niemelä1999a;Collinsetal.2000;Grimmetal.2000;

MusacchioandWu2004).Doingsowillpromotetheintegrationofscientific recommendationsintodecisionmakingprocessesandsubsequentplanning,management, conservation,andrestorationsstrategies.

2.6. CONCLUSIONS

Theprocessofurbanisationcausessignificantandongoingalterationstonaturallandscape compositionsandecosystemprocesses.Itisaxiomaticthatsuchhabitatalterationsimpactthe compositefaunacommunitiesandinhibitlongtermpersistence.Ironically,itseemsthe inherentdynamicnatureofcitiescreatesandmaintainsacomplexmosaicofhabitatniches, manyofwhichareuniquetourbanareas,whichinturnsupportahighdiversityoffauna species,includingrareandthreatenedspecies(Niemelä1999a,1999b).Thefuture conservationofAustralia’surbanfaunadependsheavilyoncollaborativeresearchprojects thatintegratemultipleecologicallevelsofhabitatinfluenceandmultiplespecies,aswellas

49 temporalvariation,ininvestigatingtherelationshipsexistingbetweenurbanenvironmentsand theirresidentfaunapopulations.Theprinciplesoutlinedinthispaperprovidethescientific basisfordesigningurbanfaunastudiestoaddresstherightquestionsandhelpmeetthe informationneedsofurbanplannersandconservationmangers.Withoutsuchknowledge, poorlytargetedurbanfaunaconservationactionswillcontinueandpopulationswilldecline furtherunderincreasingdevelopmentanddisturbancepressures,resultinginareducedquality oflifeforallcitydwellers.

50

(a) Bush rat (Rattusfuscipes ) • Family:Muridae • Selectiveomnivore,nocturnalrodent. • Sizerange:HBL100205mm,TL100195mm,50225g . • Distribution:Queensland,NewSouthWales,Victoria,South Australia,WesternAustralia. • InBrisbane:commoninremnantbushlandhabitatinperi urbanlandscapes. Photofrom: http://www.communitywebs.org/ScientificExpeditionGroup/pages/MinPic.htm (b) Swamp rat (Rattuslutreolus ) • Family:Muridae • Opportunisticomnivore,diurnalandnocturnalrodent. • Sizerange:HBL120200mm,TL56147mm,55160g. • Distribution:.Queensland,NewSouthWales,Victoria, Tasmania,SouthAustralia. • InBrisbane:uncommonandrestrictedtospecialisedremnant habitatinperiurbanlandscapes. Photofrom: http://www.communitywebs.org/ScientificExpeditionGroup/pages/MinPic.htm (c) Northern brown bandicoot (Isoodonmacrourus ) • Family:Peramelidae • Omnivorous,nocturnalmarsupial. • Sizerange:HBL300470mm,TL80210mm,5003000g. • Distribution:Queensland,NewSouthWales,Northern Territory,WesternAustralia. • InBrisbane:commonininnerandoutersuburbs,where suitablehabitatisavailable. Thisphotoshowsmeholdingamalenorthernbrownbandicoot. (d) Long -nosed bandicoot (Peramelesnasuta ) • Family:Peramelidae • Omnivorous,nocturnalmarsupial. • Sizerange:HBL310450mm,TL120150mm,8501100g. • Distribution:Queensland,NewSouthWales,Victoria. • InBrisbane:restrictedtosuitableremnantbushlandhabitatin periurbanlandscapes. Photofrom:http://filin.vn.ua/mammels/bandikut.htm Plate 3.Nativerodentsandbandicoots:(a)Bushrat;(b)Swamprat;(c)Northernbrown bandicoot;(d)Longnosedbandicoot.

51

Chapter 3

USING MULTIPLE SURVEY METHODS TO DETECT

TERRESTRIAL REPTILES AND MAMMALS: WHAT ARE

THE MOST SUCCESSFUL AND COST EFFICIENT

COMBINATIONS?

Citation:GardenJ.G.,McAlpineC.A.,PossinghamH.P.,JonesD.N.(inreview)Using

multiplesurveymethodstodetectterrestrialreptilesandmammals:Whatarethemost

successfulandcostefficientcombinations?WildlifeResearch.

3.1. ABSTRACT

Theselectionofmethodsforwildlifesurveysisadecisionthatwillinfluencetheaccuracyand comprehensivenessofsurveyoutcomes.Thechoiceofmethodsiscommonlybasedonthe speciesofinterest,yetisoftenlimitedbytheprojectbudget.Althoughseveralstudieshave investigatedtheeffectivenessofvarioussurveytechniquesfordetectingterrestrialmammal andreptilespecies,nonehaveprovidedaquantitativeanalysisofthecostsassociatedwith differentmethods.Wecomparethedetectionsuccessandcostefficiencyofcagetraps,Elliott traps,pitfalltraps,hairfunnels,directobservation,andscatdetection/analysisfordetecting

52 theoccurrenceofterrestrialreptileandsmallmammalspeciesinurbanbushlandremnantsof

BrisbaneCity,Queensland.Theseanalysesaretangentialtoalargerresearchprojectandso thefindingsareaguideonly.CagetrapsandElliotttrapscoupledwithhairfunnelswerethe mostcosteffectivemethodsfordetectingthehighestnumberofgrounddwellingmammal species.Pitfalltrapsanddirectobservationswerethemostcosteffectivemethodsfor maximisingthenumberofreptilespeciesidentified.Allmethodsmadeacontributionto overalldetectionsuccessbydetectingatleastonespeciesnotdetectedbyanyothermethod.

Thissuggestsacombinationofatleasttwocomplementarymethodswillprovidethemost successfulandcostefficientdetectionofreptileandmammalspeciesinurbanforestremnants.

Futurestudiesshouldexplicitlytestthesefindingsandexamineefficienttrapping combinationsacrossdifferenthabitattypesandforotherspeciesgroups.

Key words: Cagetrap,Elliotttrap,pitfalltrap,hairfunnel,directobservation,scatanalysis,

Brisbane.

3.2. INTRODUCTION

ManagingAustralia’sterrestrialhabitatsformammalandreptileconservationrequiresa thoroughknowledgeofthecompositionanddistributionofspecieswithinandacrossthe habitatsofinterest.Wildlifesurveysofspeciesoccurrenceandabundancehavelongbeen usedtoacquiresuchknowledge.Forterrestrialmammalandreptilespecies,avarietyof surveymethodshavebeenusedbyresearcherstodetermineoccurrenceandabundance.These methodshavebeenspecificallydesignedtotargetparticularspeciesorgroupsofspecies

53

(Sutherland1996a;MenkhorstandKnight2001),andsovaryintheirapplicabilityandrelative detectionsuccessfordifferenttaxa.Ingeneral,thechoiceofsurveymethod(s)isacritical factorinfluencingtheaccuracyandcomprehensivenessofsurveyresults.

Severalstudieshaveinvestigatedtherelativesuccessofdifferentsurveymethodsfordetecting mammaland/orreptilespeciesinAustralianlandscapesincluding,butnotlimitedto:pitfall trapswithorwithoutdriftfences(e.g.,MengakandGuynn1987;Friendetal.1989;Laurance

1992;Catlingetal.1997;Crosswhiteetal.1999;MosebyandRead2001;Ryanetal.2002),

Elliotttraps(e.g.,Laurance1992;Catlingetal.1997;Clemannetal.2005),wirecagetraps

(e.g.,Friend1978;Laurance1992;Catlingetal.1997),directobservationsand/oractive searches(e.g.,BrownandNicholls1993;Catlingetal.1997;Crosswhiteetal.1999;Ryanet al.2002),hairtubesorfunnels(e.g.,Catlingetal.1997;Lindenmayeretal.1999;Millsetal.

2002),andvocalisationsand/orindirectsignssuchastracks,scats,diggings,orscratches(e.g.,

Friend1978;Catlingetal.1997;Millsetal.2002).Acrossallofthesestudies,thecommon findingsarethatdifferentsurveymethodsareusefulforsamplingparticularfaunaspecies,and nosingleapproachaccuratelysamplesallspecieswithinacommunity.Therefore,as advocatedbynumerouspreviousresearchers,surveysaimedatdetectingmultiplespeciesmust employasuitablecombinationofsurveymethods(e.g.,Laurance1992;BrownandNicholls

1993;Catlingetal.1997;Crosswhiteetal.1999;Lindenmayeretal.1999;Ryanetal.2002;

Doan2003).Theselectionofthesemethodsshouldbeinfluencedbythespeciesortaxaof interest,butconsiderationinthesurveydesignmustalsobegiventodietaryandhabitat preferences,behaviouralattributes,andbodysizeofthetargetspecies(MengakandGuynn

1987;Laurance1992;Catlingetal.1997;Crosswhiteetal.1999;Lindenmayeretal.1999;

Millsetal.2002).

54

Inadditiontodifferencesindetectionsuccess,eachfaunasurveymethodvariesintherequired degreeofeffort(personhours)andthecostexpendedtodetecttargetfauna.Consequently, thechoiceofsurveymethodiscommonlylimitedbyaproject’sfinancialbudgetandtime frame.Itisimportant,therefore,thatthemethod(s)selectedwillproducethegreatest detectionsuccesswithinthetimeframeandwhilstmaintaininglowoverheadcosts.Such informationisparticularlypertinentforsurveysthataimtodetectarangeofspecies.

Althoughasmallnumberofauthorshavequalitativelydiscussedeffortassociatedwithvarious surveytechniques(e.g.,Catlingetal.1997;Crosswhiteetal.1999;BisevacandMajer,2002;

Millsetal.2002),wecouldfindnostudythatexplicitlyexaminedandcomparedthedetection successandquantitativecostsassociatedwithdifferentsurveymethodsforterrestrialreptiles andsmallmammals.

Thispapercomparessixsurveymethods,fordetectingterrestrialreptileandsmallmammal species,intermsoftheirrelativedetectionsuccessandcostsofsurveying.Threekey questionswereposed:(i)Whatistherelativesuccessofeachmethodfordetectingreptilesand mammals?(ii)Whatisthecostassociatedwitheachmethod?(iii)Whatisthemostcost efficientmethodorcombinationofmethods?Thesequestionsareaddressedusingthewildlife surveyresultsfromalargerurbanecologyresearchprojectconductedinBrisbane,

Queensland.Themainaimofthislargerprojectwastodeterminetherelativeimportanceof habitatattributesatmultiplespatialscales,forinfluencingtheoccurrenceofnativeterrestrial reptilesandsmallmammals.Assuch,wildlifesurveysweredesignedspecificallyto determinetheoccurrenceofthesetargetspecieswithinremnantforestfragments.The followinganalysis,therefore,istangentialtothemainprojectaim,yetisimportantfor

55 expandingourunderstandingofeffectiveandcostefficientcombinationsofsurveymethods, andforprovidingacomparisonofcosteffectivenesswhenselectingsurveymethodsforfuture studies.

3.3. METHODS

3.3.1. Study Area and Survey Design

ThestudywasconductedwithintheBrisbaneCityCouncil(BCC)localgovernmentareaof southeastQueensland(153º2’S,27ºE;area1,220km2,population>1million)(Figure3.1).

Fiftyninesurveysiteswereestablishedwithinlowland,remnantbushlandfragmentsinthe

City’ssouthandsoutheastsuburbs(Figure3.1).Asarequirementofthelargerresearch project,surveysiteswerelocatedwithinRegionalEcosystem(RE)type12.910.4,whichis dominatedbyscribblygum( Eucalyptusracemosa )woodlandlocatedonsedimentaryrocks andsandysoils(YoungandDillewaard1999).

Asthemainaimofthelargerprojectwastoinvestigatetheinfluenceofhabitatattributeson speciesoccurrence,sitesweresurveyedusingthesametraplayout.Eachsitemeasured20m x45mandwassurveyedusingthreeparalleltransects10mapart,orientatedperpendicularto thenaturalslopeoftheland.Eachsitewassurveyedoverthreeconsecutivenights(asurvey cycle)duringfineweatherinthespring/summerbreedingseason,usingacombinationoflive trappingandpassivedetectionmethods.Initialsurveysofall59sitesoccurredin2004,and repeatsurveysof51siteswereconductedin2005.Eightsiteswerenotrepeatsurveyeddueto recentfireorhumaninterference.Theorderinwhichsiteswererepeatsurveyedwas

56 randomisedinordertoavoidsurveyingsitesatthesametimeofseasonastheinitialsurveys, whichmayhavebiaseddetectionsuccess.

Main roads

Brisbane CBD

Remnant Vegetation

Brisbane River and Moreton Bay

Survey sites c.

a. b.

b. c.

Figure 3.1. Mapofstudyareashowingthelocationof(a)Brisbaneandthecentralbusiness district(CBD),andsitelocationswithin(b)southsuburbs,and(c)southeastsuburbs.GIS dataprovidedbyBrisbaneCityCouncil.Remnantvegetationshownisderivedfrom1999 GISdata.

57

3.3.2. Trapping and Detection Methods

Theselectionofsurveymethodswasbasedoninitialpilotsurveys,trapavailability,and projectbudgetandtimeconstraints.Becauseoftimeconstraints,wewerenotabletosurvey eachsiteformorethanthreenightspersurvey.Tocompensate,weusedmoretrapspersiteto increasetrappingeffortpernightpersite,therebyimprovingdetectionsuccesswithintheshort timeframe.ThecomplementofcageandElliotttrapsavailablefromTheUniversityof

Queensland’sEcologyCentre,weredividedevenlybetweenfoursites,whichweretobe simultaneouslysurveyedduringeachsurveycycle.Anumberofunsuitablecagetrapswere replacedwithnewtraps,andpitfallbuckets,hairfunnels,andassociatedpreparatory equipmentwerethenpurchasedwithintheconstraintsoftheremainingprojectbudget.

Consequently,eachsitewassurveyedusingacombinationof:eightwirecagetraps,10Elliott traps,fivedrypitfalltraps(10Lbuckets),andthreehairfunnels.

Trapswerespacedapproximately5mapartalongthethreetransects(Figure3.2).Where possible,butwithoutdeviatingmorethan1mfromtransects,trapswerepositionedalongside, on,orinlogs,grassrunways,orpossiblesheltersitesinordertomaximisethechancesof beingencounteredbyananimal(Sutherland1996b;Cunninghametal.2005).Cagetraps,

Elliotttraps,andhairfunnelswerebaitedwiththestandardAustralianmammalmixtureof peanutbutter,rolledoats,andhoney,withvanillaessencealsoadded(MenkhorstandKnight

2001).ApieceofapplewasalsousedasbaitinthecageandElliotttraps.Pitfalltrapswere notbaited.Directobservationsandscatcollectionoccurredopportunisticallyduringeachsite visit.

58

5 m

10 m

Figure 3.2. Schematicoftraplayoutalongthethreetransectsateachsurveysite. Hair funnels; Elliotttraps; Cagetraps; Pitfalltraps.

Cagetrapswereusedtodetectmediumsizedterrestrialmammalssuchasnativerodents(e.g.,

Rattusfuscipes and R.lutreolus )andbandicoots(e.g.,Isoodonmacrourus and Perameles nasuta ),whereasElliotttrapstargetedsmallbodiedspeciessuchasdunnarts( Sminthopsis spp. )andantechinus( Antechinusspp. ).Thehairfunnels(FaunatechPtyLtd,Bairnsdale,

Victoria)usedtodetectbothsmallandmediumsizedmammalsdifferedindesignfromother hairsamplingdevices(e.g.,ScottsandCraig1988;Lindenmayeretal.1999;Millsetal.2002) inhavingonlyasinglelargeopeningthattaperstoanenclosedbaitchamber.Aspecialised waferwasattachedtotheupperinsidesurfaceofthefunnel.Thewaferwascoveredwitha stickysubstance(‘faunagoo’),whichreplacesthedoublesidedtapeusedinprevioussimilar trapstocollecthairsamples.Drypitfalltrapswereemployedprimarilytodetectsmallreptile species,withdirectobservationsbeingusedtodetectlargebodiedreptilesthatwereunlikely tobedetectedbyothermethods.Scatswerealsocollectedfor exsitu analysis.

59

CageandElliotttrapsweresetandbaitedeachafternoonbeforesunset,checkedforcaptures beforedawnthefollowingmorning,andthenclosedduringtheday.Capturedwere identifiedtospecieslevelusingafieldguide(MenkhorstandKnight2001),photographed, weighed,sexed,andimmediatelyreleasedatthepointofcapture.

Hairfunnelsweresetandbaitedatthestartofthethreedaysurveycycleandleftundisturbed untilcollectionattheendofthesurveycycle.Allwaferswithhairsamplesweresentfor identificationbyoneoftwoindependentexperts(initialsurveys:MichialaBowen;repeat surveys:BarbaraTriggs).Hairsamplewereidentifiedtogenusorspecieslevel,andwere categorisedaseither“definite”or“probable”.Onlydefinitespeciesidentificationswereused forsubsequentdataanalyses.

Drypitfalltraps(i.e.nochemicals/preservativesused)wereestablishedatleastoneweek priortositesurveystoallowspeciesandhabitatstorecoverfromthelocaliseddisturbancethat occurredasaresultofdiggingholesforpitfalltraps.Giventhemainaimofthelarger project,carewastakentominimisehabitatdisturbance.Forthisreason,wedidnotusedrift fences,soastoavoiddisturbancetodensegroundvegetationandfallenwoodydebrisatmany ofthesurveysites.Thisdiffersfrompreviousstudieswhichhaveuseddriftfencesin conjunctionwithpitfalltrapstoimprovecapturesuccess(e.g.,MengakandGuynn1987;

Friendetal.1989;Crosswhiteetal.1999;MenkhorstandKnight2001).Pitfalltrapswere openforthedurationofthesurveycycleandwerecheckedforcaptureseachmorningand afternoon.Capturedanimalswereidentifiedtospecieslevelusingafieldguide(Wilson

2005),photographed,weighed,sexed(ifpossible),andimmediatelyreleasedatthepointof capture.Betweentheinitialandrepeatwildlifesurveyperiods,lidsweresecurelyfittedto

60 eachpitfalltraptopreventcaptures.Directobservationsandscatcollectionoccurred opportunisticallythroughoutallsitevisitstoidentifytargetspecies.Wherepossible,andif necessary,specieswerecaught(byhand)toensureaccurateidentification.Allscatscollected wereidentifiedbythesameexpertswhoanalysedthehairsamples.Only‘definite’species identificationsfromscatanalysiswereusedinsubsequentanalyses.

Therelativesuccessofeachsurveymethodwasdeterminedbyevaluatingthetotalnumberof speciesdetectedbyeachmethodacrossallsites.Thetotalnumberof“unique”species detectedbyeachmethodwasalsoexamined.Uniquespecieswerethosespeciesdetectedby onlyonesurveymethod( sensu Doan2003).Speciesdetectionsfromtheinitialandrepeat surveyswerecollatedforanalyses.

3.3.3. Cost Analysis

Thecostofeachsurveymethodwascalculatedindependentlybasedonthecostrequiredto surveyallsitesoverthetotalsurveyperiod(2004and2005).Fourmainareasofcost expenditurewereconsideredforeachmethod:equipment,bait/analysis,personnel,andtravel.

Equipmentcostsincludedexpendituresforacquiringtrapsandtheadditionalitemsrequiredto prepareeachtrap.Becausesometrapswerereusedforsurveys,a20%depreciationratebased onthe2004purchasepriceforeachtraptypewasusedtorepresentequipmentcosts.

Additionalpreparatoryexpensesincludedshadeclothforcagetraps,nonreusablehairwafers forhairfunnels,andthehireofamotorisedaugerfordiggingholesforpitfalltraps.Asshade clothwasreplacedatthestartoftheinitialandrepeatsurveyperiods,thiscostwascalculated

61 foreachsurveyperiodusingthe2004retailpricefromamajordiscounthardwarestore.A totalofthreehairwaferswereusedtosurveyeachsiteforeachsurveyperiod(atotalof330 wafers),andaswafersarenonreusableacrossdifferentsurveysites,the2004purchaseprice

(FaunatechPtyLtd,Bairnsdale,Victoria)wasusedtocalculatethiscost.Thecostofhiringa motorisedaugerfor12days(5sitesestablishedeachday)wascalculatedon2004dailyhire ratesfromamajorequipmenthirebusinessinBrisbane.

Bait/analysiscostscoveredbaitexpensesaswellashairandscatanalysischarges.Thecostof baitwascalculatedbasedonretailcosts(fromamajorsupermarket)foringredientsrequiredto baittrapsovertheentiresurveyperiod.Cagetrapsandhairfunnelsusedlargerpeanutbutter ballsthanElliotttrapsandthepricewasadjustedaccordingly.Foreachsurveynight,fresh baitwasusedincageandElliotttraps,whereasthehairfunnelbaitwasleftunchangedduring thesurveycycle.Thechargecostforexpertanalysesofhairandscatsamplesdiffered betweenthetwoexpertsandsoanaveragechargewasusedtocalculatecostsofhairandscat analyses.

PersonnelcostswerecalculatedfortwopeoplebasedonTheUniversityofQueensland’s minimumhourlywageforacasualresearchassistantof$19perhourplus15.5%oncosts(all pricesaregiveninAustraliandollars).Twopeoplewereincludedinpersonnelcalculationsas thisistheminimumpersonnelrequiredtomeetTheUniversityofQueensland’sfieldwork safetystandards.Personnelcostcalculationsincorporatedthetimetakentopreparetraps, establishtrapsatasite,setandchecktrapseachsurveyday,andremovetrapsattheendofthe surveycycle.Althoughobservationandscatcollectionwerenotstandardised,anestimated30 minutespersitevisitwascalculatedforeachperson.

62

TravelcostswerebasedonTheEcologyCentre’s(TheUniversityofQueensland)vehiclehire chargeof$0.50/km.Atotalofsixreturntrips,eachaveraging30km,wererequiredeach surveycycletoset,check,andremovetraps,orconductdirectobservations/scatcollection.

Withamaximumoffoursitesbeingsurveyedsimultaneouslyineachsurveycycle,28return tripswererequiredtosurveyallsitesforbothsurveyperiods.Thenumberofreturntripswas calculatedindependentlyforeachsurveymethod.Therefore,cagetrapping,Elliotttrapping, directobservation,andscatdetection,eachrequiredsixreturntripsduringeachsurveycycle, and168returntripsoverthetwosurveyperiods.Anextra12returntripsfordiggingpitfall trapholeswereincludedintravelcostsassociatedwithpitfalltrapping.

3.3.4. Cost Versus Success

Theaveragenumberofspeciesanduniquespeciesdetectedperdollarwascalculatedforeach surveymethodbasedontheaveragenumberofspeciesanduniquespeciesdetectedbyeach surveymethodpersite,andtheaveragecostpersiteforeachmethod.Comparingthese resultsenabledustoidentifythemosteffectiveandefficientmethod,orcombinationof methods,forsurveyingterrestrialreptilesandsmallmammalsintheBrisbanecasestudy.

63

3.4. RESULTS

3.4.1. Species Detected

Atotalof19targetreptilespecies(eightfamilies),andninetargetmammalspecies(three families),weredetectedduringtheoverallsurveyperiod(Table3.1).Anumberofnontarget specieswerealsodetected,includinglarge,terrestrialnativemammals(wallabiesand kangaroos),invertebrates,amphibians,birds,arborealmarsupials,andexoticmammalsand reptiles.

3.4.2. Survey Method Success

Eachsurveymethodsuccessfullyidentifiedatleasttwospecies,withcertainmethods detectingupto14species(Figure3.3a).Asexpected,eachmethodwasmainlysuitedto detectingeithermammalsorreptiles(Figure3.3a).Althoughtherewasadegreeofoverlapin thespeciesdetectedbyeachsurveymethod,allmethodsdetectedatleastonespeciesnot detectedbyanothermethod(Figure3.3b).

64

Table 3.1. Collatedspecieslistshowingthemethod/sbywhicheachspecieswasdetected.Numbersindicatethetotalnumberof individualscaptured,or,forhairfunnels,thetotalnumberofwaferscontaininghairsamples.Notethatmarkingwasnotusedso individualcapturesarenotnecessarilydifferentanimals.CT=cagetrap;ET=Elliotttrap;PF=pitfalltrap;HF=hairfunnel;Obs.= directobservation;S=scatdetection/analysis. Survey Method Family Group Scientific Name Common Name CT ET PF HF Obs. S Dasyuridae Antechinus flavipes Yellow-footed antechinus 7 Antechinus subtropicus Subtropical antechinus 2 Planigale maculata Common planigale 2 Sminthopsis murina Common dunnart 12 Native Muridae Melomys sp. Likely: Grassland melomys 1 Mammals Rattus fuscipes Bush rat 2 Rattus lutreolus Swamp rat 1 Peramelidae Isoodon macrourus Northern brown bandicoot 15 3 1 Perameles nasuta Long-nosed bandicoot 2 Agamidae Diporiphora australis Tommy round-head 3 2 Physignathus lesuerii Eastern water dragon 1 Pogona barbata Bearded dragon 1 4 Colubridae Dendrelaphis punctulata Common tree snake 1 Elapidae Pseudechis porphyriacus Red-bellied black snake 1 Gekkonidae Diplodactylus vittatus Eastern stone gecko 6 Pygopodidae Lialis burtonis Burton's snake-lizard 1 Pythonidae Morelia spilota Carpet python 1 Scincidae Anamalopus verreauxii Verreaux's skink 2 Native Calyptotis scutirostrum Scute-snouted calyptotis skink 27 Reptiles Carlia foliorum Tree-base litter-skink 3 2 Carlia pectoralis Open-litter rainbow skink 1 4 Carlia vivax Storr's rainbow skink 7 6 Cryptoblepharus virgatus Fence skink 14 5 Ctenotus taeniolatus Copper-tailed skink 2 Eulamprus quoyii Eastern water skink 1 amicula Secretive skink 2 1 Lampropholis delicata Garden skink 54 1 4 Varanidae Varanus varius Lace monitor 5

65

14 (a) 12

10 8

6

4 Species No. Total 2

0

Scat Cage trap Cage Elliott trap

funnel Hair Pit-fall trap Observation Survey Method

14 (b) 12

10 8 6 4

Species Unique No. 2 0

Scat Cage trap Cage Elliott trap Hair funnel Hair Pit-fall trap Observation Survey Method Figure 3.3 .Surveymethoddetectionsuccess.(a)Totalnumberofspeciesdetectedbyeach surveymethod,and(b)totalnumberofuniquespeciesdetectedbyeachsurveymethod. Reptiles; Mammals.

66

Cagetraps

2568potentialcaptures(i.e.321trapnightsx8cagetraps)produced278successfulcaptures

(capturesuccess=10.8%).Targetreptileandmammalspeciescomprised6.8%( n =19)of thetotalcagetrapcaptures.Collectively,thesespeciesrepresentedthreefamilygroupsand fourspecies(Table3.1).Withtheexceptionofonereptilecapture(carpetpython, Morelia spilota )alltargetspeciescapturedbythismethodweremediumsizedmammals.The northernbrownbandicoot( Isoodonmacrourus )wasthemostcommonlycapturedtarget mammal( n =14across7sites).Bushrats( Rattusfuscipes )werecapturedontwonightsata singlesite,andtheswamprat( Rattuslutreolus )andcarpetpythonwereidentifiedatonesite each,fromasinglecapture.Thebushrat,swamprat,andcarpetpythonwerenotdetectedby anyothersurveymethod(Table3.1).

Capturesofnontargetspeciesincluded:thecommonbrushtailpossum( Trichosurus vulpecula )( n =124),exoticblackrat( Rattusrattus )( n =100),introducedcanetoad( Bufo marinus )( n =26),Australianmagpie( Gymnorhinatibicen )( n =6),greybutcherbird

(Cracticustorquatus )( n =2),andTorresiancrow( Corvusorru )( n =1).Overall,cagetraps werefoundclosedwithoutcaptures7.2%ofthetime( n =184).

Elliotttraps

Atotalof3210potentialElliotttrapcapturesproduced55capturesforanoveralltrapcapture successof1.7%.Ofthesecaptures,34.5%( n =19)weretargetspeciesthatrepresentedtwo mammalspeciesfromtheDasyuridaefamily(Table3.1).Commondunnarts( Sminthopsis murina )werecapturedmorefrequentlyandacrossagreaternumberofsites( n =12across

67 sevensites)thanyellowfootedantechinus( Antechinusflavipes )( n =7acrossfoursites).

Bothspeciesweredetectedonlybythismethod(Table3.1).Nontargetspeciescapturedby

Elliotttrapsincluded:canetoads( n =16),housemouse( Musmusculus )( n =14),giantwhite kneedkingcricket( Australostomaaustralasiae )( n =4),centipede( n =1),andajuvenile commonbrushtailpossum( n =1).Elliotttrapswerefoundclosedwithoutcaptures4.1%of thetime( n =133).

Pitfalltraps

The550pitfalltrapsusedduringthesurveyperiodwereleftopenthroughoutsurveycycles, andwerecheckedtwicedailyforcaptures(i.e.fivechecksperbucket,persurveycycle), givingatotalof2750possibleidentificationopportunitiesoverthetotalsurveyperiod.Of theseopportunities,142or5.1%weresuccessfulforidentifyingvertebratespecies.Ofthese,

12weretargetreptilespeciesrepresentingthreefamilies,andonewasatargetmammal species(Table3.1).Thereptilespeciescapturedweremostlysmallbodiedskinksandlizards, butalsoincludedonejuvenileofalargerbodiedagamid(beardeddragon, Pogonabarbata ).

Fourreptilespecieswerenotdetectedbyanyothermethod:Verreaux’sskink( Anamalopus verreauxii ),scutesnoutedcalyptotisskink( Calyptotisscutirostrum ),coppertailedskink

(Ctenotustaeniolatus ),andeasternstonegecko( Diplodactylusvittatus )(Table3.1).Theonly mammalspeciescapturedinpitfalltrapswasthecommonplanigale( Planigalemaculata ), whichwasidentifiedfromtwocapturesofindividualsattwodifferentsites.Thecommon planigalewasdetectedduringsurveysbythismethodonly(Table3.1).

68

Nontargetspeciescapturesinpitfalltrapswerecommonlyinvertebratespeciessuchasants, spiders,snails,andcrickets.Nontargetvertebratebycaptureswereallamphibians:cane toads( n =16),ornateburrowingfrogs( Limnodynastesornatus )( n =7),andcopperbacked broodfrogs( Pseudophryneraveni )( n =5).

Hairfunnels

Overthetotal321trapnights,atotalof330waferswereused(threeforeachsitesurvey).Of these330wafers,84(25.5%)returnedhairsamples,17(20.2%)ofwhichcontainedhairthat wasidentifiabletothespecieslevel,withsevenoftheserepresentingtargetspecies.Three targetmammalspecieswerepositivelyidentifiedfromhairsamples:subtropicalantechinus

(Antechinussubtropicus ),northernbrownbandicoot( Isoodonmacrourus ),andlongnosed bandicoot( Peramelesnasuta ).Thesubtropicalantechinusandlongnosedbandicootwere identifiedonlybythismethod(Table3.1).Althoughhairfunnelsspecificallytargetmammal species,alivereptilebycatchofasinglegardenskink( Lampropholisdelicata )wasfoundon onewaferatonesite.

Directobservationsandscatanalyses

Opportunisticspeciesidentificationsthroughdirectobservations,andscatcollectionand analyses,respectivelyidentifiedatotalof14targetreptilespeciesandtwotargetmammal species(Table3.1).Directobservationsidentifiedsixreptilespeciesnotdetectedbyanyother method(Table3.1).Fiftyscatsampleswerecollected,60%(n=30)ofwhichwereidentified as‘definite’species,butonlyonewasatargetspecies(Table3.1).Theothertargetmammal identifiedfromscatsampleswasa Melomysspp. ,andwasonlyabletobe‘definitely’

69 identifiedtothegenuslevel(Table3.1),althoughthegrasslandmelomys( Mburtoni )was considered‘probable’.Asthiswastheonlydetectionofarepresentativespeciesfromthis genus,thegenusrecordwasincludedinsubsequentanalyses.

3.4.3. Cost of Detection Methods

Thereweresubstantialvariationsincostamongthesurveymethods.Totalcoststosurveya siteovertheentiresurveyperiodrangedfrom$4807forhairfunnelsto$12284forcagetraps

(Figure3.4a).ThemostexpensivemethodsaftercagetrappingwereElliotttrapping

($11953),followedbypitfalltrapping($10067),scatdetectionandanalysis($7703),and directobservation($7453)(Figure3.4a).Thelargestproportionsofcostforeachmethod wereattributedtotravelandpersonnelexpenses(Figure3.4b).Travelexpensescomprised roughly60%ofthetotalcostsforscatdetectionanddirectobservations(65.4%and67.6%, respectively),53.6%ofthetotalcostforpitfalltrapping,approximately40%forcageand

Elliotttrapping(41%and42.2%,respectively),and35%forhairfunnels(Figure3.4b).

Personnelexpensescomprisedjustover50%ofthetotalcostsforcageandElliotttrapping

(52.8%and53.8%,respectively),41.8%ofthecostsforhairfunnels,andbetween3040%for pitfalltrapping,directobservations,andscatdetection(37.5%,32.4%,and31.3%, respectively)(Figure3.4b).Equipmentcostsincurredthehighestproportionoftotalcostsfor hairfunnels(14.9%oftotalcost)duetonewwafersbeingrequiredforeachsitesurvey

(Figure3.4b).Operatingcostsalsorepresentedthehighestproportionofoverallcostsforhair funnels,duetothecombinationofbaitandhairanalysisexpenses(Figure3.4b).Direct observationsandscatdetectionincurrednoequipmentcosts,andnooperatingcostswere involvedwithpitfalltrappinganddirectobservations.

70

(a) $14,000

$12,000

$10,000

$8,000 $6,000 Cost ($) Cost $4,000

$2,000

$0 Scat Cage trap Cage trap Elliott Pit-fall trap Pit-fall funnel Hair Observation Survey method

(b) 100%

80%

60%

40%

Proportion of total cost total of Proportion 20%

0% Scat Cage trap Cage trap Elliott Pit-fall trap Pit-fall funnel Hair Observation Survey Method

Figure 3.4. RelativecostofeachsurveymethodinisolationasusedduringtheBrisbanecase study.(a)Totalcostforeachmethodtosurveyallsitesovertheentiresurveyperiod;(b) Proportionoftotalcostforeachmethodforexpensesrelatingto: personnel, equipment, bait/analysis,and travel.Equipmentcostsarecalculatedata20%depreciationrateofthe 2004purchaseprice.

71

3.4.4. Effectiveness and Cost Efficiency

Overall,pitfalltrappingwasthemosteffectiveandcostefficientsurveymethod,detecting boththehighestnumberofspecies( n =0.012),andcaptures( n =0.0206),perdollar(Figure

3.5a).Directobservations,followedbyhairfunnelswerethenextmostsuccessfuland efficientsurveymethods(Figure3.5a).Elliotttrapsandcagetrapswereroughlysimilarin theircostperspeciesandcostpercapture,andalthoughtheiraveragecapturesuccesspersite werebothsimilartohairfunnels,theybothdetectedfewerspeciesperdollarthandidhair funnels(Figure3.5a).Comparatively,scatdetection/analysishadthelowestdetectionsuccess formoneyspent,with0.0007detectionsperdollar(Figure3.5a).

Forreptiles,themostsuccessfulsurveymethodsmirroredthoseforoveralldetectioncosts, withpitfalltrapsfollowedbydirectobservationsproducingthehighestspeciesdetection( n =

0.0117and0.008,respectively)andcapturesuccess( n =0.0202and0.0088,respectively)per dollar(Figure3.5b).Directobservationperdollarvaluesforthenumberofspeciesdetected andthenumberofindividualscapturedwereequaltothoseshowninFigure3.5a,asmammals werenotdetectedusingthismethod(Figure3.3a).Theremainingfourmethodsfailedto detectreptiles,withtheexceptionofasinglebycatchinonehairfunnelandonecagetrap.

Formammals,hairfunnels,Elliotttrapping,andcagetrappingallreturnedroughlyequivalent individualcapturesperdollar( n =0.0031,0.003,0.0027,respectively),buttherewere substantialdifferencesbetweenthenumberofspeciesdetectedbyeachmethod(Figure3.5c).

Hairfunnelsdetectedthemostnumberofspeciesperdollar( n =0.0027),followedbyElliott trapping( n =0.0019),andthencagetrapping( n=0.0014)(Figure3.5c).Thisimpliesthat hairfunnelsincurredthelowestcostperspeciesdetectedandpercapture.Incomparison,scat

72

2.5 (a) 2.0 1.5

1.0

Av. Species / $100 / Species Av. 0.5

0.0 Scat Cage trap Cage Pitfall trap Pitfall Elliott trap Elliott Hair funnel Hair Observation Survey Method

(b) 2.5

2.0

1.5

1.0

0.5 Av. Reptile Spp. / $100 / Spp. Reptile Av. 0.0 Scat Cage trap Cage Pitfall trap Pitfall

trap Elliott Hair funnel Hair Observation Survey Method (c) 0.35 0.3 0.25 0.2 0.15 0.1

Av. Mammal Spp. / $100 $100 / Spp. Mammal Av. 0.05 0

Scat Cage trap Cage Pitfall trap Pitfall Elliott trap Elliott Hair funnel Hair Observation Survey Method

Figure 3.5. Optimalsurveymethods,calculatedastheaveragespeciesdetectionandcapture successofeachsurveymethodpersite,perdollar.Forclarity,thecostofsuccessisshownas successperhundreddollarsfor:(a)alltargetspecies;(b)reptilespecies;and(c)mammal species.Forallgraphs: averagenumberofspeciesdetected; averagenumberofcaptures.

73 detection/analysisandpitfalltrappingincurredhighercostsperspeciesdetectionand individualcapturethantheothermethods,withtheexceptionofdirectobservationswhich werenotusefulfordetectinganytargetmammalspecies.

3.5. DISCUSSION

Theselectionoffaunasurveymethodswillvarydependingonthespecies/taxaofinterest,the habitat/topographyofsurveysites,andthefinancial,resource,andtimeconstraintsofthe project.Consequently,itisdifficulttorecommendaparticularmethodorcombinationof methodsthatwillbesuitableforallsurveyprojects.However,giventhethousandsofdollars spentonterrestrialsurveyseachyear,itisusefultoknowthecostsanddetection successes/failuresofpreviousstudiesinordertofacilitateinformedmethodselectioninfuture surveys.

Thefollowingsectiondiscussesthesuccessandcostefficiencyofthesurveymethodsused duringtheBrisbanecasestudysurveyofnativeterrestrialreptilesandsmallmammals.Our findingsarenotpresentedasadefinitive,‘bestchoice’ofsurveymethodsforallfuture surveys,butrather,asacomparisonforimprovingmethodselectioninfuturesurveys.We recommendthatallresearchersshouldreportonthesuccessesandcostsofindependentfauna surveysinordertobroadenourunderstandingofusefulandcostefficienttrapping combinationsfordifferentspeciesandwithinvarioushabitattypes.Doingsowillbe importantforrefiningthesurveymethodselectionprocess.

74

Noonesurveymethodindependentlydetectedallspeciesrecordedduringthesurveys,and eachmethodwasimportantfordetectingbetween1–6speciesthatwerenotdetectedbyany othermethod.Thereweredistinctbiasesbetweenmethodsintermsofthefaunagroups

(reptilesvs.mammals)mostsuccessfullydetected.Pitfalltrapsanddirectobservationswere moresuccessfulindetectingreptilespecies,whereashairfunnels,cagetraps,Elliotttraps,and scatdetection/analysis,weremoreusefulfordetectingmammalspecies.Suchdifferencesin effectivenesscorrespondwiththepurposeforwhicheachmethodwasdesigned(Sutherland

1996a),andfurthersupportstheconclusionbyLaurence(1992),thattheuseofonlyasingle methodinfaunacommunitysurveyswill“…bebiasedtowardanonrandomsubsetofspecies inthecommunity...”(p.654).Therefore,whensurveyingfaunacommunities,webelieveitis essentialthatacombinationofsurveymethodsisemployedinordertoadequatelysamplea rangeofspecies.Thisfindingisalsoconsistentwithpreviousstudiesthathaveadvocatedthe useofacombinationoftechniquesforsurveyingarangeofwildlifespecies(e.g.,Mengakand

Guynn1987;Catlingetal.1997;Lindenmayeretal.1999).Giventherangeofpossible surveymethods,coupledwithcommonlylimitingsurveyresources,itisusefultoknownot onlywhichmethodcombinationshavebeensuccessfulinpreviousstudies,butalso,which werethemostcosteffective.

Wefoundaconsiderabledifferenceamongsurveymethodsintermsofthecostrequiredfor detectinggrounddwellingmammalandreptilespecies.However,thesecalculationswere basedonthecomplementoftrapsusedduringtheBrisbanecasestudyand,therefore,costsare likelytovaryinotherstudiesdependingonsurveydesign(i.e.thenumberoftrapsandsites, durationofactivesearches,andnumberofdayssurveyed),personnelcosts,distancetosurvey sitesandassociatedtransportcosts,andvaryingcostsforconsumables(e.g.,baitingredients,

75 equipmentpurchase/hire).Tohelpprovideadirectcomparisonbetweenthesuccessandcost ofeachsurveymethod,successwasinterpretedintermsof‘valueformoney’(i.e.,theaverage numberofspeciesdetectedandindividualcapturesperdollarforeachsurveymethod).We foundthatthemethodsthatweremostsuccessfulfordetectingreptilesandmammals,were oftenthosethatdetectedthemostmammalandreptilespeciesandindividualcapturesatthe leastcost.

3.5.1. Reptiles

Basedontheresultsofthisstudy,themosteffectivetrappingmethodsforterrestrialreptile surveysareacombinationofpitfalltrapsanddirectobservations.Despitebeing opportunisticratherthanstandardised,directobservationsdetectedmoreoverallreptile species,aswellasmoreuniquespeciesthanpitfalltrapping.However,pitfalltrapping producedthehighestoverallspeciesdetectionandcapturesuccessfortheleastamountof money.Theuniquespeciesdetectedbyeachofthesemethodswasbiasedbybodysizeand behaviour.Largebodiedreptilessuchaslacemonitors,snakes,anddragonsthatwere unlikelytobecapturedinpitfalltrapsweremorefrequentlydetectedbydirectobservation.

Incomparison,thespeciesdetectedbypitfalltrapsweresmallbodied,cryptic,nocturnal, and/orfossorialreptilessuchassmallskinks,easternstonegeckos,andVerreaux’sskinks.

Further,therelativespeciesdetectionsuccessofpitfalltrapsisexpectedtohavebeeneven greaterthandirectobservationshaditbeenpossibletousedriftfencesandlargertraps

(buckets).Crosswhiteetal.(1999),forinstance,showedthatmorereptileswerecaptured usingpitfalltrapscombinedwithdriftfencesthanthroughactivesearches,andCatlingetal.

76

(1997)concludedthatincreasingthesizeofthebucketsusedaspitfalltrapswouldlikely haveincreasedthecapturesuccessoflargerbodiedspeciesthatwereabletootherwiseescape.

However,increasingthetrapsizeand/orincorporatingdriftfenceswouldalsohaveincreased thecostsassociatedwithpitfalltrapping.

Similarly,giventhatalldirectobservationswereopportunistic,itmaybeexpectedthata dedicated,timeconstrainedactivesearchperiodwouldhaveidentifiedadditionalspecies.

However,inaccordancewithreportsbyCrosswhiteetal.(1999)andRyanetal.(2002),pit falltrappingisstilllikelytohavedetectedthehighestnumberofoverallspeciesandcaptures.

Furthermore,additionalcostsandlimitationsassociatedwithpersonneltimeandexperienceis likelytoinfluencetheaccuracyofactivesearchresults,therebypotentiallyoffsettingany increaseinspeciesdetectionsthroughtimeconstrainedsearches(Crosswhiteetal.1999;

Silveiraetal.2003).

Basedonthecostefficiencyanddetectionsuccessofpitfalltrappinganddirectobservations, pitfalltrappingwasthebesttechniqueintheBrisbanestudyforsurveyingsmallbodied terrestrialreptiles.Forfuturestudies,wherehabitatsandbudgetsallow,driftfencesshould alsobeusedtoincreasecapturesuccess(Friendetal.1989; MosebyandRead2001).The largerbodiedreptiles,however,werebestdetectedbydirectobservations.Therefore,for surveyingterrestrialreptilecommunities,aswastheaimintheBrisbanestudy,pitfalltraps anddirectobservationswerethebestcombinationofsurveymethodsfordetectingthehighest numberoftotalspecies,perdollar.Furthermore,whenusedincombination,thetravelcosts wereapproximately50%lessthanthatcalculatedindependentlyforeachsurveymethod.This

77 maycompensateforincreasedexpensesassociatedwiththeinclusionofdriftfencesand standardisedsearchtimes.

3.5.2. Mammals

Mammalspeciesweredetectedbyfiveofthesixsurveymethods.Optimumtrappingmethods forterrestrial,smallandmediumsizedmammalsurveyswerehairfunnels,followedby

Elliotttrapping,cagetrapping,andthenscatanalysisandpitfalltrapping.Althoughhair funnels,Elliotttraps,andcagetrapsalldetectedthesamenumberofuniquespecies,thecost effectivenessofthesecapturesvariedconsiderably.Hairfunnelswerethemosteconomical methodfortargetingmammals,detectingmorespeciesandcapturesperdollarthantheother surveymethods.Therelativecosteffectivenessofhairfunnelsismostlikelyrelatedtothe advantagesthismethodhasoverlivetrappingmethodsinbeinglesslabourintensive,ableto detectmorethanonespeciesorindividualperfunnel,andabletocapturehairfromspeciesof variousbodysizes(Lindenmayeretal.1999;Millsetal.2002).However,unlikelivetrapping methods,differentiatingbetweenindividualsofthesamespeciesisnotpossibleusinghair funnels,therebylimitingtheusefulnessofthismethodforsurveysaimedatdetermining speciesabundance.Furthermore,accuratelyidentifyinghairsamplestothespecieslevelisa difficultprocessthatissusceptibletohairsampleseitherbeingincorrectlyidentifiedorunable tobeidentified.Lobertetal.(2001),forinstance,testedtheaccuracyofhairidentificationby twoindependentexpertsandfoundthatalmosthalfofthesamplesanalysedinvolvedsome degreeofidentificationerror.Furthermore,theidentificationofdoghairfromahairfunnel usedinLindenmayeretal.’s(1999)studywasquestionablegiventhehairsamplewasfroman arborealfunnel(seealso:KavanaghandStanton1998).However,thedefinitespecies

78 identificationsfromhairsamplescollectedduringtheBrisbanestudywereconsidered reasonablebasedonspecieshabitatrequirementsandrange,aswellastheextensive experienceofbothexperts.Theonlyspeciesidentificationthatwasslightlyquestionablewas thesubtropicalantechinus,whichisgenerallyconsideredtobearainforestspecies.However, thehairsampleswerereanalysedseveraltimesandtheexpertwasconfidentwiththe identificationeachtime.

Therewereclearassociationsbetweenthebodysizeofmammalsandthesuccessofthe methodsfordetectingdifferentspecies.Elliotttraps,giventheirsize,detectedonlysmall bodiedmammalspecies,withtheexceptionofasinglebycatchofajuvenilebrushtailpossum atonesite.Similarly,smallbodiedspecies,suchasdunnartsandantechinuswerenot capturedincagetraps,probablyduetothelowersensitivityofcagetraptreddlesandthelight weightofsmallbodiedspecies.Cagetrapswere,however,successfulincapturingmedium sizedspeciessuchasrodentsandbandicoots,whosebodysizepreventedcapturesinElliott traps.Duetotheirtapereddesignandlargesurfaceareaforcapturinghairsamples,hair funnelsdetectedbothmediumandsmallbodiedterrestrialmammals,includingspeciesnot capturedbylivetrappingmethods(e.g.,longnosedbandicootandsubtropicalantechinus).

Furthermore,althoughmorecommonlyusedforreptilesurveys,pitfalltrappingwastheonly methodtodetecttheoccurrenceofplanigalesduringthisstudy.Thisisconsistentwith previousstudiesthathavefoundpitfalltrapstobeusefulfordetectingsmall,elusivemammal speciesthatrarelyenterothertraps(e.g.,Milledge1991;Laurance1992;Catlingetal.1997;

MenkhorstandKnight2001;Clemannetal.2005).Theuseofdeeperpitfallbucketsin conjunctionwithdriftfencesmayhaveincreasedthenumberofsmallmammalsdetectedby

79 thismethod.Thismay,however,haveinfluencedtheidentificationofreptilespeciescaptured inpitfallbuckets,ifcapturedreptileswerepredatedbysmallcarnivorousmammals.

Consequently,althoughonlysuccessfulfordetectingplanigalesintheBrisbanecasestudy, pitfalltrapsmaybeusefulinothersurveysthataretargetingsmall,elusivemammals,but maybesomewhatcounterproductiveifreptilesarealsobeingtargeted.

Scatdetectionandanalysisalsoidentifiedonesmallmammal( Melomysspp. )notdetectedby anyothermethod.However,thesescatsampleswerenotabletobepositivelyidentifiedtothe specieslevel,sufferingthesameanalysisdifficultiesashairsampleidentifications.Basedon ourresults,bothpitfalltrappingandscatdetection/analysismethodswouldrequirea substantialcostoutlayinordertodetectasmanyspeciesandindividualcapturesastheother methods.Assuch,thesemethodsareconsideredmostusefulascomplementary,ratherthan primary,surveymethods.Iftheyhadnotbeenincluded,twospecieswouldnothavebeen detected.However,thefundingallocatedtothesemethodscouldhavebeenusedtoincrease thesurveyintensityofmoreoptimalsurveymethods,orexploringtheuseofadditionalbait types,suchasmeatproducts,tohelpincreasetherangeofspeciesdetected(e.g.,herbivores, omnivores,andcarnivores)(Laurance1992;Millsetal.2002).Suchtradeoffsareimportant considerationsforfuturestudies.

3.5.3. Conclusion

Althoughtangentialtotheprimaryaimofthelargerresearchproject,theinformation presentedinthispaperabouttrappingsuccessandcostefficiencyisimportantforbroadening ourunderstandingofeffectiveandefficientsurveymethods.Weurgeotherresearchersto alsoreporttheirsurveydesign,costoutput,anddetectionsuccessesandfailures.Further, 80 surveysdesignedtoexplicitlydetermineoptimalcombinationsofsurveymethodsfordifferent speciesandwithinvarioushabitattypeswillbeavaluablecontributiontothecurrent knowledgebase.

81

(a) Grassland melomys (Melomysburtoni ) • Family:Muridae • Selectiveomnivore,nocturnalrodent. • Sizerange:HBL90160mm,TL90175mm,26124g • Distribution:Queensland,NewSouthWales,Northern Territory,WesternAustralia. • InBrisbane:rarelyencountered,restrictedtosuitable remnanthabitatinperiurbanlandscapes. Photofrom: http://www.griffith.edu.au/centre/cics/content/members/Castley.htm (b) Tommy round -head (Diporiphoraaustralis ) • Family:Agamidae • Insectivorous,diurnaldragon. • Averagesize:SVL50mm. • Distribution:Queensland. • InBrisbane:restrictedtosuitableremnantbushland habitatinperiurbanlandscapes. InthisphotoaTommyroundheadisbaskingonafiredamagedlog. (c) Eastern water dragon (Physignathuslesuerii ) • Family:Agamidae • Omnivorous,diurnaldragon. • Averagesize:SVL245mm. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia. • InBrisbane:abundantalongwaterways,includingin innersuburbs. PhotobyIanJardine Photofrom: http://www.benel.com/powershot/potw2.php?weeknum=200318 (d) Eastern bearded dragon (Pogonabarbata ) • Family:Agamidae • Omnivorous,diurnaldragon. • Averagesize:250mm • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia • InBrisbane:abundantinbushlandandurbangardens, includingininnersuburbs Inthisphoto,abeardeddragonisbaskingonalargeloginremnanthabitat. Plate 4.Melomysanddragons:(a)Grasslandmelomys;(b)Tommyroundhead;(c)Eastern waterdragon;(d)Beardeddragon.

82

Chapter 4

HABITAT STRUCTURE IS MORE IMPORTANT THAN

VEGETATION COMPOSITION FOR LOCAL-LEVEL

MANAGEMENT OF NATIVE TERRESTRIAL REPTILE AND

SMALL MAMMAL SPECIES LIVING IN URBAN REMNANTS:

A CASE STUDY FROM BRISBANE, AUSTRALIA

Citation:GardenJ.G.,McAlpineC.A.,Possingham,H.P.,Jones,D.N.(inpress)Habitat

structureismoreimportantthanvegetationcompositionforlocallevelmanagementofnative

terrestrialreptileandsmallmammalspecieslivinginurbanremnants:Acasestudyfrom

Brisbane,Australia.AustralEcology.

4.1. ABSTRACT

Asurbanareascontinuetoexpandandreplacenaturalandagriculturallandscapes,theability tomanageandconservenativewildlifewithinurbanenvironmentsisbecomingincreasingly important.Todosowefirstneedtounderstandspeciesresponsestolocallevelhabitat attributesinordertoinformthedecisionmakingprocessandongroundconservationactions.

Patternsintheoccurrenceofnativeterrestrialreptileandsmallmammalspeciesin59sites

83 locatedinremnanturbanhabitatfragmentsofBrisbaneCitywereassessedagainstlocallevel environmentalcharacteristicsofeachsite.Clusteranalysis,multidimensionalscaling ordination,andprincipalaxiscorrelationwereusedtoinvestigaterelationshipsbetween speciesoccurrencesandenvironmentalcharacteristics.Nativereptilesweremoststrongly associatedwiththepresenceoftermitemounds,ahighamountoffallenwoodymaterialanda moderateamountofweedcover.Nativesmallmammalsweremoststronglyassociatedwith thepresenceofgrasstrees( Xanthorrhoeaspp. ),andbothreptilesandsmallmammalswere negativelyinfluencedbyincreasedsoilcompaction.Significantfloristiccharacteristicswere consideredtobeimportantasstructural,ratherthancompositional,habitatelements.

Therefore,habitatstructure,ratherthanvegetationcomposition,appearstobemostimportant fordeterminingnative,terrestrialreptileandsmallmammalspeciesassemblagesinurban forestfragments.Wediscussthemanagementimplicationsinrelationtohumandisturbances andlocallevelmanagementofurbanremnants.

Key Words: Grasstrees,fallenwood,termitemounds,soilcompaction,weedcover, ordination,management.

4.2. INTRODUCTION

Overthepast50years,habitatlossandfragmentationhavehadthegreatestinfluenceon terrestrialecosystemsandbiodiversityworldwide(Salaetal.2000;MillenniumEcosystem

Assessment2005).Agriculturallandusehaspreviouslybeenregardedastheprimarycauseof habitatlossandfragmentation,yetasareasofsuitablearablelandareexhausted,agricultural

84 expansionisdeclining(MillenniumEcosystemAssessment2005).Comparatively,urban developmentisexpandingrapidly,encroachingonagriculturalandnatural,nonarable, landscapes(LeviaandPage2000;Lugo2002).Itthereforeseemslikelythaturban developmentwillsurpassagriculturallanduseastheprimaryanthropogenicdriveroflanduse change,andhabitatlossandfragmentation.

Areasdeemedsuitableforurbandevelopmentoftencoincidewiththoseareasthatalsosupport highnativespeciesrichnessandendemism(Lugo2002).Theimpactsofurbanisationon faunapopulationsaremulticausalandmultiscaled,alteringthe insitu structureand compositionofhabitatfragments,aswellastheirspatialpatterningwithinthelandscape context.Thesehabitatmodificationspotentiallyhaveimportantconsequencesforconcomitant faunaassemblages,withsignificantdifferencesbeingapparentbetweenurbanandpreurban assemblages(JonesandWieneke2000,vanderRee2004,Taitetal. 2005).Withintheurban matrix,introducedspeciesandahandfulofnativegeneralistspeciestendtodominate,whilst habitatanddietaryspecialistsandmigratoryspeciestendtodeclineinnumbersorbecome locallyextinct(HowandDell1993,2000;WhiteandBurgin2004;Taitetal.2005).

ThisproblemisparticularlypertinenttoAustralia,wheremorethan92%ofthehuman populationcurrentlyresidesinurbanareas(UnitedNations2006).Fornativefauna assemblages,nativeterrestrialreptileandsmallmammalspeciesareconsideredtobethe faunagroupsmostsensitivetourbanisationanditsassociateddisturbances(HowandDell

1993,1994,2000;vanderRee2004;WhiteandBurgin2004;Taitetal.2005).Although manynativemammalsandreptilesarenegativelyinfluencedbyurbandevelopment,some nativemammalandreptilespecies,suchasthecommonbrushtailpossum( Trichosurus

85 vulpecula ),bluetonguelizard( Tiliquascincoides ),andfenceskink( Cryptoblepharus virgatus )mayadapt,andeventhrive,withinthebuiltenvironment(Koenigetal.2002;

Matthewsetal.2004;Gardenetal.2006).Incontrast,urbansensitivespecies(e.g.,dunnarts,

Sminthopsis spp. ,antechinus, Antechinusspp. ,geckos,andlargereptiles)facesignificant dispersal,predatoravoidance,andresourceadaptationchallengeswithinthehumandominated urbanmatrix.Consequently,theseurbansensitivespeciesarerestrictedtotheoftenisolated, remnantnativevegetationpatchesthatoccurwithintheurbanmatrixorinthefringingperi urbanlandscapes(HowandDell1993,1994;Taitetal. 2005;Gardenetal.2006).

Effectiveconservationinurbanremnantsrequiresscientificknowledgeunderpinning managementdecisionsandongroundactions.Muchofthecurrentavailablescientific knowledgeisbasedonnonurbanecologicalresearch(Gardenetal. 2006).Innonurban environmentsthereisastrongglobalconsensusthat,regardlessofthedisturbancepressure, manynativereptileandsmallmammalspeciesdependmoreonstructurallycomplexhabitats, thancompositionallydiversefloristics(e.g.,Bennett1993;Southgateetal.1996;Flemming andLoveridge2003;LendersandDaamen2004;Spenceretal.2005;Kanowskietal.2006).

SimilarfindingshavealsobeenreportedfornativespecieswithinAustralianurbanlandscapes

(e.g.,Dufty1994;Jellineketal.2004;WhiteandBurgin2004).Although,Fischeretal.

(2003)andJellineketal.(2004)foundthatvegetationcomposition,inadditiontostructure, wasimportantforreptilespeciesingrazedandurbanaffectedhabitats.Incontrast,Wilsonet al.(1986)reportedthatwithincoastalheathlandsofVictoria,severalnativerodentand dasyuridspeciesdisplayednofloristicorvegetationstructuralpreferences.

86

Suchdiscrepanciesinresearchfindings,coupledwiththedistinctlackofurbanbased ecologicalresearch(Gardenetal.2006),limitourabilitytomakegeneralisationsaboutthe habitatrequirementsofurbanreptilesandsmallmammals,andhencemanagement recommendations.Thislimitationisfurthercompoundedbydifferencesinthetype,rateand intensityofdisturbanceswithinurbanlandscapescomparedtononurbanlandscapes.A furthercomplicationisthelargevariationinhabitatrequirementsamongspecies(e.g.,Jellinek etal.2004;MonamyandFox2005),butalsowithinspeciesaccordingtoage.Forexample, althoughFischeretal.(2003)foundthatfourfingeredskinks( Carliatetradactyla )responded tohabitatstructureandcompositioningrazingaffectedlandscapes,theyalsofoundthatthe relativeimportanceofdifferentattributesvariedbetweenjuvenilesandadults.Consequently,

Australianurbanconservationmanagersfacesignificantuncertaintyregardingthemost appropriatemanagementstrategiesforachievinglongtermconservationoutcomesfora diversityofnativefaunaspecies.

Ifnativefaunadiversityistobeconservedinthefaceofrapidurbanexpansion,itisvitalthat weunderstandthehabitatrequirementsandsensitivitiesofspecieslivingwithinurban remnants.Thisrequiresunderstandinghowbothspeciescompositionandspeciesrichnessare influencedbylocallevelhabitatfactors.However,locallevelhabitatmanagementisoften focussedonmaintainingoverallspeciesdiversitywithinthelandscapebymanaginghabitat patchessothatcurrentconcomitantassemblagesofnativefaunaareconservedbeforethey becomelocallyextinct,therebyavoidingtheneedforexpensivereintroductionprograms.

Conservingnativefaunainurbanlandscapesfirstrequiresunderstandingwhatlocalor insitu factorsareimportantformaintainingdiverseassemblagesofnativefauna.Thisknowledge maythenbyusedtoinformurbanconservationmanagersandplannersaboutpriorityhabitat

87 managementdecisionsandactivitiessothatnativefaunaoccupyingurbanhabitatfragments areadequatelyconserved.Thiswasthefocusofourstudy.

Thispaperinvestigatedcorrelationsbetweenthecompositionofnativeterrestrialreptileand smallmammalfaunawithinurbanhabitatfragmentsandlocallevel(<1ha)habitatfactors suchashabitatstructure,vegetationcomposition,fireandhumandisturbances.Thesehabitat factorswereconsideredecologicallyimportantforthetargetspeciesandalsocanbe manipulatedandmanagedbyconservationmanagers.Investigationswerebasedinurban habitatfragmentslocatedwithintheBrisbaneCityCouncil(BCC)localgovernmentarea, wherelocalgovernmentisresponsibleforsettingwithinpatchmanagementprioritiesand actions.Weappliedclusteranalysis,multidimensionalscalingandprincipalaxiscorrelation toidentifysignificanthabitatattributesandexaminetheirimportanceforreptileandsmall mammalassemblages.Mammalandreptileassemblageswereanalysedseparately.Basedon ourfindings,wediscusstheimplicationsforconservationmanagementwithinBrisbaneCity.

4.3. METHODS

4.3.1. Study Area

ThestudyfocusedonQueensland’scapitalcity,Brisbane(153º2’S,27ºE;area1,220km 2, population~1million)(Figure4.1).BrisbanehasasubtropicalclimateandisAustralia’s thirdlargestandmostrapidlygrowingcapitalcity(CommonwealthofAustralia2003a).Since

Europeansettlementintheearly1800sapproximatelytwothirdsoftheoriginalwoody vegetationhasbeenclearedforagricultural,industrialand/orurbandevelopmentpurposes

88

(BrisbaneCityCouncil2001).Morethan80%ofthisclearingwasoflowlandforests(<100 mfromsealevel)resultinginthecurrent,highlyfragmentedandisolatedlowlandremnant vegetationpatchesthatvaryintheirinternalconditionanddisturbanceandmanagement histories(BrisbaneCityCouncil2001;CatterallandKingston1993).Oftheremaining33% remnantvegetationcover,about20%isprotectedforconservationpurposes,yetmuchofthis areaisconcentratedincontiguousforestonthecity’soutskirts,particularlyintheD’Aguilar rangestothewest(BrisbaneCityCouncil2001).

(b) (a)

Main roads Remnant vegetation Central business district (CBD) Survey areas

Figure 4.1. (a)LocationofBrisbaneCityCouncil(BCC)localgovernmentarea(LGA)on Queensland’ssoutheastcoast.(b)MapofBCCLGAshowingthelocationofthesurvey areasinrelationtotheCBD.Remnantvegetationandmajorroadsarealsoshown(Source dataprovidedbyBrisbaneCityCouncil).

Contemporaryurbangrowthhasconcentratedalongmajortransportnetworkstothenorth, southandsouthwest,withcoastalwetlandsandMoretonBaytotheeastandmountainranges

89 tothewestconstrainingurbanexpansioninthesedirections.Accordingly,thehighest concentrationofurbandevelopmentpressurecurrentlyoccursinthelowlandoutersuburbsto

Brisbane’ssouthandsoutheast(BrisbaneCityCouncil2001).Despiterecentrapidurban expansionandsubsequenthabitatdestructionandmodification,Brisbanestillsupportshigh floristicandfaunaldiversityandendemism,boastingthehighestdiversityofnativevertebrate speciesofanyofAustralia’scapitalcities(QueenslandMuseum1995).However,intheface ofrapidurbanisation,thecontinuedpersistenceofthisspeciesdiversityisuncertain.Our studyfocusedonlowlandremnanthabitatfragmentssituatedwithin1020kmofBrisbane’s centralbusinessdistrict,inthesouthern(Karawatha)andsoutheastern(Burbank)suburbs

(Figure4.1).

4.3.2. Site Selection

Weselected59siteslocatedwithinRegionalEcosystem(RE)type12.910.4,whichis dominatedbyscribblygum( Eucalyptusracemosa )woodlandlocatedonsedimentaryrocks andsandysoils(YoungandDillewaard1999).Althoughclassifiedas“notofconcern”bythe

QueenslandEnvironmentalProtectionAgency(QueenslandEnvironmentalProtectionAgency

2004),thisREisextensivelyclearedandfragmentedwithinBrisbaneCity(Youngand

Dillewaard1999).BCCspatialdataandsatelliteimagerywereusedtoselectsiteslocatedon privateandcouncilownedland.Potentialsitelocationsweregroundtruthedtoassesstheir suitability.Sitelocationswereconsideredunsuitableiftheywere:difficulttoaccess;had beenlargelyclearedordisturbed;patchesweretoosmalltofitasurveysite;or,hadahigh likelihoodofhumaninterferencetofaunasurveyequipment.

90

4.3.3. Site Design

Surveysitesmeasured45mx20mandconsistedofthreeparalleltransects10mapart,along whichfaunatrapswereplacedandhabitatassessmentswereconducted.Wherepossible,sites werepositionedperpendiculartothelandscapeslopeandaminimumof10mfrompatch edges.Thisdistancewasselectedtoconcentrateoninteriorratherthanedgeandmatrix habitats.Siteswerealsolocatedatleast20mfromdesignatedwalkingtracksandrecreational areas.

4.3.4. Wildlife Surveys

Wildlifesurveyswereconductedoverthreeconsecutivenights,duringfineweatherconditions inthespringandsummerof2004and2005.Initialsurveys(2004)wereconductedatall59 sites,yetrepeatsurveys(2005)occurredatonly51sites,aseightsiteswereabandoneddueto recentfireorsubstantialhumaninterference.Nativereptileandsmallmammalspecieswere identifiedateachsiteusingacombinationoflivetrapping,directobservationandtracesurvey methods,tomaximisetheprobabilityofdetectingtherangeoftargetspecies.Eachsitewas surveyedusing:8cagetraps,10Elliotttraps(2sizes:80x85x220mm;80x100x320mm),

5drypitfalltraps(10litrebuckets),and3hairfunnels.Opportunisticspeciesidentifications fromscats,visualobservationsandvocalisationswerealsorecorded.

Cagetraps,ElliotttrapsandhairfunnelswerebaitedwiththestandardAustraliannativesmall mammalbaitmixture(MenkhorstandKnight2001).Pitfalltrapswereunbaited.Thedense vegetationandfallenwoodydebrisatseveralsitespreventedtheuseofdriftfences,which havepreviouslybeenusedwithpitfalltrapstoimprovecapturesuccess(e.g.,Mengakand

91

Guynn1987;Crosswhiteetal.1999;MenkhorstandKnight2001).CageandElliotttraps weresetandbaitedeachafternoon,checkedforcaptureseachmorningandclosedduringthe day.Pitfalltrapsremainedopenfortheentiretrapcycle(3daysandnights)andwere checkedforcaptureseachmorningandafternoon.Hairfunnelsweresetatthebeginningofa trapcycleandleftundisturbeduntilcollectionattheendofthetrapcycle.Scatcollection, directobservationsandvocalisationrecordsoccurredopportunisticallythroughouteachsite visit.Atthepointofcapture,animalswereidentifiedtospecieslevelusingarelevantfield guide(MenkhorstandKnight2001;Wilson2005),photographed,weighed,sexed(ifpossible) andimmediatelyreleased.Scatandhairsampleswereidentified exsitu byoneoftwo independentexperts(Initialsurveys:MichialaBowen;Repeatsurveys:BarbaraTriggs).

4.3.5. Habitat Surveys

Habitatassessmentswereconductedatallsitesbetweentheinitialandrepeatwildlifesurvey periods.Twentyfivehabitatvariables(Table4.1)weremeasuredateachsite,followinga protocolsimilartothatdetailedbyEyreetal.(2000).Thenumberoflargetrees(DBH>

40cm)withinthesiteperimeterwasvisuallycountedfromthecentreofeachsite,andthetotal basalareawasrecordedusingtheBitterlichvariableradiusmethod( sensu MuellerDombois andEllenberg1974).Avisualappraisalofthetotalnumberoftermitemounds,approximate weedcover,andthepresenceorabsenceoffire(e.g.,treescars,charcoal,ash)andhuman disturbances(e.g.,litter,gardenwaste,sawnlogs)wererecordedoverthedurationofeachsite assessment.

92

Table 4.1. Habitatvariablesrecordedateachsite.Recordsforeachvariableareaveraged/ totalled/calculatedtoproduceameasurementacrosseachsite.*indicatesvariablesnot includedinstatisticalanalyses. MEASUREMENT VARIABLE DESCRIPTION Where What How 1meithersideof Acacia Numberof Acacia Totalcount Visual eachtransect 1meithersideof Allocasuarina Numberof Allocasuarina Totalcount Visual eachtransect 1meithersideof Banksia Numberof Banksia Totalcount Visual eachtransect 1meithersideof Brackenfern NumberofBrackenferns Totalcount Visual eachtransect 1meithersideof Callistemon Numberof Callistemon Totalcount Visual eachtransect Presence/absence Gimballed Canopy Amountofcanopycover readingtakenevery Percent Sighting cover (averageof30readings) 5malongeach cover Tube transect Overallappraisal Fire Presence/absenceoffire Category Visual acrosssite Numberofdifferenttypesof 1m 2quadratcentred Groundcover groundcover(e.g.,rocks,wood, overtransect,every Totalcount Visual complexity coarseleaflitter) 5m 1m 2quadratcentred *Groundcover Proportionofgroundcovered Percent overtransect,every Visual coverage (i.e.notbareground) cover 5m 1m 2quadratcentred Depth(upto40cm)ofground Groundcover overtransect,every Average Standard cover(averageof180 depth 5m(6 count 40cmruler measurements) measurements) 1meithersideof Grasstree Numberof Xanthorrhoea Totalcount Visual eachtransect Numberofpiecesoffallenwoody 1meithersideof Hollows Totalcount Visual materialwithhollows eachtransect Presence/absenceofhuman Human Overallappraisal disturbance(e.g.,litter,sawn Category Visual Disturbance acrosssite wood) Numberoflargetrees(DBH> Sightedfromcentre Visualand Largetrees Totalcount 40cm) ofsite tapemeasure Gimballed Midstorey Amountofmidstoreycover Every5malong Percent Sighting Cover (averageof30readings) eachtransect cover Tube 1meithersideof Paperbark Numberof Melaleuca Totalcount Visual eachtransect 1m 2quadratcentred Soil Numberof"hits"(upto20) overtransect,every Average Soilpen Compaction (averageof180measurements) 5m(6 count measurements) Numberoftreetrunks>1cmgap Totalcount Sightedfromcentre Bitterlich Totalbasalarea whenviewedateyelevel,60cm (stemsper ofsite gauge fromface m2)

93

Numberofterrestrialtermite Overallappraisal Termitemounds Totalcount Visual mounds acrosssite

Presence/absence Understorey Amountofunderstoreycover Percent readingevery5m Visual Cover (averageof30readings) cover alongeachtransect Totalnumberofcellsobscuredby Understorey 1m 2canvas vegetationwhenagriddedcanvas Every5malong Average density (griddedinto isviewedatwaistheightfroma eachtransect count (total) 1cm 2 cells) 5mdistance Heightofhighestcellobscuredby *Understorey 1m 2canvas vegetationwhenagriddedcanvas Every5malong Average density (griddedinto isviewedatwaistheightfroma eachtransect count (maximum) 1cm 2 cells) 5mdistance *Understorey Highestcellatleast50%obscured 1m 2canvas density byvegetationwhenagridded Every5malong Average (griddedinto (maximum canvasisviewedatwaistheight eachtransect count 1cm 2 cells) 50%) froma5mdistance Approximateproportionofsite Overallappraisal Percent Weedcover coveredbyweeds(0%,2550%, Visual acrosssite cover 5075%,>75%) Number,sizeandstateofdecayof 1meithersideof Average Visualand WoodVolume fallenwoodymaterial eachtransect volume(m 3) calculated

Theremaining19habitatvariablesweremeasuredalongeachofthethreetransectsandthe measurementseithertotalledoraveragedforthewholesite.Thetotalnumberof Acaciaspp. ,

Allocasuarinaspp. , Banksiaspp. , Pteridiumesculentum ,Callistemonspp. , Xanthorrhoeaspp. and Melaleucaspp. withinonemetreofthetransectlineswererecorded.Similarly,allfallen woodymaterialwithinonemetreofeachtransectlinewastalliedandcategorisedintofive diameterclasses(<10cm,1020cm,2030cm,3040cm,>40cm),eightdecayclasses

(recentlyfelled,sound,barkpeelingoff,to25%decay,2550%decay,5075%decay,>75% decay,debris),andthreecomplexityclasses(simple,complex,stump).Theserecordswere laterusedtocalculatetherelativevolume(m 3)offallenwoodymaterialforeachsite.The totalnumberofpiecesoffallenwoodthatcontainedhollowswasalsorecorded.

94

Thepresenceofcanopy,midstoreyandunderstoreycoverwasrecordedeveryfivemetres alongeachtransectusingagimballedsightingtube.Understoreydensitywasalsomeasured everyfivemetresusinganadaptationofmethodsdescribedbyMacArthurandMacArthur

(1961)andHaeringandFox(1995).Thisinvolveda1m 2screen,dividedinto10cm 2grid cells,viewedatwaistheightfromatwometredistance.Threeunderstoreymeasurements wererecorded:(1)thetotalnumberofgridcellsobscuredbyvegetation,(2)thehighestgrid rowobscuredbyvegetation(0cm–100cm),and(3)thehighestgridrowwithatleastonegrid cell>50%obscuredbyvegetation.Thesethreestratumrecordswerelateraveragedto providemeasuresofaveragepercentcoverforeachstratumandaverageunderstoreydensity ateachsite.

Thepercentofgroundcover,numberofgroundcovertypes(e.g.,coarseleaflitter,Casuarina needles,rocks,herbs),groundcoverdepth,andsoilcompactionwererecordedeveryfive metreswithina1x1mquadratalongeachtransect.Percentandtypesofgroundcoverwere assessedvisually.A40cmrulerwasusedtorecordgroundcoverdepth.Soilcompactionwas measuredusingapenetrometer(e.g., Foxetal.1996)andcountingthenumberofhitstaken

(upto20hits)todriveaweightedprobe20mmintothesoil.Forbothgroundcoverdepth andsoilcompaction,sixmeasurementsweremadeeveryfivemetres.Therecordsofpercent groundcover,groundcoverdepthandsoilcompactionwerelateraveragedforeachsite.

4.3.6. Statistical Analysis

Analyseswerebasedonthespeciesdetectedandhabitatvariablesrecordedateachsite.Total speciesoccurrencedatawerederivedbycombiningthespeciesdetectedfromeachwildlife

95 surveymethodandduringbothsurveyperiods.Theoverallspeciesoccurrencedatawere dividedintotwoseparatedatasets:(1)nativereptilespecies,and(2)nativemammalspecies.

Exoticspecieswerenotincludedinthedataanalysis.

ContinuoushabitatvariableswereinitiallycomparedusingtheSpearmanrankcorrelationtest inRversion2.1.0(TheRDevelopmentCoreTeam2004).Acorrelationcoefficient>0.7was chosentoidentifyhighlycorrelatedhabitatvariables.Wherevariableswerehighlycorrelated, onevariablewasremovedfromthedataset.Theremainingvariableswereusedfor subsequentstatisticalanalyses.

WeappliedamultivariatestatisticalapproachusingPATNVersion3.0.3forWindows(Belbin

1994)toexaminetherelationshipsbetweenspeciesoccurrenceandsitehabitatcharacteristics.

Similaritiesbetweensitesintermsofspeciescompositionwerefirstinvestigatedusingthe

BrayandCurtisindex(BrayandCurtis1957).Clusterswerederivedfromthedatasetusing theflexibleunweightedpairgroupusingarithmeticaveragingmethod(UPGMA)withabeta

(ß)valueof0.1.TheUPGMAclusteringmethodisconsideredsuperiorasitconsidersmore thanonespeciesatanyfusion(WardellJohnsonandWilliams1996,PodaniandSchmera

2006).Atabetavalueof0.1,theUPGMAclusteringmethodisspacedilating(cf.space contracting),therebycreatingevensizedgroupsandpreventingtheformationofasinglelarge group(Belbin1993,WardellJohnsonandWilliams1996).Weexaminedtheacceptabilityof theresultingsitegroupsandpatternsusingSemiStrongHybrid(SSH)multidimensional scalingordination.Theordinationwasconsideredinconjunctionwiththeminimumspanning tree(MST)anddendogram.TheMSTrepresentspairwiseassociationsbetweengroup objects.Itsuseiscomplementarytoordinationandmaybeusedpracticallytoconfirmor

96 denycloserelationshipsoridentifytrendsinthedata(Belbin1993).Thedendogram schematicallydisplaysthehierarchicalclusteringofgroups.Thenumberofsitegroupswas adjusteduntilmaximumcongruencewasobtainedbetweentheordination,MSTand dendogram,therebyindicatingthatthemostrobustsitegroupingshadbeenattained.

Relationshipsbetweentheintrinsicspeciesoccurrenceandtheordinationgroupswere examinedusingPrincipalComponentCorrelation(PCC)with100permutations.PCCuses multiplelinearregressiontofitselectedvariablestotheordinationspace,showingthe directionofbestfitandthecorrelationwiththatdirection(r 2)(Belbin1994).MonteCarlo

AttributesinOrdination(MCAO)procedurewith100iterationswasthenusedtotestthe reliabilityofthesecorrelationswiththeordinationspacebycalculatingtheproportionofr 2 valuesthatexceedthetruer 2inagivennumberofiterations(Belbin1994).AnMCAOvalue lessthan5%wasconsideredsignificant. Variablesidentifiedashavingsignificant correlationswiththespeciesgroupswerethenoverlaidontheordinationspace.Thisanalysis procedurewasrepeatedtoinvestigaterelationshipsbetweentheextrinsichabitatvariablesand theordinationgroups.

Speciesandhabitatvariablesthatwerefoundtobehighlycorrelatedwiththeordinationwere examinedfurtherusingtheKruskalWallisstatisticfunctioninPATNtodeterminehowwell eachvariablediscriminatedbetweentheordinationgroups.ThelargertheKruskalWallis statisticforavariable,themoresignificantthatvariable’scontributionwastothe differentiationofordinationgroups.SignificantvariablesaccordingtotheKruskalWallis statistic( P<0.05)werecomparedtoMCAOvaluesinordertotestthestrengthofthe relationships.Werecognise,however,thatthereliabilityoftheKruskalWallisstatisticis

97 proportionaltothenumberofobjectsinthesmallestgroup(Belbin1993).Assuch,the

KruskalWallisstatisticresultsareincluded,basedonexpertadvice,asacomparativevalueto investigatethestrengthofMCAOresults,butthesevaluesshouldbetreatedwithcaution.

4.4. RESULTS

4.4.1. Fauna Species Assemblages

Atotalof27nativespecies(eightmammals,19reptiles)wereidentifiedfrom333trapnights

(Table4.2).Anadditionalnativemammal( Melomysspp. )wasidentifiedattwositesfrom scatandhairsamples,butpositiveidentificationtothespecieslevelwasnotpossible.Instead, thegenuswasincludedintheanalysisofthemammaldataset.Intotal,theserepresented11 nativefamilygroups.

Themostcommonmammalspecieswasthecommonbrushtailpossumidentifiedin39ofthe

59sites(66%).However,itwasconsideredapredominantlyarborealspecies(Howand

Kerle,1995)andwasnotincludedinfurtheranalysis.Thecommondunnart( Sminthopsis murina )andthenorthernbrownbandicoot( Isoodonmacrourus )werethemostcommonly detectedterrestrialmammalspecies(n=8siteseach).Detectionsofthecommonplanigale

(Planigalemaculata ),commondunnart,andtheyellowfootedantechinus( Antechinus flavipes )wereofparticularinterestasthesedasyuridsarerelativelyuncommoninBrisbane’s lowlandhabitatsandareclassifiedassignificantspecieswithinthelocalgovernmentarea

(BrisbaneCityCouncil2000).Thefenceskink( C.virgatus )andgardenskink( Lampropholis delicata )werethetwomostcommonreptilespecies(n=27andn=29sites,respectively).

98

Largerbodiedandmorecrypticreptilespeciessuchassnakes,lacemonitors( Varanusvarius ) anddragons(e.g.,beardeddragon, Pogonabarbata ,andeasternwaterdragon, Physignathus lesuerii )wereidentifiedatsignificantlyfewersitesthansmallbodiedskinkspecies(Table

4.2).

Table 4.2.Cumulativespecieslistfromwildlifesurveys.Speciesarecategorisedas native/exoticmammals/reptilesandarelistedalphabeticallybyfamilygroupandscientific name.Eachspeciescommonnameandthetotalnumberofsitesatwhichtheyweredetected arealsoshown.

FAMILYGROUP SCIENTIFICNAME COMMONNAME SITES Antechinusflavipes Yellowfootedantechinus 4 Antechinussubtropicus Subtropicalantechinus 2 Dasyuridae Planigalemaculata Commonplanigale 2 Sminthopsismurina Commondunnart 8 Native Melomys spp. Unknownspecies 2 Mammals Muridae Rattusfuscipes Bushrat 2 Rattuslutreolus Swamprat 1 Isoodonmacrourus Northernbrownbandicoot 8 Peramelidae Peramelesnasuta Longnosedbandicoot 2 Diporiphoraaustralis Tommyroundhead 3 Agamidae Physignathuslesuerii Easternwaterdragon 1 Pogonabarbata Beardeddragon 3 Colubridae Dendrelaphispunctulata Commontreesnake 1 Elapidae Pseudechisporphyriacus Redbelliedblacksnake 1 Gekkonidae Diplodactylusvittatus Easternstonegecko 5 Pygopodidae Lialisburtonis Burton’ssnakelizard 1 Pythonidae Moreliaspilota Carpetpython 1 Anamalopusverreauxii Verreaux’sskink 1 Native Calyptotisscutirostrum Scutesnoutedcalyptotisskink 8 Reptiles Carliafoliorum Treebaselitterskink 5 Carliapectoralis Openlitterrainbowskink 4 Carliavivax Storr’srainbowskink 7 Scincidae Cryptoblepharusvirgatus Fenceskink 27 Ctenotustaeniolatus Coppertailedskink 1 Eulamprusquoyii Easternwaterskink 1 Lampropholisamicula Secretiveskink 4 Lampropholisdelicata Gardenskink 29 Varanidae Varanusvarius Lacemonitor 3 Canidae Vulpesvulpes Fox 3 Lepuscapensis Brownhare 8 Exotic Leporidae Oryctolaguscuniculus Europeanrabbit 3 Mammals Musmusculus Housemouse 9 Muridae Rattusrattus Blackrat 30 Exotic Gekkonidae Hemidactylusfrenatus Asianhousegecko 1 Reptiles

99

4.4.2. Habitat Variables Co-linearity

Correlationanalysisrevealedthethreemeasuresofunderstoreydensitywerestrongly correlated(>0.7).Weeliminatedtwovariablesandretainedtotalunderstoreydensity.

Althoughnothighlycorrelatedwithothervariables,averagegroundcoverwasalsoremoved fromthedatasetasitshowedverylittlevariationbetweensiteswith51siteshavingan averagecover>90%.

4.4.3. Reptile Groups and Habitat Associations

Forreptiles,fourgroupsofsites(Figure4.2a)yieldedthelowestordinationstresslevel(stress

=0.183)andmaximumcongruencebetweentheordination,minimumspanningtreeand dendogram.Thetwomostcommonlycapturedreptilespecies, C.virgatus and L.delicata , dominatedGroup1sites(n=24),beingidentifiedat92%and67%ofsitesrespectively

(Figure4.3a).Thisindicatesahighdegreeofoverlapinthedistributionofthesespecies withinGroup1.However,theseskinkspeciesshowedlittleornooverlapinthe12and13 sitesthatrespectivelycomprisedGroups2and3.Group2siteswerecharacterisedbythe ubiquitouspresenceof L.delicata (detectedinallsites)andtheabsenceof C.virgatus (Figure

4.3a).Thepresenceof C.virgatus ratherthan L.delicatadominatedGroup3(38%and8%, respectively)(Figure4.3a).Speciesrichnessalsovariedbetweengroups,withGroup3 containingthehighestoverallnativespeciesrichness(12species),morethan40%greater speciesrichnessthanGroup2(Figure4.3a).Group4representedthefewestsites(n=10)and wascharacterisedbyatotalabsenceofnativereptilespecies.

100

(a) (d)

C.virgatus P.nasuta R.lutreolus P.maculata D.australis C.foliorum L.delicata A.flavipes Melomys spp. C.pectoralis R.fuscipes A. I.macrourus S.murina C.vivax subtropicus D.punctulata V.varius

(b) (e)

Termitemounds

Grasstrees WoodVolume Weedcover (2550%)

Soil Compaction

(c) SoilCompaction (f)

Figure 4.2. SSHMDSordinationsforreptiles(ac)(stress=0.1832)andmammals(df) (stress=0.1283).(a)and(d)showclusterordinationofsitesaccordingtosimilaritiesin speciescomposition;(b)and(e)showsignificantspeciesoverlaid;(c)and(f)showsignificant explanatoryhabitatvariablesoverlaid.Groupcentroidsonlyareshownin(b),(c),(e)and(f). Forallordinations: Group1; Group2; Group3; Group4(reptilesonly).

101

(a) 100 90

80

70 60

50

40 30 20

Proportion of Group Sites (%) 10 0

C. vivax C. E. quoyii E. varius V. M. spilota M. D. vittatus D. P. lesuerii P. L. delicata L. L. amicula L. C. virgatus C. P. barbata P. L. burtonis L. C. foliorum C. australis D. C. pectoralis C. A. verreauxii A. D. punctulata D. C. taeniolatus C.

scutirostrum C.

porphyriachus P. Species

(b) 100 90

80 70 60

50

40 30

20

Proportion of Group Sites (%) 10 0

A. stuartii A. P. nasuta P. S. murina S. A. flavipes A. R. fuscipes R.

lutreolus R. P. maculata P. I. Macrourus I. Melomyssp. Species

Figure 4.3. RelativespeciescompositionsforeachofthereptileandmammalsiteGroups, showingtheproportionofsiteswithineachGroupatwhichspeciesweredetected.(a)Reptile speciescompositionsforGroups13;Group4notshownasnonativereptilespecieswere detectedatsiteswithinthisgroup;Group1=24sites,Group2=12sites,Group3=13sites, Group4=10sites.(b)MammalspeciescompositionsforGroups2and3;Group1notshown asnonativemammalspeciesweredetectedatsiteswithinthisgroup;Group1=38sites,Group 2=14sites,Group3=7sites.Forboth(a)and(b): Group1; Group2; Group3. 102

MCAOreportedeightnativereptilespeciesthatwerehighlycorrelatedwiththeordinationof reptilegroups: Carliafoliorum , C.vivax , C.virgatus , Dendrelaphispunctulata , Diporiphora australis , L.delicata , Carliapectoralis and Varanusvarius (Figure4.2b).Ofthesespecies, thepresenceof C.virgatus , L.delicata and C.vivax explainedthelargestamountofvariation intheordination(r2=0.52,0.67,and0.35respectively)andwerehighlysignificantat P<

0.001(Table4.3). C.foliorum ,and D.australis werelesssignificant( P<0.05).Although C. pectoralis , D.punctulata and V.varius werehighlycorrelatedwiththeordination,these specieswerenotfoundtobestatisticallysignificant(Table4.3).Theresultsfurthersuggest that C.scutirostrum and L.amicula discriminatewellbetweenthegroups( P<0.01and P <

0.05,respectively),yetMCAOindicatedthesespecieshadalowcorrelationwiththe ordinationgroups(Table4.3).

Fourhabitatvariables:soilcompaction,totalnumberoftermitemounds,woodvolume,and weedcover(2550%),weresignificantlycorrelatedwithreptilegroups(Figure4.2c).Ofthese variables,onlysoilcompactionandweedcover(2550%)discriminatedwellbetweenthe groupsaccordingtotheKruskalWallisstatistic(Table4.3).

4.4.4. Mammal Groups and Habitat Associations

Threestatisticalgroupsofnativemammalspecies(Figure4.2d)producedthebestordination fit(stress=0.1283)andmaximumcongruencebetweentheordination,minimumspanning treeanddendogram.Group1wascomprisedofthe38sitesatwhichnonativemammal speciesweredetected,indicatingthatnativemammalspecieswereundetectedatthemajority ofthe59sites.Comparatively,Groups2and3weredominatedbytheDasyuridaeand

103

Peramelidaefamiliesrespectively.Nativerodentspecies(Family:Muridae)wererepresented inGroup2andGroup3(Figure4.3b).Allnativemammalspecieswerecorrelatedwiththe ordination(Figure4.2e)and,withtheexceptionofnorthernbrownbandicoots,explained between17%and30%ofthegroupvariation(Table4.3).Northernbrownbandicoots explainedmorethan50%ofthegroupvariation(r 2=0.505),beingfoundatallsites comprisingGroup3(Figure4.3b).Thestatisticalsignificanceofallbutonespecies(long nosedbandicoot, Peramelesnasuta )wassupportedbytheKruskalWallisstatistic(Table4.3).

Bothnorthernbrownbandicootsandcommondunnartshadthehighestdiscrimination betweengroups( P <0.001).

Thenumberofgrasstrees( Xanthorrhoeaspp. ) andsoilcompactionweretheonlyhabitat variablesthatweresignificantlycorrelatedwiththemammalordination(Figure4.2f).

However,theassociatedKruskalWallisvaluesindicatedthatneitherofthesevariables discriminatedwellbetweenthegroups(Table4.3).

104

Table 4.3. RelativeassociationsbetweenordinationGroupsandnativereptile/mammal speciesandhabitatvariables.PCC(r 2),MCAO(%)andchisquared(derivedfromKW statistic)areshown.SignificantMCAOvariablesandvaluesareindicatedinboldfont.Chi squaredsignificanceisindicatedby:*0.05> P>0.01;**0.01> P> 0.001;*** P< 0.001; n/s=notsignificant.TheordinationGroupwithwhicheachspeciesandhabitatvariablewas mosthighlycorrelatedisalsoshown.

MCAO MCAO ReptileSpecies PCC(r 2) χ2 Group MammalSpecies PCC(r 2) χ2 Group (%) (%) A.verreauxii 0.02 80 n/s 1 A. flavipes 0.3 1 ** 2 C. foliorum 0.03 0 * 3 A. subtropicus 0.3 1 * 2 C. pectoralis 0.19 1 n/s 3 I. macrourus 0.51 0 *** 3 C.scutirostrum 0.03 72 ** 1 Melomys spp. 0.2 3 * 2 C.taeniolatus 0.15 11 n/s 3 P. maculata 0.29 0 * 2 C. virgatus 0.52 0 *** 1 P. nasuta 0.21 4 n/s 3 C. vivax 0.35 0 *** 3 R. fuscipes 0.22 2 * 2 D. australis 0.32 0 * 3 R. lutreolus 0.17 4 * 3 D. punctulata 0.18 0 n/s 3 S. murina 0.18 2 *** 2 D.vittatus 0.16 9 n/s 3 E.quoyii 0.04 54 n/s 1 L.amicula 0.04 50 * 2 L.burtonis 0.06 19 n/s 2 L. delicata 0.67 0 ***2 M.spilota 0.04 46 n/s 1 P.barbata 0.15 5 n/s 1 P.lesuerii 0.01 90 n/s 1 P.porphyriacus 0.04 53 n/s 2 V. varius 0.15 1 n/s3 MCAO MCAO HabitatVariable PCC(r 2) χ2 Group HabitatVariable PCC(r 2) χ2 Group (%) (%) Acacia 0.01 91 n/s 3 Acacia 0.03 66 n/s 1 Allocasuarina 0.07 31 * 1 Allocasuarina 0.01 95 n/s 3 Banksia 0.08 18 n/s 2 Banksia 0.08 15 n/s 3 Brackenfern 0.05 60 n/s 3 Brackenfern 0.05 35 n/s 1 Callistemon 0.04 50 n/s 1 Callistemon 0.1 29 n/s 3 Canopycover 0.07 32 n/s 1 Canopycover 0.03 65 n/s 2 Fire 0.01 95 n/s 4 Fire 0.04 54 n/s 3 Groundcover Groundcover 0.06 34 * 4 0.03 60 n/s 3 complexity complexity Groundcoverdepth 0.02 82 n/s 2 Groundcoverdepth 0.05 40 n/s 1 Humandisturbance 0.05 40 * 2 Humandisturbance 0.06 36 n/s 3 Hollows 0.03 66 n/s 3 Hollows 0.03 65 n/s 3 Largetrees 0.05 44 n/s 3 Largetrees 0.04 47 n/s 2 Melaleuca 0.1 16 n/s 2 Melaleuca 0.13 10 n/s 3 Midstoreycover 0.07 22 n/s 2 Midstoreycover 0.02 76 n/s 3 Soil compaction 0.21 0 * 4 Soil compaction 0.17 4 n/s 3 Totalbasalarea 0.03 62 ** 1 Totalbasalarea 0.05 36 n/s 2 Termite mounds 0.14 4 n/s 3 Termitemounds 0.06 35 n/s 2 Understoreycover 0.02 71 * 3 Understoreycover 0.02 72 n/s 2 Understorey Understorey 0.04 n/s 3 0.03 71 n/s 3 48 density density Weedcover(0%) 0.12 12 ** 3 Weedcover(0%) 0.03 77 n/s 2 Weedcover Weedcover 0.08 17 n/s 4 0.02 84 n/s 3 (<25%) (<25%) Weed cover Weedcover 0.15 3 * 2 0.1 9 n/s 3 (25-50%) (2550%) Weedcover Weedcover 0.06 23 n/s 4 0.01 63 n/s 1 (5075%) (5075%) Wood volume 0.15 2 n/s 3 Woodvolume 0.1 13 n/s 2 Xanthorrhoeaspp. 0.03 56 n/s 1 Xanthorrhoea spp. 0.21 2 n/s 2 105

4.5. DISCUSSION

Thisstudyconsideredarangeoflocallevelenvironmentalfactorsandtheircorrelationwith nativeterrestrialreptileandsmallmammalspeciescompositionswithinfragmentedurban bushlandhabitats.Ourresultsinitiallyappeartoimplythatbothvegetationcomposition

(weedcoverandgrasstrees)andhabitatstructure(termitemounds,woodvolume,andsoil compaction)areimportantfornativereptileandsmallmammalspecies.However,when previousresearch,andspeciesbehavioursandlifehistorytraitsareexamined,itseemslikely thatspeciesinthisstudywererespondingtothestructuralrolefulfilledbyweedcoverand grasstreesratherthanthecompositionalorfloristicrole.Therefore,weconcludethatatthe locallevel,habitatstructuralcomplexityismoreimportantthanvegetationcompositionfor theoccurrenceofterrestrial,nativereptileandsmallmammalspeciesinBrisbane’slowland remnanthabitatfragments.

Thisoverallresultisconsistentwithseveralotherstudiesofvariousfaunaspecies(including birds,reptiles,andmammals)livingwithinnaturalanddisturbed(nonurban)habitats(e.g.,

GroverandSlater1994;Catteralletal.1998;Scottetal.1999;WebbandShine2000;Taitet al.2005;VeskandMacNally2006).Manyoftheseandsimilarstudiesindicatedistinct speciesspecificresponsestoparticularhabitatattributes,yetitwasnotpossibleinourstudyto identifyspeciesspecificrelationshipsbecauseofthelowdetectionrateofmanyspeciesin severalsites.Thelowdetectionofseveralspeciesmaypotentiallybeexplainedbylocalised speciesdeclinesduetourbanisationanditsassociateddisturbances,and/orduetothecryptic

106 natureofhabitatuse,dietarypreferences,andseasonalpopulationfluctuationsresultingina highdegreeoffalseabsences.Additionalsurveysconductedoveralongertimeperiodare likelytohaveimproveddetectionrates,addedcertaintytoourresults,andprovidedmore informationonthehabitatpreferencesofindividualspecies.However,suchlongterm surveyswerenotpossibleinthisstudyduetotimeandresourceconstraints.Consequently, ouranalysisfocusedontheinfluenceofhabitatcharacteristicsonnativereptileandsmall mammalspeciescompositionsratherthanindividualspeciesoccurrences.

4.5.1. Reptiles

Reptilecapturesweredominatedbytwomainspecies, L.delicata and C.virgatus .Both speciesarealsofoundthroughouttheurbanmatrix,although C.virgatus apparentlymoreso than L.delicata ,(J.Gardenpers.obs.).Therecordeddominanceofthesespeciesduringfauna surveysplayedasignificantroleindeterminingthesubsequentreptilegroupsinthePATN analysis,indicatingthattheseskinkspeciesmayinfluencethecompositionofskink assemblageswithinurbanpatches.Similarreptileinterspeciesinteractionswerereportedby

Fischeretal.(2003)whofoundthat C.tetradactyla morefrequentlyinhabitedsitesoccupied byatleasttwoothersmallreptilespecies.Thepossibilityofinterspeciesinteractions betweenothersmallreptilespeciesand L.delicata and/or C.virgatus isahypothesisthat warrantsfurtherinvestigationinordertoclearlydelineateexistingrelationshipsandexamine theinfluenceofinterspeciesinteractionsrelativetohabitatsuitability.

107

Termitemoundsandfallenwoodymaterial

Thesignificanceoftermitemoundsandfallenwoodymaterialislikelyexplainedbythe habitatandresourcerequirementsofreptiles.Reptilesareectothermicandsoaredependent onhabitatattributesthatenablethemtoregulatetheirbodytemperaturetoachieveoptimal performance,whichisessentialforforaging,breedingandpredatoravoidancebehaviours

(Huey1991;Bauwensetal.1996;Vittetal.1998;Burrowetal.2001;Singhetal.2002;

LendersandDaamen2004).Termitemoundsandfallenwoodymaterialbothprovide suitablebaskinglocations,habitatsforpreyspecies,andnumerousnestingandrefugeniches.

Itisnotsurprising,therefore,thatthesestructuralattributesweremoststronglyassociated withsitesdominatedbythepresenceofsunlovingreptilespeciessuchas C.vivax , Ctenotus taeniolatus ,and D.australis(Group3).

Theassociationofreptileswithtermitemoundsisconsistentwithpreviousstudies,bothin

Australiaandelsewhere.Forexample,alizardspecies( Metrolescuneirostris )fromthe

NamibDesertofcoastalNamibia,wasfoundtocommonlyutilisenewlyformedtermite moundsasforaginglocations(MurrayandSchramm1987).Theuseandimportanceof termitemoundsasrefugelocationshasalsobeenreportedfordifferentreptilespecies,suchas inactivemonitors( Varanusbengalensis )inSriLanka(WikramanayakeandDryden1993)and frillnecklizards( Chlamydosauruskingii )inAustralia’sNorthernTerritory(Griffithsand

Christian1996).GriffithsandChristian(1996)particularlydemonstratedtheimportanceof termitemoundsasrefugesbyshowingthat C.kingii individualswhoutilisedtermitemounds toavoidhighintensityfireshada100%survivalrate,comparedtotheincreasedmortalityand injuryofindividualsthatsoughtrefugeintreecanopies.

108

Assupportedbypreviousresearch,thesignificanceoffallenwoodymaterialislikelyto providesimilarresourcesastermitemoundsforasuiteofsmallbodied,reptilespecies(e.g.,

Smithetal.1996;Fischeretal.2004;Jellineketal.2004).Othergroundlevelstructural attributes,suchasgroundcover/leaflitter(e.g.,Burrowetal.2001;Singhetal.2002)and bushrocks(e.g.,SchlesingerandShine1994;WebbandShine2000;WhiteandBurgin2004) havealsobeenreportedtoprovidesuitablebasking,shelterandforagingopportunitiesfor variousnativeterrestrialreptilespecies(e.g.,snakes,skinks,agamids,andgeckos).These structuresarenaturallyoccurringyet,indegradedurbanremnants,humanintroduced materialssuchasdiscardedmetalandwood,andevenoldcarbodiesmayworkequallywell

(J.Gardenpers.obs.).

WeedCover

Theoccurrenceofnativereptileswaspositivelyassociatedwithamoderateamountofweed cover(2550%).WeedinesswasparticularlyassociatedwithGroup2whichwas characterisedbycomparatively‘secretive’reptilespeciessuchas L.delicata , L.amicula,and

Burton’ssnakelizard( Lialisburtonis ).Althoughallspeciesrequirehabitatsthatfacilitate thermoregulation,Group2speciesappeartotolerateamoderateamountofcertainhabitat disturbances(asindicatedbyweediness),solongasadequatevegetationcoverisavailable eithertofacilitatethermoregulationortoproviderapidrefugefrompredators.Thisis consistentwithBraggetal.(2005)whofoundthatL.delicata wasmorelikelytoinhabit forestedareas,whichhadmoreleaflitter,groundandshrubcoverthantheadjoiningopen habitatofregeneratingminedisturbedareas.Furthermore,inourstudy L.delicata ,unlike C. virgatus ,weremorelikelyidentifiedfrompitfallcapturesthandirectobservations,atrend

109 thatisindicativeofthemorecrypticnatureof L.delicata .Similarcapturetrendswerenoted bySinghetal.(2002)for L.delicata and C.virgatus surveyedincontiguousforestnear

Brisbane. L.burtonis and P.porphyriacus werealsoidentifiedfromdirectobservationsaspit falltrapswerenotlargeenoughtotraptheselargerbodiedspecies.However,upondetection, thesespecieswereobservedtoactivelyseekrefugewithinrelativelydensethicketsoflower stratumvegetation.

Thepositiveassociation,therefore,betweentheoccurrenceofcertainreptilespeciesanda moderateamountofweedcoverismostlikelyduetotheshelterprovidedbylow,weedy vegetationratherthantheweedspeciescomposition perse .Thesefindingssupportthoseof

Fischeretal.(2003)whonotedthatjuvenileandsomeadult C.tetradactyla werefoundin moderatetohighlyweedinfestedhabitats,concludingthatthesespeciesareabletotoleratea certaindegreeofhabitatdisturbanceandpotentiallybenefitfromtheassociatedstructural changes.Otherresearchershavesimilarlycommentedontheimportanceoflowerstratum vegetationcoverforsupportingimportantreptilepreyspeciesandalsoforthesafeshelter providedfrompredatorswhilstforaginganddispersing(e.g.,Burrowetal.2001;Fischeretal.

2003).

Althoughitappearsthatsomereptilespeciesrespondpositivelytoacertaindegreeofweed cover,HaddenandWestbrooke(1996)andJellineketal.(2004)reportedthatoverallreptile speciesrichnesswasnegativelyassociatedwithincreasedweediness.Ourresultsprovide someagreementwiththesepreviousfindings.Moderateweedcoverwasmostassociatedwith

Group2which,comparedtoGroups1and3,alsohadthelowestoverallnativespecies richness.Further,thehighestamountofweedcover(5075%),althoughnotsignificantly

110 correlatedwiththeordination,appearedtobeassociatedwithGroup4(noreptilesdetected).

Jellineketal.(2004)discussthepossibleinfluenceofweedinessandtimesinceisolation, commentingonsmallerandolderremnantsbeingmorelikelytobedominatedbyweedsthan largerandyoungerremnants.Thismaypotentiallybecriticalforeffectivelymanagingreptile speciescompositionsinvestigatedinthecurrentstudy.Asweedinvasionsareindicativeof disturbedhabitats,itseemslikelythat,ashighlightedbyJellineketal.(2004)andsuggested bythecurrentstudy’sfindings,certainreptilespeciesaresensitivetohabitatdisturbancesand sowillrespondnegativelytoevenalowamountofweedcover.Conversely,somereptile speciesareabletotolerateacertaindegreeofhabitatdisturbanceandmayevenbenefitfrom thecoverprovided.Itisthereforedifficulttomakegeneralisationsoftheimportanceofweeds forallreptiles.

SoilCompaction

Increasedsoilcompactionwascharacteristicofhabitatsinwhichfewornonativereptile speciesweredetected,withthehardestsoilsoccurringatsitesatwhichnonativereptile speciesweredetected(Group4).Therearetwopossibleexplanationsforthisfinding.The firstdirectlyimplicatessoilcompactionandconsidersitsimpactonspeciesbehaviours, whereasthesecondconsidersindirectimplicationsofsoilcompaction,itsassociated disturbancesonvegetationstructure,andtheresultinginfluenceonreptilespecies.Soil compactionwasleastassociatedwithGroup1,indicatingthatreptilesinthisgroupoccur morefrequentlyinhabitatswithsoftsoils.Thisisconsistentwiththetwofossorialskink speciesidentified, Calyptotisscutirostrum and Anomalopusverreauxii ,whichwerefoundonly

111 atsiteswithinthisgroup.Duetotheirburrowingbehaviour,thesespeciesdonotinhabitor persistinareaswithhardenedsoilswhereburrowingisdifficult.

Soilcompactionalsohasasignificantinfluenceonvegetationgrowthandregenerativeability

(Amreinetal.2005;Bassettetal.2005).Increasedsoilcompactionisoftenaresultanda consequenceofdecreasedvegetationcover(e.g.,GrovesandKeller1983;Haddenand

Westbrooke1996).Thiscyclicconditionisintensifiedbyexternaldisturbanceswhichdirectly compactthesoilanddestroygroundcovervegetation.Hence,habitatswithcompactedsoils arealsolikelytobeindicativeofhighlydisturbedhabitats.Inappropriatefireregimes

(includingarsonfires)andaestheticclearingwhichdecreasevegetationcoveranddonot promotevegetationregenerationarelikelytoincreasesoilcompactionand,inturn,makeit moredifficultforplantspeciestoregenerate(Amreinetal.2005).Asaresult,thehabitat structureandsoilconditiondegrades,negativelyimpactingonvariousreptilespecies dependentonstructurallycomplexhabitats.Similarly,offtracktramplingwithinurban bushlandhabitatscompactssoilanddestroysordegradesgroundcovervegetation,making thesehabitatslesssuitableforreptiles.

4.5.2. Mammals

Mammalspecieswerefoundtobeinfluencedprimarilybyhabitatstructureratherthan vegetationcomposition.Thisisconsistentwithpreviousstudies(e.g.,Bennett1993;Haering andFox1995;Monjeauetal.1998;Vernes2003;MonamyandFox2005)whichconcluded thatvegetationstructure,ratherthanvegetationcomposition,wasmoreimportantforsmall mammaloccurrence,althoughspeciesspecificresponsestovariousaspectsofstructurewere

112 evident.Forinstance,smallbodiedmammals,suchasdasyurids,arelikelytobemore capableofmovingrapidlythroughdenseundergrowth,whereaslargebodiedmammalssuch askangaroosareimpededbydensemidstoreycover,butarelesslikelytobeaffectedbydense understoreyandgroundcover.Comparatively,largeareasofdenseundergrowthmaypresent asignificantlocomotor(andescape)obstacleformediumbodiedmammals,suchas bandicoots,andmayalsoinhibitbipedalvigilancebehaviours(Garden2000).Vernes(2003) foundthatnorthernbettongs( Bettongiatropica )avoidedareasofdensegroundcover, particularlydensecoverwithin0.5maboveground,whichapproximatestheheightofanadult bettong.KeiperandJohnson(2004)similarlyreportedthatshortnosedbandicoots( Isoodon obesuluspeninsulae )innorthQueenslandforestsavoidedhabitatswithatall,densegrass understorey.Sucharesponseisalsolikelytobetrueforbandicootsinurbanlandscapesand sotheseanimalsmayactivelyselecthabitatsthatarestructurallycomplex,yetarenot vegetativelydense.Therefore,assuggestedbypreviousbandicootstudies(e.g.,Dufty1994;

Scottetal.1999;ChambersandDickman2002),optimalhabitatsforPeramelidaeare structurallycomplexandencapsulateamosaicofopenforagingareasanddensersheltersites thatarenotsodenseastoimpedelocomotorability.

GrassTrees

Grasstreesalsoappeartobeanimportantfactorfortheoccurrenceofnativemammalspecies.

Thisfindingsupportspreviousstudiesthathaveidentifiedgrasstreesasimportantstructural elementsforseveralAustraliansmallterrestrialmammalspecies.VernesandPope(2001),for instance,foundthatpriortofires,almosthalfthenumberof B.tropica nestswerelocatedin densevegetationcoversuchastheskirtsofgrasstrees.Spenceretal. (2005)similarlyfound

113 thatnativebushrats( Rattusfuscipes )respondednegativelytothedecreaseingrasstreecover followingfires.Likewise,Lunney(1995,p.651)commentedthat‘coverseeking’R.fuscipes preferhabitatswithdensegroundandunderstoreycover–astructuralrequirementthatwould bepartiallyfilledbythepresenceofgrasstreesintheunderstoreylayer.Grasstreeshavealso beendocumentedasprovidingimportantnestinghabitatsforsmalldasyuridspeciessuchas thecommondunnart(Fox1995)andtheyellowfootedantechinus(MarchesanandCarthew

2004).Ourresultssupportthesepreviousfindings,inthatthepresenceofgrasstreeswas moststronglyassociatedwithGroup2,whichwasdominatedbydasyuridsand R.fuscipes .

SoilCompaction

Soilcompaction,asforreptiles,wasalsoassociatedwithmammalspeciesoccurrences.Like reptiles,mammalspeciesalsoappeartoavoidhabitatswithveryhardsoilsandthereasons maybesimilar.Firstly,certainmammalspeciessuchassomedasyuridsmaynestinterrestrial burrows(Woolley1989;J.Gardenpers.obs.)andhardersoilswouldinhibittheirabilityto burrow.However,unlikethereptileresults,certainmammalspeciesappeartorespond positivelytocompactedsoils.MammalGroup3wasmoststronglyassociatedwith moderatelycompactedsoilsratherthanveryhardsoils.Thisgroupwasdominatedbythe

Peramelidae(bandicootspecies).Bandicootsareomnivorousandmostcommonlyfeedon subterraneaninvertebratepreyandplantstructuressuchasrootsandhypogealfungi(Vernes

2003;KeiperandJohnson2004),abehaviourthatisobviousfromtheconicaldiggingsleft fromforaging(Triggs1996;J.Gardenpers.obs.).Theirabilitytoobtainthesefoodresources ispossibleduetospecialisedstrongclawsontheirforefeetwhichmakethempowerful diggers.Thismorphologicaltraitmayprovidethemwithanadvantageoverotherspeciesin

114 enablingthemtopenetrateintohardersoilsandthereforeutilisehabitatswithincreasedsoil compaction.However,ifsoilsbecometoohard,vegetationcoverdecreases(Amreinetal.

2005),resultingindecreasedsoilmoistureandmicrobialactivity,andhencelessfood availabilityandincreasedenergyoutput(forforaging).Structurallycomplexhabitatsare likelytooccurwherethereislowtomoderatelycompactedsoilsinfluencingvegetation floristicsandcover.Inaddition,althoughbandicootsappeartopreferstructurallyopen habitatsforforaging,theyhavealsobeenreportedtorequirestructurallydensehabitatsfor diurnalshelter(e.g.,Dufty1994;Southgateetal.1996;ChambersandDickman2002;Vernes

2003).Therefore,assoilshardenandvegetationcoverdecreases,importantfoodresources decreaseasdoescriticalvegetationcover.However,intheurbanlandscape,Dufty(1994) reportedthattheeasternbarredbandicoot( Peramelesgunii )usedarangeofnaturaland artificialstructuresassheltersites,implyingacertaindegreeofdisturbancetolerance, includingmoderatelycompactedsoils.

4.5.3. Management Implications

Understanding the locallevel habitat requirements of native fauna species is an essential component of successful urban biodiversity conservation. Our findings indicate that, for nativeterrestrialreptilesandsmallmammals,maintainingstructurallycomplexhabitatstakes priorityovermanaginglocallevelvegetationcomposition.Thisisperhapsbestachievedby managingandminimisingdisturbancesthatdegradehabitatstructure.Basedonourfindings, wesuggestthreemainareasofconsiderationforurbanhabitatmanagementatthelocallevel.

115

First,fire isanimportantcomponentofallhabitats,bothwithinandexternaltourbanareas.

Inurbanareas,fireisusedasamanagementtooltoprotectpeopleandtheirassets.Themain aimofplannedmanagementfiresistoreducenaturalfuelloads,suchasfallenwoodymaterial and ground/leaf litter cover, so that unmanaged fires are less intense and more easily contained. Consequently, managed burns in urban areas are often at a lower intensity but higher frequency than naturally occurring fires in nonurban habitats. Such fire regimes remove, decrease and/or degrade important habitat structural elements and, alter the regeneration time and structural complexity of habitat fragments. As a result, these urban managementpracticeshavevaryingshortandlongtermimpactsonnativespecies.Whereas certain reptile and mammal species may benefit from the open structure immediately followingfires,othersmayrespondmoretothemoderatecoverduringregeneration,whereas some species may not be found in an area until vegetation density, habitat structure and groundcoverincreaseslongafterafire(e.g.Hannahetal.1998;Foxetal.2003).Innon urbanlandscapes,speciesexhibitvaryingratesofrecolonisationintoburntareas(Fox1982), yet the likelihood of species recolonising burnt habitats in urban areas is additionally dependent on their ability to traverse the urban matrix in order to access burnt areas.

Therefore,itisimportantthatfireregimesarecloselyexaminedintermsoftheirshortand longterm impacts on vegetation, habitat structural attributes and associated fauna species assemblages. It is also important that this knowledge is incorporated into mosaic burning practicesandfirefrequencymanagement.

Second, it is critical that practices such as aesthetic clearing, habitat (e.g. bushrocks and wood) and plant removal, garden waste dumping, and offtrack trampling are discouraged.

Such habitat misuse increases the disturbance levels and so facilitates weed invasions,

116 decreases vegetation structure and also degrades other structural attributes such as termite moundsandfallenwoodymaterial,therebynegativelyimpactingnativespeciesrichness.We propose that priority habitat fragments are specifically targeted by local habitat managers.

Thisincludesareasthatcurrentlysupporthighnativespeciesrichnessandalsothosethatare beingmanagedtorestorespeciesrichness,particularlywhentheseareashaveahighhuman use(e.g.walkingtracks,picnicfacilities).Itisimportantinthesepriorityareasthatexisting controlsonhumanmisuseareenforced.

Third, community revegetation groups are vital for efficiently managing and monitoring habitatfragmentsforthebenefitofnativefaunarichness.However,suchgroupsshouldfirst considerthestructuralratherthancompositionalhabitatattributesoftheirfocalpatch.Habitat regenerationactionsthatcommonlybeginbyreplacingweedyplantswithnativeplantswould bebetteradvisedtoassesstheoverallweedinessandstructureofhabitatsfirst.Ifweedcover isrelativelylow,resourcesmaybebetterfocussedonenhancinghabitatstructuralcomplexity.

Thiscouldbeachievedby:conservingandplantinglargeeucalypttreespeciesthatprovide importantfallenwoodymaterialandleaflittercoverthatenhanceverticalstructure;promoting vegetationstructuralcomplexityinmidandunderstorylayers;andevenintroducingartificial structuresthatmayactassurrogatesfornaturalbasking,shelterandnestingstructuresusedby nativeterrestrialmammalandreptilespecies.

Finally, although it is important to understand the habitat requirements of individual fauna species,whenthegoalisconserving,restoringorincreasingnativefaunabiodiversity,habitats mustnotbemanagedbasedontherequirementsofasinglespecies.Thisisoftendifficultdue tothevarietyofspeciesspecificresponsesandthecrypticnatureofmanynativeAustralian

117 terrestrialfauna.Apotentialwaytoaddressthischallengeandfacilitateeffectivemanagement ofhabitatsformultiplespeciesistoconstructecologicalspeciesprofiles(Opdametal. 2002).

Such profiles enable various species to be categorised based on similarities in their habitat requirementsanddisturbanceresponses.Theresultingecologicalspeciesprofilesmaythenbe used to guide habitat management decisions, such as priority areas, actions and funding allocation, and facilitate the longterm conservation of multiple species. In addition, long termmonitoringofreptilesandgrounddwellingmammalsinremnanthabitatfragments,and associated adaptive management strategies, is recommended in order to minimise inherent problems of shortterm studies such as, falseabsence records and seasonal fluctuations in speciesdiversityandabundance.

118

(a) Eastern stone gecko (Diplodactylusvittatus ) • Family:Gekkonidae • Insectivorous,nocturnalgecko. • Averagesize:SVL50mm. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia. • InBrisbane:restrictedtosuitableremnantbushalnd habitatinperiurbanlandscapes. Thisphotoshowsanadultmaleeasternstongeckoonmyhand. (b) Lace monitor (Varanusvarius ) • Family:Varanidae • Carnivorous,diurnallizard. • Averagesize:Totallength2.1m. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia. • InBrisbane:commoninremnantbushlandinperi urbanlandscapes. Inthisphotoanadultlacemonitoristakingrefugeonatreetrunk. (c) Verreaux’ s skink (Anomalopusverreauxii ) • Family:Pygopodidae • Nocturnal,fossorialskink. • Averagesize:SVL185mm. • Distribution:QueenslandandNewSouthWales. • InBrisbane:commoningardensandbushland, particularlyinperiurbanlandscapes. InthisphotoIamholdingajuvenileVerreaux’sskink–noteshortened forelimbs,andhindlimbsreducedtostump

(d) Copper -tailed skink (Ctenotustaeniolatus ) • Family:Scincidae • Insectivorous,diurnalskink. • Averagesize:SVL80mm • Distribution:Queensland,NewSouthWales,Victoria. • InBrisbane:commoninparksandbushlandthroughout, butparticularlyinperiurbanlandscapes. Thisphotoshowsanadultcoppertailedskinkonmyhands. Plate 5.Gecko,monitor,andskinks:(a)Easternstonegecko;(b)Lacemonitor;(c) Verreaux’sskink;(d)Coppertailedskink.

119

Chapter 5

WHAT’S MORE IMPORTANT FOR WILDLIFE IN

FRAGMENTED URBAN LANDSCAPES – LOCAL, PATCH, OR

LANDSCAPE-LEVEL INFLUENCES? A REPTILE AND

SMALL MAMMAL CASE STUDY FROM SOUTHEAST

QUEENSLAND, AUSTRALIA

Citation:GardenJ.G.,McAlpineC.A.,Possingham,H.P.(inreview)What’smoreimportant

forwildlifeinfragmentedurbanlandscapes–local,patch,orlandscapelevelinfluences?A

reptileandsmallmammalcasestudyfromsoutheastQueensland,Australia.Biological

Conservation.

5.1. ABSTRACT

Asurbanareascontinuetoexpand,andfragmentandreplacenaturalecosystemsworldwide, theeffectiveconservationofwildlifepopulationsinfragmentedurbanandperiurban landscapesisbecomingincreasinglyimportant.However,theprocessesenablingwildlifeto persistinurbanareasarenotwellunderstood.Weaddressedthequestion:Whatismore importantfornativespeciesrichnessinfragmentedurbanlandscapes–local(<1ha),patch(1

120

–100sha),orlandscapelevel(100s–1000sha)influences?Toanswerthisquestionwe studiednativeterrestrialreptileandsmallmammalspeciesassemblageswithinlowland remnantvegetationfragmentsofBrisbaneCity,southeastQueensland(Australia).Species richnessandlocallevelhabitatattributesweresurveyedat51fieldsitesfortworepeatsurveys overtwoyears.Patchandlandscapelevelattributesweremeasuredatincreasingradial extents(500–5000m)aroundeachsurveysite.Generalisedlinearmodellingandhierarchical partitioningwereusedtodeterminetheimportanceoftheamountofforesthabitatandits configuration,relativetopatchsizeandshape,andlocalvegetationcompositionandstructure.

Wefoundthatinfluencesatalllevelswereimportantforbothreptileandmammalspecies richness.Reptilespeciesrichnesswasinfluencedforemostlybytheamountofforesthabitat anditsconfigurationatthelandscapelevel,andweedcoverandsoilcompactionatthelocal level.Thekeyfactorsinfluencingmammalspeciesrichnessweretheamountofforestand rural/lowdensityurbanhabitatatthelandscapelevel,followedbyhabitatcompositionatthe locallevel,andpatchsizeandshapeatthepatchlevel.Thesefindingshighlightthe importanceofadoptingahierarchicallandscapeperspectivefortheconservationofurban wildlife.

Key Words: Conservation,Management,AkaikeInformationCriteria,Relativeimportance,

Brisbane.

121

5.2. INTRODUCTION

Theprocessofurbanisationisthemostrapidlyexpandingandenduringformofanthropogenic landscapechange.Thisprocesssignificantlyaltersbiotic,abiotic,andphysicalattributesof thenaturalenvironment(BotkinandBeveridge1997)resultingintransformedanddegraded ecosystemsthatmayneverreturntotheiroriginalecologicalstate(Lugo2002).Theprimary impactsofurbandevelopmentonnaturalecosystemsaretheloss,fragmentation,and degradationofnaturalhabitats,whichhavesignificantramificationsfornativefauna populations(Baskin1998;Wilcoveetal.1998;Fahrig1997;MarzluffandEwing2001;

Faulkner2004).Whereascertainspeciesmaythriveinthemodifiedurbanlandscape,suchas exoticspeciesandsomenativegeneralistspecies,manynativespeciesarenegativelyimpacted byurbanisation(Baskin1998;Gardenetal.2006).Nativefaunapopulationsfragmentedby urbandevelopmentundergopopulationdeclinesandlocalisedextinctionsoftenlongafter developmentoccurs(Tilmanetal.1994;HanskiandOvaskainen2002).Nativebiodiversityis thereforeunderthreatasurbanareascontinuetoexpandandreplacenaturalhabitats,yetthe processesenablingwildlifetopersistinurbanareasarenotwellunderstood.Consequently, urbanplanningandmanagementdecisionsoftenfailtoensurethelongtermconservationof urbanbiodiversity.

Toeffectivelyaddressthischallengerequiresanunderstandingofhowanthropogenic landscapechangeimpactsurbanwildlife,andhowvariousspeciesrespondtolandscape changeandtheintensificationofdisturbancepressuresonremnanthabitats.Atthelandscape level,theimpactsofurbandevelopmentincludethelossandfragmentationofnaturalhabitats, lossoflandscapeconnectivityandthemodificationoftheinternalcompositionandstructure

122 ofremainingecosystems(Forman1995;Baskin1998;Wilcoveetal.1998;Marzluffand

Ewing2001;Faulkner2004).Thesechangesinlandscapecomposition,configuration,and ecosystemintegrityhaveimportantconsequencesforthepersistenceofnativefauna populations.Inadditiontotheprimaryeffectsofhabitatlossandfragmentation(Fahrig1997,

2001),additionalassociatedpressuresinclude:increasedhostilityoftheurbanmatrix includingbarriers(e.g.,roads)tospeciesdispersalandpetpredation;increasededgeeffects; and,increasedisolationofsuitablehabitats(Knutsonetal.1999; Villardetal.1999;Gibband

Hochuli2002;WoodandPullin2002;Bakeretal.2003;Kraussetal.2003;Verbeylenetal.

2003;YeomanandMacNally2005).Additionallocallevelchangesintheinternalstructure andcompositionofremnantnativeecosystemsnegativelyimpactshabitatquality,whichcan havefurthersubstantialimpactsonassemblagesofnativefauna(DickmanandDoncaster

1987;Rowstonetal.2002;Recher2004;Gardenetal.inpress).

Understandinghowspeciesrespondtomultiplechangesintheirhabitatisnotstraightforward asthemagnitudeanddirectionofenvironmentalchangesonwildlifepopulationsarehighly speciesspecific(DickmanandDoncaster1989;WuandHobbs2002;Coxetal.2003;

Tischendorfetal.2003;ChaceandWalsh2006).Inaddition,therelativeimportanceof habitatcharacteristicsatmultiplespatialscales,suchasthelocal(<1ha),patch(1100sha), andlandscapelevels(100s1000sha),alsovariesbetweenspecies,andacrosslandscape contexts(Wiens1994;HostetlerandHolling2000;Debinskietal.2001;Gardenetal.2006).

Successfullyaddressingurbanconservationplanningandmanagementissuestherefore requirestherelativeimportanceofmultilevelenvironmentalcharacteristicsonnativespecies assemblagestobedetermined.Animportantquestionthatmustbeansweredis:Whatismore importantforfaunaassemblagepersistence:locallevelcharacteristics,suchashabitat

123 structureandcomposition;patchlevelattributessuchaspatchsizeandshape;or,landscape levelattributes,suchashabitatlossandfragmentation?Answeringthisquestionrequires testingthelandscapestructurehypothesis,thatthestructureofthewholelandscapeandnot justthepatchesisasignificantfactorinfluencingspeciesoccurrenceanddiversity(Turner

1989;McGarigalandMcComb1995;Hokitetal.1999;Dorneretal.2002;McAlpineand

Eyre2002).Thiscallsfortheadoptionofapatchmosaicmodelratherthanthetraditional patchmatrixmodeloflandscapestructure(sensuLindenmayeretal.2003),recognisingthat theurbanmatrixisspatiallyheterogeneousandcanperformimportanthabitatanddispersal functionsforsomespecies(LidickerandPeterson1999;Fahrig2002;Opdametal.2003).

Thischallengeofconservingmultiplespecieswithinurbanlandscapesisfurthercomplicated bythebiasincurrenturbanecologyresearchtowardsstudiesthatfocusonasinglespatial scaleand/orasinglespeciesorfaunalgroup(Gardenetal.2006).Studiesconductedata singlescalehavebeenshowntoexplainonlypartoftheoverallimpactofhabitatloss, fragmentationanddegradation,producingthepotentialforspeciesdeclinestobeobscuredor exaggerated(Wiens1994;Hobbs1999).Further,ifconservingawidediversityoftaxaisthe managementgoal,thenweneedtounderstandthehabitatrequirementsofmultipletaxarather thanasingletaxon.Landscapescannotbeoptimisedbasedontherequirementsofonlya singlespeciesorfaunalgroupandsomultispeciesstudiesareessential(Opdametal.2002).

InAustralia,urbandevelopmentisconcentratedalongthecoastline,especiallytheeastern seaboard,whichareareassynonymouswithhighspeciesdiversityandendemism(Queensland

Museum1995).AprimeexampleissoutheastQueensland,anareaofrichfloraandfauna diversityandendemism(QueenslandMuseum1995),andalsothenation’smostrapidly

124 urbanisingregion,withthepopulationpredictedtoincreasebymorethanonemillionpeople overthenexttwodecades(TheStateofQueensland2006).Intheseregions,whilethereis increasingurbanresearcheffortintohighlymobile,easilyidentifiablebirdspecies(e.g.,

Catteralletal.1989;GroverandSlater1994;BentleyandCatterall1997;Catteralletal.1998;

Catterall2004),andhighprofilemammalspeciessuchasthekoala( Phascolarctoscinereus )

(SmithandSmith1990;Diqueetal.2004;McAlpineetal.2006a,b;Rhodesetal.2006), fewerstudieshaveconsideredtheimpactofurbanisationonreptile,amphibianandsmall mammalspecies(Gardenetal.2006).Consequently,urbanlandmanagersareoftenill informedregardinghowbesttoconservethesetaxaintheregion’srapidlyexpandingurban footprint.Theadoptionofamultiscaled,multispeciesapproachtourbanecologystudies wouldprovideinformationforsuccessfullyachievingurbanwildlifeconservation.

Weaddressedthequestion:Whatismoreimportantfornativespeciesrichnessinfragmented urbanlandscapes–local,patch,orlandscapelevelinfluences?Toanswerthisquestion,we examinednativeterrestrialreptileandsmallmammalspeciescompositionswithinlowland remnantvegetationfragmentsofBrisbaneCity,southeastQueensland(Australia).Thefocus wasonexplanationratherthanonpredictions,althoughwerecognisethetwoare complementary.Wefirstdevelopedasetof apriori modelsbasedontheconceptualmodelof theeffectsofurbandrivenhabitatloss,fragmentationanddegradationonspeciesrichness

(Figure5.1).Thelevelofobservationwasthesite,withmammalsandreptilessurveyedtwice overtwoconsecutiveyearsat51sites.Weappliedtheinformationtheoreticapproachof

BurnhamandAnderson(2002)tothedatainordertoinvestigatehowlocal,patchand landscapelevelattributesinfluencespeciesrichness.Modelaveragingwasusedtoaccount formodelselectionandparameteruncertainty.Usingthisprocess,themultilevelmodelwas

125 foundtoprovidethebestexplanationofreptileandsmallmammalspeciesrichnesswithin surveysites.

Local-level Patch-level Landscape-level (< 1 ha) (< 1-100s ha) (100s-1000s ha)

Structural Patch Landscape Complexity Size Composition

Floristic Patch Landscape Diversity Shape Configuration

Habitat Disturbance

Site Context

SPECIES RICHNESS

Figure 5.1. Conceptualmodelshowingfactorsinfluencingspeciesrichnessinfragmented urbanlandscapes.Aseriesof apriori predictorsareembeddedinthismodel.

126

5.3. A PRIORI MODELS

Thetestingof apriori modelsisbecomingincreasinglycommon(HilbornandMangel1997).

Somebelievethatdevelopingandtesting apriori modelsissuperiortonullhypothesistesting in‘…makinginferencesaboutobservationaldata,especiallywhendataarecollectedfrom complexsystems…’(JohnsonandOmland2004,p.106).Thefollowingalternative apriori modelsweredevelopedbasedonaccumulatedknowledgeoflandscapeecologyandreptile andsmallmammalbiology.

Model1.“Home,sweet,home”:Habitatcharacteristicsatthelocallevelhavethestrongest influence.

Thismodelpredictsthathabitatcharacteristicsatthelocallevelhavethehighestrelative influenceonsmallmammalandreptilespeciesrichness.Keylocallevelhabitatattributes includestructuralcomplexity(e.g.,verticalvegetationstructure,fallenwood,andtermite mounds),floristicdiversity(e.g.,abundanceofvariousplantspecies)anddisturbances(e.g., fire,weedcover,andlitterdumping).Structuralcomplexityisexpectedtobemoreimportant thanfloristicdiversityfordeterminingspeciesrichness,withstructurallycomplexhabitats expectedtosupporthighspeciesrichness.Forterrestrialreptileandsmallmammalspecies, verticalandhorizontalstructuralelementshavebeenshowntoprovideessentialshelter, foraging,breeding,andthermoregulationrequirements(Halliger1993;CorkandCatling1996;

Smithetal.1996;Burrowetal.2001;ChambersandDickman2002;Jellineketal.2004).

Thesestructuralelementsarealsolikelytoallowsmallanimalstomoveatalocalscalewith reducedpredationrisk.

127

Model2.“Biggerisbetter”:Patchsizeandshapehavethestrongestinfluence.

Thismodelpredictsthatspeciesrichnessincreaseswithpatchsizeandshapecomplexity.

Conceptually,thismodeldrawsfromtraditionaltheoriesofislandbiogeography(MacArthur andWilson1967),metapopulationdynamics(Levins1970),resourceconcentration(Root

1974)andedgeeffects(e.g.,Lidicker1999).Together,theseimplythatlarger,morecompact patcheswillprovidemorehighqualityhabitatswithadiversityofresources,andthatanimals aremorelikelytooccupyandpersistinthesepatches(Bowmanetal.2002).

Model3.“Thinkingoutsidethebox”:Theareaofsuitablehabitathasthestrongestinfluence.

Thismodelpredictsthattherichnessofreptileandsmallmammalassemblagesisprimarily influencedbytheareaofsuitablehabitatinthesurroundinglandscape,ameasureoflandscape composition,andthatlossofthishabitatwillnegativelyinfluencespeciesrichness.Fahrig

(1997,2001,2003)arguesthathabitatloss,ratherthanhabitatfragmentation,isthemajor driverofpopulationdeclines.Severalresearchersnationallyandinternationallyalsosupport thisargument.WoodandPullin(2002),forinstance,proposethatbutterflyspeciesina

Britishlandscaperelymoreontheavailabilityofsuitablehabitat,ratherthantheirdispersal abilities,forsurvival(seealso:Benderetal.1998;Carlson2000).WithinAustralia,

McAlpineetal.(2006b)concludethattheamountofhabitathadastrongpositiveinfluenceon koalaoccurrencesinurbanisedlandscapesofsoutheastQueensland(seealso:Catteralletal.

1998).Wewouldexpect,therefore,thattheamountofsuitablehabitatwouldhaveasimilar stronginfluenceonreptileandsmallmammalspeciesrichnessintheregion

Model4.“Location,location,location”:Landscapeconfigurationhasthestrongest influence.

128

Thismodelpredictsthatthespatialconfigurationofsuitablehabitathasthestrongestinfluence ontherichnessofsmallmammalandreptilespecies.Theindependenteffectsofhabitatloss perse areoftendifficulttodiscriminatefromeffectsofthecloselyrelatedprocessofhabitat fragmentation(Andrén1994;Wilcoveetal.1998;CushmanandMcGarigal2002;Fuhlendorf

2002;Benderetal.2003).Fragmentationaltersthespatialarrangementofhabitatpatchesby reducingmeanpatcharea,alteringpatchshapes,andincreasingboththenumberandisolation ofpatches.Weconceptualisethattheurbanlandscapeisamosaicofhabitatsofdifferent quality,andthespatialconfigurationandconnectivityofthesehabitats,particularlyhigh qualityremnantforesthabitats,hasthestrongestinfluenceonspeciesrichness.

Model5:Roadshavethestrongestinfluence.

Thismodelpredictsthattheproximityanddensityofroadsadjacenttoandsurrounding suitablehabitatfragmentshasthestrongestinfluenceonreptileandsmallmammalspecies richness.Roadsareasignificantelementinurbanareas,causingsubstantialhabitat fragmentationastheybisectthelandscape,actingassignificantdispersalbarriersand increasingtheprobabilityofmortality(FormanandAlexander1998;Forman1999;Jaarsma andWillems2002;Formanetal.2003).Thesedirectimpacts,inadditiontoasuiteofindirect impacts,havebeenshowntosignificantlyinfluence:habitatquality,individualspecies, speciesassemblagesandpopulations.Consequently,weexpectthatreptileandsmallmammal speciesrichnesswilldecreasewhereroadsareadjacenttohabitatfragments,andasroad densityinthesurroundinglandscapeincreases.

Model6.“Life,theuniverse,andeverything”:Theglobalmodelisthebestpredictor.

129

Theglobalmodelpredictsthatacombinationoffactorsoccurringatthesite,patchand landscapelevelswilldeterminethedistributionandrichnessofspecieslivinginfragmented urbanlandscapes.Thismodelcombinestheinfluencesandpredictionsoutlinedinmodels15.

VerboomandApeldoorn(1990)andFuhlendorfetal.(2002)concludedthattheirrespective multilevelmodelsprovidedthebestpredictionofspeciesdistributionsforredsquirrels

(Sciurusvulgaris L.)intheNetherlands,andNorthAmericanlesserprairiechickens

(Tympanuchuspallidicinctus ),respectively.Despitethelackofrigoroustesting,thevalueof multilevelmodelshavebeenendorsedbypreviousresearcherswhohaveconcludedresults fromsinglelevelstudiescouldhavebeenimprovedhadmorevariablesatmultiplelevelsbeen considered(e.g.,MacNallyetal.2000).

5.4. METHODS

5.4.1. Study Area

Thestudywasconductedinlowland(<100ASL)remnantvegetationpatchesofBrisbane

City,southeastQueensland(153º2’S,27ºE)(Figure5.2).Brisbaneisthecapitalof

QueenslandandisAustralia’sthirdlargestcity(area1,220km 2,population>1million)

(CommonwealthofAustralia2003b).Almost70%oftheoriginalvegetationcoverhasbeen clearedsinceEuropeansettlementbeganin1824,withlowlandforestecosystemsthemost heavilycleared(CatterallandKingston1993).Contemporaryurbandevelopmentisoccurring inthelowlandoutersuburbstothesouthandsoutheast(BrisbaneCityCouncil2001).Despite theextensivelossoftheselowlandhabitats,Brisbanestillmaintainshighfaunaandfloristic diversity,withthehighestvertebratediversityandendemismofanyAustraliancapitalcity

130

(QueenslandMuseum1995).Thecurrentstudyfocusedontheselowlandfragmentedhabitats inthecity’ssouthernandeasternsuburbs(Figure5.2).

Main roads

Brisbane CBD Remnant Vegetation (1999)

5 km buffer around fauna survey sites

Figure 5.2. MapofBrisbaneCitylocalgovernmentareashowingcentralbusinessdistrict (CBD)relativetothestudyareawithinwhichfaunasurveyswereconducted.

131

5.4.2. Habitat Mapping, Stratification and Site Selection

Ofthe59sitesinitiallyselected,eightwereeliminatedfromthedatasetduetofireor substantialhumaninterferencepreventingthefullcomplementofsurveystobeconducted.

Therefore,datacollectedfrom51sites,whichwereabletobesurveyedtwice,wereusedfor finalanalyses.SurveysiteslocationswereinitiallyselectedusingBrisbaneCityCouncil

(BCC)satelliteimageryandGISdata.GISremnantregionalecosystemlayersoverlayedon recentsatelliteimagerywereusedtoidentifypossiblesurveysitelocationswithinregional ecosystemtype12.910.4.Thislowlandecosystemisdominatedbyscribblygum( Eucalyptus racemosa )communitiesgrowingonsandysoilsandisoneofthemostfragmentedlowland ecosystemtypesintheregion(YoungandDillewaard1999).Stratificationofsiteselection byregionalecosystemtypepreventedpotentialdifferencesinspeciesassemblagesdueto naturalspeciesvariationsbetweendifferentecosystems.

Potentialsitelocationswerethenassessedinsitutodeterminetheirsuitability.Siteswere consideredunsuitableiftheywerelargelydisturbed,hadahighprobabilityofhuman interference,orweredifficulttoaccess.Toensureindependentsamplesofspecies communities,sitesweresituatedatleast200mapart.Inremnantfragmentsthatreceivedhigh humanuse,siteswereadditionallylocatedatleast20mfromdesignatedwalkingtracksand recreationalareas,toreducethelikelihoodofhumaninterference.Inordertofulfilthese limitingrequirements,siteswerenecessarilylocatedonlocalcouncilandprivatelyowned properties.

132

5.4.3. Wildlife Surveys

The51sitesweresurveyedtwicefortheoccurrenceofnativeterrestrialreptileandsmall mammaloccurrence(Gardenetal.inreviewa).Siteswerefirstsurveyedinspring/summerof

2004withrepeatsurveysconductedinspring/summerof2005.Foreachsurveyperiod,four sitesweresurveyedsimultaneouslyoverthreeconsecutivenights.Acombinationoflive trapping(cage,Elliot,andpitfalltraps),directobservationandtrace(hairfunnels,tracks, scats,andvocalistations)surveymethodswereemployedtomaximisetheprobabilityof detectingtargetreptileandsmallmammalspecies.ThestandardAustralianmammalbait mixture(MenkhorstandKnight2001)wasusedtobaitcagetraps,Elliotttrapsandhair funnels,whilstpitfalltrapswereleftunbaited.Recordsfrombothsurveyperiodswere collatedintoasingledataset(total306surveynights)forthepurposesofdataanalysis.

5.4.4. Explanatory Variables

Sitelevel

Sitelevelhabitatvariableswererecordedforeachsite(Table5.1).Theseincludedmeasures ofstructuralcomplexity,floristicdiversityandhumandisturbance.Structuralcomplexitywas measuredas:averagepercentcanopy,midstorey,understoreyandgroundcover;midstorey density;groundcovercomplexityanddepth;volumeoffallenwoodymaterial;numberof piecesoffallenwoodymaterialcontaininghollows;numberofterrestrialtermitemounds;and soilcompaction.Floristicdiversitywasmeasuredbycountingthetotalnumberof Acacia spp. , Allocasuarinaspp. , Banksiaspp. , Callistemonspp. , Melaleucaspp. ,Pteridium esculentum ,andXanthorrhoeaspp .Humandisturbancewasmeasuredasthepresenceof wastelitter,sawnwood,firescars,andaveragepercentweedcoverateachsite.

133

Table 5.1. Keyexplanatoryvariables,asdeterminedfollowinginitialmultiscaled,multivariateexploratoryanalyses,thatwereusedin theanalysisofreptileandmammalspeciesrichness.Foreachvariable,thespatiallevelatwhichitwasmeasured,theenvironmental characteristicitmeasures,andabriefdescriptionareshown. Environmental Spatial Level Explanatory Variable Description Characteristic Floristic Grasstrees CountoftotalnumberofBanksias( Banksiaspp. ),grasstrees( Xanthorrhoeaspp. ) diversity Paperbarks orpaperbarks( Melaleucaspp. )ateachsite. Local Disturbance Weedcover Presenceorabsenceofweeds ateachsite. (<1ha) 3 Woodvolume(m ) Volumeoffallenwoodymaterialateachsite. Structural Averagemeasureofsoilhardnessateachsitemeasuredas:numberhits(<20) complexity Soilcompaction requiredtodriveaweightedsoilprobe20mmintoground–30measurespersite. Patch Size Patchsize(ha) Areaofforestpatchwithinwh icheachsitewaslocated. (110ha) Shape Patchshape Measureofthecomplexityofforestpatchshape. Proportionoflandscapeoccupiedby Percentageofthelandscapeoccupiedbyeachclasstype:forest,rural,built,and Composition eachhabitatclass(%) roadreserve,measuredateachspatialextent. Landscape Shannon’sevennessindex Measureofevennessofall habitatclassesinthelandscape. (10100sha) Meanpatcharea(ha) Averageareaofpatchesforea chhabitatclassmeasuredateachspatialextent. Averageminimumdistancebetweenpatchesofeachhabitatclassmeasuredat Patchmeannearestneighbour(m) eachspatialextent. Averagepercentageoffunctionaljoinsbetweenpatchesofeachhabitatclass Patchconnectivity(%) Configuration measuredateachspatialextent. Measureofphysicalconnectednessbetweenpatchesofeachhabitatclass Landscapecohesionindex measuredateachspatialextent. InterspersionandJuxtapositionIndex Measuresspa tialarrangementand“mixing”ofallhabitatclassesinthelandscape. Landscapecontagion Measureofspatialdominanceof onehabitatclassinthelandscape.

134 Othersitelevelmeasurementsincludeddistancefromeachsitetotheclosest:patchedge,permanent watersource,sealedroad,unsealedtrack,clearedarea,andbuiltstructure.Thesemeasurementswere derivedfromQuickbirdhighresolutionsatelliteimagery(resolution=2.5m).Landtenurewas recordedforeachsiteascertainhabitatpatchesspantenureboundariesandsolocallevelmanagement mayvarywithinpatches,therebyinfluencingspeciesoccurrence.

Patchlevel

Patchlevelmeasurementsincludedthepatchsize(ha),perimeterlength(m),andshape(relativetoa circleofequalarea).AllpatchlevelvariableswerecalculatedusingArcGISversion9.1(ESRIInc.

19992005)derivedfromBCClandusedataandQuickbirdhighresolutionsatelliteimagery.

Landscapelevel

QuickbirdimageryandBCClandusedatawereusedtoclassifythelandscapeintothreehabitat classes:forest,ruralandurban(Table5.2)whichwereconvertedtoarasterlayerwitha3mpixelsize.

Landscapestructure(compositionandconfiguration)wasthenquantifiedatsixradialextents(500m,1 km,2km,3km,4kmand5km)aroundeachsiteusingFRAGSTATSVersion3(McGarigaletal.

2004).Landscapecompositionwasmeasuredastheproportionoflandscapeoccupiedbyeachhabitat classandthedominanceofoneparticularhabitatclass,asmeasuredbyShannon’sEvennessIndex.

Roadswereincorporatedinthebuilthabitatclassformeasurementsoftheproportionoflandscape occupiedbyurban.However,previousresearchhashighlightedthesignificantnegativeinfluencethat roadscanhaveonfaunaspeciesandso,theeffectofroaddensitywasexaminedindependentlyby measuringtheproportionoflandscapeoccupiedbyroadreservesineachspatialextent.Landscape configurationwasmeasuredusingforestpatchandedgedensity,forestmeanpatchareaandshape complexity,Euclideanmeannearestneighbourdistancebetweenforestpatches,andtheconnectivityof forestpatches. 135

Table 5.2. Habitatclassesandtheirperceivedfunctionforreptileandmammalspecies.Although roadsareencompassedwithinthe‘built’habitatclass,theirindependentinfluenceonspeciesrichness hasalsobeeninvestigated;adescriptionofroadsisthereforealsopresentedinitalics.

Habitat Characteristics Function Class Forest • Lowdensityhumanusedominatedby Highqualityforagingand remnantnativevegetation;Remnantwas breedinghabitatwithlow definedasthecanopy,midstorey, riskmovement. understorey,andgroundlayersbeing>70% intact.

Rural • Moderatedensityhumanusedominatedby Lowmoderatequality cleared/opengrassyareaswithscatteredtrees habitatwithmoderaterisk andparklands. movement,dependingon • Includes:agricultureandgrazingpaddocks; speciesbehavioural managedparklands,residentialacreage,open attributes. sportsovals,andgolfcourses. Built • Highdensityhumanusedominatedbyman Unsuitablehabitatwith madestructures. highriskmovementand • Includes:residentialandindustrialestates, highfrequencyofbarriers. miningquarries,commercial,business, educationandsportingcentres,carparks,and roadandrailwaynetworks. Road • Manmadeareaencompassingsealedroad Subdivideshabitatsand Reserve pavementsandassociatedroadverges. presentssignificant,high • Variableinwidthanddominatedbylow riskbarrierstomovement highvehicleuse.

5.4.5. Statistical Analyses

Exploratorydataanalysis

Theresponsevariablewasthetotalnumberoftargetspeciesdetectedforeachsiteforbothsurvey periods.Mammalsandreptileswereanalysedindependently.Exploratorydataanalysiswasconducted inthefollowingseriesofsteps.First,explanatoryvariableswerestandardisedtohaveameanof0and 136 astandarddeviationof1toallowcomparisonofmodelparameterestimates.Then,univariate generalisedlinearmodellingusingtheGaussianfamilywithinRversion2.0.1(TheRDevelopment

CoreTeam2004)wasappliedtomodelspeciesrichnessagainsteachexplanatoryvariable.The univariatemodelswerethenrankedaccordingtotheirsignificanceandAkaike’sInformationCriterion

(AIC)(Akaike1983)ofeachmodel.Wealsotestedforstatisticallyimportantinteractioneffects betweenforestamountandforestpatchdensity,andbetweenforestamountandforestmeannearest neighbourdistance.AICwascalculatedas:

AIC=2L+2 K (1)

where Listhemodel’sloglikelihoodand K,thenumberofparametersinthemodel.

Second,forforestamount,forestpatchandedgedensity,forestmeanpatcharea,forestmeannearest neighbourdistance,androaddensity,wechosethespatialextentwiththehighestAkaikeweightvalue

(Akaike1983;BurnhamandAnderson2002).TheAkaikeweight( wi)ofamodelistherelative likelihoodofthemodelcomparedtoallothermodelsinthesetwithweightvalues >0.8,indicatinga highlevelofsupportforacandidatemodel(BurnhamandAnderson2002).Next,totesthowtheeffect offorestamount,configurationandroaddensitychangedwiththespatialextentofanalysis,weplotted theAkaikeweightagainstthemetricmeanandstandarddeviationforeachspatialextent,andexamined iftheAkaikeWeightfollowedasimilarpatterntothemeanandstandarddeviation.

Finally,wetestedforcolinearityamongthissubsetofexplanatoryvariablesusingSpearman’sRank correlation.Acorrelationcoefficientof>0.7waschosentoidentifypairsofhighlycorrelated variables.Thedecisiontoretainorremovevariableswasbasedonitsperceivedecological significancefordeterminingspeciesrichnessaswellasitslevelofcolinearity.Followingthese 137 exploratoryprocesses,thesetofexplanatoryvariableswasreducedtoasubsetof11keyvariablesfor bothreptilesandmammals.

Modelaveraging

Multivariategeneralisedlinearmodelswerethenusedtomodelspeciesrichnessagainstthesubsetof keyexplanatoryvariablesforeachtaxa.Becauseofthehighuncertaintyinthefinalmodelselection, weappliedamodelaveragingapproachusingR(BurnhamandAnderson2002).Modelaveraging constructsalternativemodelsfromallpossiblelinearcombinationsofthesubsetofexplanatory variablesandinteractions.ThealternativemodelswerethenrankedbytheirAICvalueandAkaike weight( wi).WeassessedmodeluncertaintybysuccessivelysummingtheAkaikeweightsofthetop modelsuntilthecumulativesumofweights>0.95.

Becausemodeluncertaintywashighforbothreptilesandmammals,wecalculatedthemodelaveraged parameterestimatebyweightingtheparameterestimateagainsttheAkaikeweightforeachmodel.We alsocalculatedtheunconditionalstandarderrorofeachparameterestimateaccordingtoBurnhamand

Anderson(2002,p.162).Finally,werankedthevariablesaccordingtotheirrelativeimportanceby summingtheAkaikeweight( Σw i)fromallmodelcombinationswherethevariableoccurred.Thelarger thesumoftheweightvalue,themoreimportantthevariableisrelativetotheothervariables.

Theindependenteffectofkeyexplanatoryvariablesandinteractiontermswasexaminedusingthe hierarchicalpartitioningpackage,“hier.part”,inR2.0.1(WalshandMacNally2005).Hierarchical partitioningenablestheindependentandjointpercentcontributionofeachvariabletotheoverall explanatorypowerofthemodeltobedetermined(ChevanandSutherland1991;MacNally2000).

Variablesthatarehighlycollinearhaveajointeffectlargerthantheirindependenteffects.

138 Modelfit

Toassesthefitofthefinalmodelsweplottedtheobservedandpredictedspeciesrichnessformammals andreptiles.Weappliedanarbitrarythresholdoferrorof+1species,andcalculatedthenumberof siteswithinthisrange.SpatialautocorrelationinthePearson’sresidualswereinvestigatedusingthe

ROOKCASEaddininMicrosoftExcel(Sawada1999)tocalculateMoran’sindexandconstruct correlograms.Thecorrelogramswerecomparedtothosederivedfromtheobservedspeciesrichness responsevariablesforreptilesandmammals.Spatialautocorrelationwasconsideredstatistically significantifZnormal<1.96.

5.5. RESULTS

Atotalof19reptilespecies(eightfamilies)andninemammalspecies(threefamilies)weredetected overall.Observedspeciesrichnessvariedbetweenzerotofivespeciesforreptiles,andzerotothree speciesformammals.

5.5.1. Spatial Extents of Landscape-Influence

Forreptiles,theunivariategeneralisedlinearmodelsidentifiedfoursite,threepatchand15landscape levelvariablesasbeingsignificant( p<0.10asidentifiedbyR).Therewasnosinglespatialextentat whichkeylandscapelevelvariableshadthestrongesteffect(Figure5.3).Theproportionofthe landscapeoccupiedbyforesthadthestrongestsupportatthe1kmextent( wi=0.347)andlittlesupport at34kmextents(Figure5.3a).Forforestmeanpatcharea,therewasweaksupportforthe4kmspatial extent(Figure5.3b)relativetotheotherextents,whileforforestpatchconnectivitytherewasweak supportatthe5kmspatialextent(Figure5.3d).Incontrast,theproportionoflandscapeoccupiedby roadshadthestrongestlevelofsupportatthe500mextent( wi=0.419;Figure5.3c).Formammal 139 speciesrichnesstheproportionofthelandscapeoccupiedbyforestandruralhabitatscombinedwasthe mostimportantofthelandscapelevelvariables.Thisvariablehadthestrongestsupportatthe5km extent( wi=0.466;Figure5.3e).

5.5.2. Subset of Explanatory Variables

Thetop11explanatoryvariablesforreptiles(Table5.3a)andmammals(Table5.3b)showedlowto moderatecolinearity.Thehighestlevelofcolinearityforvariablesexplainingreptilespeciesrichness wasbetweentheproportionofforestoccupyingthelandscapeatthe1kmextentandforestpatchsize

(r=0.90).Patchsizewashighlycorrelatedwithforestmeanpatchareaat4km( r =0.74),forestpatch cohesionat2km( r =0.81),theproportionoflandscapeoccupiedbyroadsatthe500mspatialextent

(r =0.76),andlandscapecontagionatthe1kmextent( r =0.80).Landscapecontagionat1kmwas alsohighlycorrelatedwiththeproportionoflandscapeoccupiedbyforestatthe1kmextent( r =0.79), andwithforestpatchcohesionatthe2kmspatialextent( r =0.73).Althoughnotcorrelatedwithother explanatoryvariables,woodvolumeandpatchshapewereremovedastheyhadlowcorrelationswith reptilespeciesrichness,andsubsequentstatisticalanalyseswerebestperformedonasmallersubsetof variables(<6).Afteraccountingforcolinearity,thefinalsubsetofexplanatoryvariableswere:weed cover,soilcompaction,proportionofthelandscapeoccupiedbyforestat1km,forestmeanpatcharea at4km,forestpatchconnectivityat5km,proportionofthelandscapeoccupiedbyroadsat500m, landscapecontagionat1km,andtheinteractionbetweentheproportionoflandscapeoccupiedby forestat1kmandforestconnectivity.

Formammals,thehighestlevelofcolinearitywasbetweenthecombinedproportionsofforestand ruralhabitatsatthe5kmlandscapeextentandtheproportionofthelandscapeoccupiedbyroadsatthe

4kmextent( r= 0.95).Thefinalsubsetofexplanatoryvariablesincluded:grasstrees

140

(a) Forest %Landscape (b ) Mean Forest Patch Size 100 1.0 45 1.0 90 40 80 0.8 35 0.8 Akaike Weight Akaike Akaike Akaike Weight 70 30 60 0.6 0.6 25 50 20 40 0.4 0.4 30 15 10

20 0.2 (ha) Size Patch Mean 0.2 10 5 Proportion of Landscape(%) of Proportion 0 0.0 0 0.0 500 1000 2000 3000 4000 5000 500 1000 2000 3000 4000 5000

(c ) Roads %L andscape (d ) Forest Patch Connectivity

100 1.0 140 1.0

90 120 80 0.8 0.8 Akaike Akaike Weight 70 Weight Akaike 100 60 0.6 80 0.6 50 60 0.4 40 0.4 30 40

20 0.2 Connectedness(%) 0.2 20 10 ProportionLandscapeof (%) 0 0.0 0 0.0 500 1000 2000 3000 4000 5000 500 1000 2000 3000 4000 5000

(e) Forest + Rural %Landscape 110 1.0 100 90 0.8 80 Weight Akaike 70 0.6 60 50 0.4 40 30 20 0.2

Proportion Landscape of (%) 10 0 0.0 500 1000 2000 3000 4000 5000

Figure 5.3. Keylandscapelevelpredictorsfromthefinalmodelatincreasingspatialextents(500 5000m)fromsurveysitesfor:(ad)reptilespeciesrichness,and(e)mammalspeciesrichness. Variablemeans( ),standarddeviations(errorbars),andAkaikeweights( wi)( )areshown.

141

Table 5.3. CorrelationmatrixofSpearman’srankcorrelationcoefficientsforkeyexplanatoryvariablesfor:(a)reptilespeciesrichness, and(b)mammalspeciesrichness.Correlatedvariables(>0.70)areinbold.

(a) Variable Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12

1. Reptile richness 1 2. Weed cover 0.26 1 3. Wood volume 0.13 -0.04 1 4. Soil compaction -0.25 0.01 -0.25 1 5. Patch size 0.26 0.58 -0.10 0.00 1 6. Patch shape -0.07 0.26 -0.18 0.01 0.49 1 7. Forest %Landscape (1 km) 0.30 0.54 -0.10 0.07 0.90 0.37 1 8. Forest mean patch area (4 km) 0.36 0.42 -0.01 0.01 0.74 0.25 0.66 1 9. Forest patch cohesion (2 km) 0.34 0.47 -0.09 0.04 0.81 0.38 0.87 0.66 1 10. Forest patch connectivity (5 km) 0.32 0.19 0.32 -0.36 0.29 -0.25 0.30 0.34 0.33 1 11. Roads %Landscape (500 m) -0.28 -0.62 0.24 0.04 -0.76 -0.54 -0.69 -0.63 -0.62 -0.11 1 12. Landscape contagion (1 km) 0.46 0.56 0.11 -0.03 0.80 0.24 0.79 0.60 0.73 0.42 -0.55 1

(b) Variable Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 1. Mammal richness 1 2. Paperbarks 0.14 1 3. Grass trees 0.30 0.02 1 4. Patch size 0.10 -0.16 -0.10 1 5. Patch shape 0.23 0.00 0.11 0.49 1 6. Forest %Landscape (4 km) 0.38 -0.02 0.28 0.51 0.46 1 7. Forest + rural %Landscape (5 km) 0.46 0.22 0.36 0.03 0.27 0.74 1 8. Roads %Landscape (4 km) -0.44 -0.16 -0.36 -0.17 -0.41 -0.83 -0.95 1 9. Forest patch mean nearest neighbour (5 km) -0.22 -0.23 -0.27 0.37 -0.12 -0.20 -0.66 0.52 1 10. Forest cohesion (5 km) 0.37 -0.09 0.30 0.43 0.28 0.86 0.79 -0.80 -0.21 1 11. Shannon's evenness index 0.21 0.15 0.19 -0.22 0.29 0.34 0.70 -0.69 -0.76 0.27 1 12. Interspersion & juxtaposition -0.34 -0.19 -0.36 -0.28 -0.34 -0.72 -0.48 0.51 0.24 -0.52 -0.09 1

142

(Xanthorrhoeaspp .)andpaperbarks( Melaleucaspp .)atthesitelevel;forestpatchsizeand forestpatchshapeatthepatchlevel;andtheproportionofforestandruralhabitatscombined atthe5kmlandscapeextent.

5.5.3. Effect of Explanatory Variables

Forreptilesandmammals,therewasmoderatemodeluncertainty,andalow–moderatelevel ofuncertaintyfortheaverageparameterestimates(Figure5.4).Forreptiles,soilcompaction hadthestrongestnegativeeffect(Figure5.4a).Forestmeanpatchareaatthe4kmextenthad astrongpositiveinfluenceonreptilespeciesrichness,withtheproportionofforesthabitatat the1kmlandscapeextenthavingamoderatepositiveinfluence(Figure5.4a).Theabsenceof weedcoveratthesitelevelandforestconnectivityatthe5kmextentbothhadaweakpositive influenceonreptilespeciesrichness,whilsttheproportionofroadsatthe500mextenthada weaknegativeinfluence,asdidtheinteractionbetweentheproportionofforestpatch connectivityandtheproportionofforesthabitatinthelandscape(Figure5.4a).

Mammalspeciesrichnesswasstronglypositivelyinfluencedbytheproportionofforestand ruralhabitatscombinedatthe5kmlandscapeextent(Figure5.4b).Thepresenceof paperbarksandgrasstreesatthesitelevelbothhadanimportantinfluence,whilstatthe patchlevel,patchsizeandshapehadweakpositiveeffectsonmammalspeciesrichness

(Figure5.4b).

143

(a) Local-level Landscape-level (< 1 ha) (100s -1000s ha)

Weed Cover Forest 0.08 (+ 0.02) % Connectivity (5 km) 0.05 (+ 0.02) Interaction Effect Soil Compaction -0.05 (+ 0.02) -0.30 (+ 0.03) Forest % Landscape (1 km) 0.12 (+ 0.03) Forest Mean Patch Area (4 km) 0.22 (+ 0.04)

Roads % Landscape (500 m) -0.04 (+ 0.01) REPTILE RICHNESS

(b) Local-level Patch-level Landscape-level (< 1 ha) (< 1 -100s ha) (100s -1000s ha)

Grass Trees Forest Fore st + Rural 0.09 (+ 0.04) Patch Size % Landscape (5 km) -0.01 (+ 0.01) 0.28 (+ 0.04) Paperbarks Forest 0.20 (+ 0.04) Patch Shape 0.05 (+ 0.03)

MAMMAL RICHNESS

Figure 5.4. Pathdiagramsshowingaverageparameterestimatesandunconditionalstandard errorsoftheestimatesforeachexplanatoryvariablepresentinallmodelcombinationsfor:(a) reptiles,and(b)mammals.Linewidthsareproportionaltotheaverageparameterestimates. Negativeeffectsareindicatedbydashedlines.

144

5.5.4. Independent Effects and Ranking of Explanatory Variables

Thebestfitmultivariategeneralisedlinearmodelforreptilesexplained25.6%oftheobserved variationinreptilespeciesrichness(Figure5.5a).Forallvariables,theindependenteffectwas greaterthanthejointeffect.Almost50%oftheexplainedvariationwasduetoforest connectivityat5kmandtheproportionofroadsatthe500mlandscapeextent.The interactioneffectbetweenforestconnectivityandtheproportionofforestinthelandscapealso hadastrongindependenteffect.Theproportionofforesthabitatinthelandscapeat1kmand theforestmeanpatchareahadweakerindependenteffects.Atthesitelevel,soilcompaction andtheabsenceofweedshadsimilarindependenteffects.

Formammalspeciesrichness,thefinalmodelcontainingallexplanatoryvariablesexplained

27.1%oftheobservedvariation(Figure5.5b).Theproportionofforestandruralhabitat combinedcontributedalmost40%oftheoverallvariationinmammalspeciesrichness.The abundanceofpaperbarksandgrasstreesexplained28.7%and19.5%,respectively,while forestpatchshapeandpatchsizeexplained9.8%and2.9%,respectively.

TherankingofthekeyexplanatoryvariablesaccordingtothesumoftheAkaikeweights showedasomewhatdifferentpattern(Figure5.6).Hierarchicalpartitioningteasesapartthe independenteffectofeachvariable,whilethesumoftheAkaikeweightsprovidesameasure oftherelativeimportanceofeachexplanatoryvariableforexplainingtheresponsevariable

(McAlpineetal.,2006b).Forreptiles,soilcompactionhadthehighestrank(w i=0.768), followedbyforestmeanpatchareaandtheproportionoflandscapeoccupiedbyforesthabitat atthe1kmextent(Figure5.6a).Weedcover,forestconnectivity,theinteractionbetween

145 forestconnectivityandproportionofforestinthelandscape,andtheproportionofthe landscapeoccupiedbyroadshadlowerrankings.

Therankingofexplanatoryvariablesformammalspeciesrichnessaccordingtothesumofthe

Akaikeweights(Figure5.6b)showedasimilarpatterntotheindependenteffectderivedfrom thehierarchicalpartitioninganalysis(Figure5.5b).Thecombinedproportionsofforestand ruralhabitatsinthelandscapehadthehighestAkaikeweightvalue(w i=0.869)(Figure5.6b).

Paperbarkswererankednextfollowedbygrasstrees,patchshapeandpatchsizerespectively.

146 (a) Local-level Landscape-level (< 1 ha) (100s-1000s ha)

Weed Cover Forest 11.2 % % Connectivity (5 km) 25.1 % Interaction Effect Soil Compaction 14.4 % 12.3 % Forest % Landscape (1 km) 7.7 % Forest Mean Patch Area (4 km) 7.1 %

Roads % Landscape (500 m) 22.3 % REPTILE RICHNESS (b) Local-level Patch-level Landscape-level (< 1 ha) (< 1-100s ha) (100s-1000s ha) Grass Trees Fores t Fores t + Rural 19.5 % Patch Size % Landscape (5 km) 2.9 % 39.1 % Paperbarks Fores t 28.7 % Patch Shape 9.8 %

MAMMAL RICHNESS Figure 5.5. Pathdiagramsshowingindependenteffectofeachexplanatoryvariableasa percentageofoverallpercentexplainedinallmodelcombinationsofkeyexplanatory variables.Linewidthsareproportionaltotheindependentcontributionofeachvariable.

147

(a) Variable & Rank Soil compaction .1. Forest mean patch area (4 km) .2.

Forest %Landscape (1 km) .3.

Weed cover .4.

Forest connectivity (5 km) .5.

Forest conn. * Forest %Land. .6.

Roads %Landscape .7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∑∑∑ wi

(b) Variable & Rank

Forest + rural %Land. (5 km) .1.

Paperbarks .2.

Grass trees .3.

Forest patch shape .4.

Forest patch area .5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

∑∑∑ wi

Figure 5.6. Relativeimportanceofkeyexplanatoryvariablesfor(a)reptilespeciesrichness, and(b)mammalspeciesrichness.VariablesarerankedaccordingtothesumoftheAkaike weights( ∑wi)foreachvariable.

148

5.5.5. Spatial Autocorrelation and Model Fit

TherewasweakspatialautocorrelationintheresidualMoran’sindexvaluesforreptilesand mammals,withthesevaluesnotbeingstatisticallysignificant(Znormal<1.96).Themapped distributionofthemodelresidualsforreptilesandmammalsshowedrelativelyeven distributions(Figure5.7).Forreptiles,theresidualdistributionwasrelativelyeven,although therewassomeclusteringofnorthernsiteswherethehighestdeviationfromtheobserved speciesrichnessoccurred(Figure5.7a).Thebestfittingmodelforreptilescorrectlypredicted

(+1species)theobservedreptilespeciesrichnessfor43outofthe51faunasurveysites.At12 sites,thepredictedspeciesrichnesswasequaltotheobservedspeciesrichness.Sixsiteswere predictedtobewithin+2speciesandatonesite,threemorespecieswereobservedthanwas predicted.

Formammals,thegreatestdeviationbetweenobservedandpredictedspeciesrichness occurredinnorthernsites(Figure5.7b).Thebestfittingmodelformammalspeciesrichness hadahigheraccuracythanthemodelforpredictingreptilespeciesrichness.Ofthe51survey sites,mammalspeciesrichnesspredicted47siteswithin+1species,with60%ofthesesites correctlypredicted(i.e.noerror).Threeoutofthe51siteswerepredictedtohavetwospecies morethanwereobservedandonesitewaspredictedtohavethreelessspeciesthanwere observed.

149

(a) (b)

N ↑↑↑

Figure 5.7. Distributionofmodelresidualsfor:(a)reptilespeciesrichness,and(b)mammalspeciesrichness.Dotsizeindicates magnitudeofresidualerror: 1species; 2species; 3species.Blackdots:observed>predicted;Greydots:observed<predicted; Ticks:observed=predicted.Blacklinesurroundingsymbolsindicates5kmextentfromallfaunasurveysites.

150

5.6. DISCUSSION

ThisstudyshowedthatterrestrialreptilesandsmallmammalsinBrisbane’slowland,remnant fragmentswereprimarilyinfluencedbylandscapecompositionandconfiguration,followedby locallevelhabitatquality.Patchshapeandsizewereimportantonlyformammalspecies.

Thesefindingsdemonstratetheneedtoexplicitlyincludethelandscapecontextaspartof multilevelinvestigationsoffactorsinfluencingspecieshabitatrelationshipsinfragmented urbanlandscapes.Thestudyalsohighlightsdifferencesinkeyhabitatinfluencesamongtaxa.

Understandingthesedifferencesaswellastheirrelativeimportancefordifferenttaxais essentialifresearchersaretoadequatelyinformurbanlandmanagersandplannersofbest managementactionsforeffectiveandefficienturbanbiodiversityconservationpractices.

Theoutcomesfromthisstudyareconsistentwithpreviousstudiesthathavealsopositedthe combinedimportanceofvariablesacrossmultiplespatialscales.Forexample,amultiscale studybyFuhlendorfetal.(2002)onlesserprairiechicken( Tympanuchuspallidicinctus ) populationsinthesouthernGreatPlainsofNorthAmericaconcludedthatan“…individual spatialscale…wouldnothavegivencompletelyaccurateresults…”(p.626).Verboomand

Apeldoorn(1990)alsofoundthatattributesatthelocal,patchandlandscapelevelsprovided thebestpredictivepowerfordeterminingtheoccurrenceofredsquirrels( Sciurusvulgaris )in fragmentedforestsofTheNetherlands,whileFischeretal.(2004)foundthatreptilesin fragmentedgrazinglandscapesofNewSouthWales,Australia,respondedtohabitatvariables acrossmultiplespatialscales.Likeourstudy,thesepreviousstudiesalsoshowthatthe importanceofspecifichabitatattributesateachlevelmayvarybetweenspecies.

151

Reptiles

Reptilespeciesrichnesswasinfluencedbyattributesatboththelocalandlandscapelevels.

Highreptilerichnesswaspositivelycorrelatedwithsoftsoilsandanabsenceofweedsatthe locallevel.HaddenandWestbrooke(1996)andJellineketal.(2004)similarlyreportedthat increasedweedinessatsitesresultedinlowerreptilespeciesrichness.Jellineketal.(2004) postulatedthattheproportionofweedcoveratasitemaybeindicativeofthetimeapatchhad beenisolated.Wedidnotincludethetimesinceisolationinthisstudyduetoalackofreliable historicaldataforallhabitatfragments.However,werecognisethattheprobabilityof differentspeciespersistinginfragmentsislikelytodecreasewithtime,andthattherecanbea longrelaxationperiodbetweenisolationandspeciesloss(Tilmanetal.1994;Possinghamand

Field2001;WhiteandBurgin2004;Taitetal.2005).

Soilcompactionandweedinessarelinkedtohumanhabitatdisturbancesthatdegradethefine scalehabitatstructureandcomposition(Amreinetal.2005;Bassettetal.2005).Thishas importantimplicationsfortheavailabilityofsuitableforaging,thermoregulationandshelter sitesforreptiles(MurrayandSchramm1987;WikramanayakeandDryden1993;Smithetal.

1996;Vittetal.1998;Burrowetal.2001;Fischeretal.2003).Soilcompactionisalsolikely todirectlyinfluencetheoccurrenceoffossorialreptilessuchasStorr’srainbowskink

(Calyptotisscutirostrum )andVerreaux’sskink( Anomalopusverreauxii )whichrequiresoft soilsforburrowing.

Theimportanceofhabitatlossversusfragmentationisanimportantissueinlandscapeecology andconservationbiology.Purehabitatlosshasimplicationsonlyfortheamountofhabitat,

152 whereashabitatfragmentationhasimplicationsonlyforitsspatialconfiguration.Fahrig

(2003)stressesthathabitatlosshasaclearnegativeeffectonbiodiversity,whiletheeffectof fragmentationismorevariedandcomplex,andthatthenegativeeffectofhabitatlossis unlikelytobemitigatedbythespatialconfigurationofthathabitat.Wefoundthat,forreptile speciesrichness,boththeamountofforesthabitatanditsspatialconfigurationwereimportant, withforestmeanpatchareahavingahigherrelativeimportancethantheamountofforest habitat.

Theconnectivityofforesthabitatsanditsinteractionwiththeamountofforestwerealso important.ThisisconsistentwithpreviousfindingsbyVillardetal.(1999)andWestphalet al.(2003)forbirds,Ferreras(2001)forIberianlynxpopulations,andMcAlpineetal.(2006a) forkoalas.Ourfindingssupporttheimportanceoflargeareasofwellconnected,highquality patches;awellrecognisedprincipleinlandscapeecologyandconservationbiology(Bennett

1990;Bowneetal.1999;Pirnat2000;CastellónandSieving2006;Dixonetal.2006).

Theproportionoflandscapeoccupiedbyroadsatthe500mspatialextenthadstrongest negativeeffectonreptilespeciesrichness.Roadnetworksareoneofthemostprominent featuresoftheurbanlandscape,withroadsurfacesandroaddensityincreasingwiththe densityofhumansettlement(FormanandAlexander1998).Acommonthemeamongstudies investigatingtheeffectofroadsonnativewildlifeisthedirectand/orindirectdestructiveand detrimentalconsequencesofroads(Fahrigetal.1995;FormanandAlexander1998;Jones

2000;Bissonette2002;Rampetal.2006).Roadssubdivideforesthabitats,increaseforest patchisolation,andcreatesignificantbarrierstothedispersalofterrestrialfauna(Andrews

1990;Forman,1999).Theseresultsindicatethatlocatingroadsincloseproximitytoforest

153 fragmentswillnegativelyaffectreptilespeciesrichnesswithinthosehabitats,andhence shouldbeavoidedwhereverpossible.

Forreptiles,theresultsindicatethatconservinghighspeciesrichnessinurbanlandscapeswill bestbeachievedbymaintaininglargeareasofhighqualityforesthabitatsinlargepatches withhighconnectivitybetweenpatchesandlowroaddensity.Itisimportantthatlocallevel managementofremnantfragmentsalsoaimstomitigatedisturbancepressuresthatdegrade locallevelhabitatquality,particularlythosethatincreasesoilcompactionandweediness.The sizeandshapeofforestfragmentswasnotfoundtobeimportantforreptiles,indicatingthe potentialconservationvalueofbothsmallandlargefragmentsforsupportingterrestrialreptile assemblages,solongastheirinternalconditionandconfigurationinthelandscapeare managedappropriately.

Mammals

Mammalspeciesrichnesswasinfluencedbyattributesatthelocal,patchandlandscapelevels.

Ourstudydemonstratesthatinordertoconservehighmammalspeciesrichnessinurbanforest fragmentsitisnecessarytoadoptahierarchicalapproachtoresearchandmanagement.High quality,largeandirregularpatchesareimportant,butmostimportant,istheamountofforest andruralhabitatwithinthesurroundinglandscape.

Themostinfluentialparameterfordeterminingmammalspeciesrichnessatthelandscape levelinBrisbane’sfragmentedlandscapeswasthecombinedproportionofforestandrural habitatsinthelandscapeatthe5kmextentfromfaunasurveysites.Thisindicatesthat,like reptilespeciesrichness,thelandscapecontextisimportantformammalspeciesrichness.

154

Whenexaminedseparately,theamountofforesthabitatwasmoreimportantthantheamount ofruralhabitatformammalrichness.However,thecombinedinfluencewasgreaterthan eitheroftheindependentinfluences.Ourfindings,therefore,suggestthatsuitablehabitatfor certainsmallmammalspeciesmayencompassruralareasaswellasforestareas.

Thenorthernbrownbandicoot( Isoodonmacrourus )wasthemostcommonlycapturednative mammalspecies.Bandicoots(Family:Peramelidae)areknowntorequireamosaicofopen andclosedvegetationhabitatsincloseproximityinordertosupporttheirforagingandnesting behaviours(Dufty1994;Scottetal. 1999;ChambersandDickman2002).Thepatchymosaic ofmoderatelyopenandclosedhabitatsinperiurbanareasmaybethereasonforthe abundanceofthisspeciesinouterurbanlandscapes.Itisreasonable,therefore,toassumethat ourresultsformammalswerelargelydrivenbythehighoccurrenceofbandicootsrelativeto othermammals,therebyincreasingtherelativeimportanceofruralhabitats.Theother mammalfamilies(DasyuridaeandMuridae)identifiedduringthestudyareconsideredtobe predominantlyinterior,forestdwellingspeciesthatdonotcharacteristicallycrossforestgaps wheretreesareabsentoratlowdensitieswithanabsenceofunderstoreyvegetationcover.

Thepositiveinfluenceofruralhabitats,inadditiontoforesthabitats,mayalsoindicatethe importanceofthelandscapematrix,aconceptthathasbeensupportedbyresearcherssuchas

Szacki(1999),Brotonsetal.(2003),Riffeletal.(2003),DunfordandFreemark(2004)and

McAlpineetal.(2006a).Ruralandsemiurbanhabitatsmayprovideabufferbetweenforest habitatsandcanhelpfacilitatevitaldispersalmovementsifimportantstructuralelementsfor providingcover(e.g.,clumpsoftrees/vegetation,fallenwoodymaterial)arepresent.

155

Dispersalmovementsareessentialtopromotegeneticexchangesandensureviable populations(Bissonette2002).

Atthepatchlevel,wefoundthatlarger,morecircularpatchessupportedahighermammal speciesrichness.Thisisconsistentwithislandbiogeographytheory(MacArthurandWilson

1967)whichproposesthatlargerpatchesaremorelikelytobeoccupiedbyspeciesandthat thesespecieswillbelessvulnerabletoextinction.Similarfindingsregardingthepositive influenceoflargepatcheshasbeendocumentedforvariousfaunaspecies.Forexample,

Woinarskietal.(1999a,b,2001)examinedreptile,mammalandbirdpopulationslivingon continentalislandsofftheNorthernTerritorycoastofAustralia,reportingthatoverallspecies diversityandabundancewerepositivelycorrelatedwithislandsize.Similarly,McIntyre

(1995)foundthatlargerhabitatpatchesinafragmentedAmericanlandscapesupporteda higherdiversityofbirdspeciesthandidsmallerpatches.

Atthelocallevel,speciesrichnesswashighestinhabitatsthatsupportedalargenumberof paperbarksandgrasstrees.Thesefactorscombinedexplained~50%ofthetotalvariationin mammalspeciesrichness.Theyareindicativeoffloristicdiversity,butalsofulfilimportant structuralroles(Bennett1993;HaeringandFox1995;Monjeauetal.1998;Vernes2003;

MonamyandFox2005;Gardenetal.inpress).Paperbarktrees,whichhadastronger independenteffectthangrasstrees,occurmainlyonwetrunonareas(QueenslandMuseum

2003),andsomaybeactingasasurrogateforsoilmoistureorotherattributesassociatedwith thesehabitats.Although,theproximityoffaunasurveysitestopermanentwatersourceswas investigatedandfoundnottobeimportant.

156

Grasstreesprovideimportantnestingandshelternichesforsmallmammals(Fox1995;

Lunney1995;VernesandPope2001;MarchesanandCarthew2004;Spenceretal.2005).

Thelifecycleofgrasstreesisalsocloselylinkedwithfireand,assuch,theinfluenceofgrass treesmaybeindicativeofhistoricalfireregimes,anaspectthathaspreviouslybeenfoundto influencetheoccurrenceofsomesmallmammalsinAustralia(Fox1982;ClaridgeandBarry

2000;Foxetal.2003;Spenceretal.2005).Investigatingtheeffectsoftimesincelastfireand moisturelevels,aswellastimesinceisolation,climaticconditions,andseasonality(Szacki

1999;ClaridgeandBarry2000)mayhelptomoreaccuratelypredictmammalspeciesrichness intheselandscapes.

5.6.1. Approach and Limitations

Theresearchoutcomesdependedondevelopingahierarchicalconceptualmodel,which integrated apriori predictionsoffactorsinfluencingspeciesrichnessinfragmentedurban landscapes.Theaimoftheanalysiswastoranktheimportanceofan apriori setof explanatoryvariables.Weusedaninformationtheoreticapproachtoachievethisaim,which wasfoundtobeusefulforcapturingbothmodelandparameteruncertainty,whichwasoften lessthantheparameterestimate.Webelievethattheinformationtheoreticapproachis superiortothetraditionalstatisticalhypothesistestingapproachinsituationswherethereare potentiallyalargenumberof‘plausible’models.Thelowprecisionofthelowerranked parameterestimatessimplyreflectstheirweakeffectinthemodelandconfirmstheirlower ranking.

157

Timeandfinancialconstraintspreventedlongtermfaunasurveysandinvestigationsacross multipleseasons.Seasonalvariationinspeciesabundance,coupledwiththecrypticnatureof manyofthetargetspeciesarelikelytohaveresultedinadegreeoffalseabsencerecords.

Accordingly,thestrengthandaccuracyoftherelativeimportanceofthekeyenvironmental variablesshouldbeconsideredasaguideonly.Theconsiderationofadditionallocallevel habitatattributesandhistoricaldisturbanceregimes,aswellasseasonalandtemporal populationvariationsandspeciesdispersalabilities,arelikelytostrengthentheintegrityofthe finalmodels.

5.6.2. Implications for Conservation

Urbanconservationisadifficultbutnecessarychallenge.Forurbanmanagers,certain environmentalattributesarehardtomanageorchange,whereasothersarerelativelyeasyto manage/change.Thekeytourbanconservationisdeterminingwhichfactorsaremost importantforfaunaspeciesandbasingmanagementdecisionsonthesepriorityfactors.Our findingsemphasisetheneedforurbanmanagementtoconsiderthecompositionand configurationofforesthabitatswithinthelandscape,ratherthanjustthepreservationof suitableforestpatchesperse.Inaddition,thestudyhighlightstheimportanceofthematrix.

Althoughthemostspatiallydominantfeatureinfragmentedurbanlandscapes(Forman1995), theimportanceofthematrixforconservationhasbeenlargelyoverlookedinresearchand conservationmanagement(Verbeylenetal.2003).

Basedonourfindings,minimisinghabitatloss,fragmentationanddegradationareall importantforurbanwildlifeconservation.Priorityactionsforreptilesandmammalsinclude:

158 investigatingoptionsforconnectingremnantfragments;protectingandpurchasinghigh qualityhabitatfragments,givingprioritytothosethatwillmosteffectivelydecreasepatch isolationandarewithinruralorlowdensityurbanareas;implementinginformedstrategiesto manageandrestorehabitatstructuralcomplexitywithinpatches;instigatingrevegetation programstoincreaseforestareaandconnectivity;andmitigatingtheecologicalramifications ofroadsonwildlifedispersalandhabitatquality.Complementarytotheseactionswillbethe activemitigationofhumanusedisturbancesthatdegradehabitatquality,andalsoan investigationofhistoricallanduseinfluencesonspeciesassemblages,suchastimesincefire, whichwerenotexaminedinthisstudy.

Oflesserimportanceforreptilesandmammalswasthefloristiccompositionofforest fragments,andthesizeandshapeofforestfragments,butthesefeaturesshouldnotbe discountedfortheirconservationsignificanceforotherwildlifespecies.Floristiccomposition islikelytoinfluencestructuralcomplexityandhabitatheterogeneityatthelocallevel,which willprovidemorehabitatssuitableforavarietyofspecies.Thesizeandshapeofremnant fragmentswillalsoinfluencetheinternalhabitatcondition,aswellasthetotalamountof habitatinthelandscape.Consequently,promotingfragmentsthataremorerobustand

‘circular’inshape,ratherthanlongandnarrow,orsmallandconvolutedwillbebeneficialfor speciesrichness.

159

(a) Burton’s snake -lizard (Lialisburtonis ) • Family:Pygopodidae • Carnivorous,diurnalflapfootedlizard. • Averagesize:SVL290mm • Distribution:Allstatesandterritories,exceptTasmania. • InBrisbane:relativelycommon,particularlyinremnant bushlandandwellvegetatedsuburbangardens. ThisphotoshowsaBurton’ssnakelizardtakingrefugeinundergrowth.

(b)Red -bellied black snake (Pseudechisporphyriacus ) • Family:Elapidae • Diurnal,highlyvenomoussnake. • Averagesize:Totallength1.52m. • Distribution:Queensland,NewSouthWales,Victoria, SouthAustralia. • InBrisbane:rare,restrictedtosuitableremnanthabitatin periurbanlandscapes. Photofrom: http://www.users.bigpond.com/neen105/Snake2.htm (c) Common tree snake (Dendrelaphispunctulata ) • Family:Colubridae • Diurnal,nonvenomoussnake. • Averagesize:Totallength1.2m. • Distribution:Queensland,NewSouthWales,Northern Territory,WesternAustralia. • InBrisbane:commonthroughout,includinginner suburbswithlushvegetation. Photofrom: http://www.tvwc.org/HTML/green%20tree%20snake.htm (d) Carpet python (Moreliaspilota ) • Family:Pythonidae • Diurnalandnocturnal,constrictingsnake. • Averagesize:Totallength2.5m. • Distribution:Allstatesandterritories,exceptTasmania. • InBrisbane:relativelycommonthroughout,particularly inbushlandandwellvegetatedsuburbs. Photofrom:http://www.pbase.com/laine82/image/51706801

Plate 6. Snakesandsnakelizard:(a)Burton’ssnakelizard;(b)Redbelliedblacksnake;(c) Commontreesnake;(d)Carpetpython.

160

Chapter 6

CONSERVING NATIVE TERRESTRIAL REPTILES AND

SMALL MAMMALS IN URBAN LANDSCAPES: THE NEED

FOR A MULTI-SCALED, MULTI-SPECIES APPROACH TO

PLANNING AND MANAGEMENT

Citation:GardenJ.G.,PetersonA.,McAlpineC.A.,PossinghamH.P.(inreview)Conserving

nativeterrestrialreptilesandsmallmammalsinurbanlandscapes:Theneedforamulti

scaled,multispeciesapproachtoplanningandmanagement.LandscapeandUrban

Planning.

6.1. ABSTRACT

Asurbanareascontinuetoexpandandreplacenativeecosystems,itisbecomingincreasingly importantthatfaunaassemblagesandcommunitiesareconservedwithintheurbancontext.

Terrestrialreptilesandsmallmammals,withlimiteddispersalabilitiesandspecifichabitat requirements,areparticularlyatriskofundergoinglocalisedextinctions,yetthesespeciesare oftenoverlookedbyresearchers,plannersandmanagersinfavourofthemoreobvious,iconic, and/orrareorthreatenedspecies.Basedonthemajorfindingsfromacasestudyconductedin

161

Brisbane,southeastQueensland,Australia,thispaperpresentssixconservationguidelinesfor

State,regional,andlocalurbanplanningframeworksandmanagementstrategies.Thefocus ofthecasestudywasnativeterrestrialreptilesandsmallmammals.Themajorfindings showedthathabitatattributesatmultiplespatiallevelswereimportantforinfluencingreptile andsmallmammalassemblages.Accordingly,theguidelinespromoteafocuson:(1)

Maintainingandincreasingtheamountofsuitablehabitatinthelandscape;(2)Maintaining andincreasinginternalhabitatcondition(quality);(3)Maintainingandincreasingconnectivity betweensuitablehabitatfragments;(4)Mitigatingtheplacementandeffectsofroadsinclose proximitytohabitatfragments;(5)Makinghabitatfragmentsaslargeandcircularaspossible; and,(6)Consideringthewholelandscapecontextandconfiguration,notjustindividualhabitat fragments.Theseguidelinesaredirectlyrelevanttolandscapeplanningandmanagementfor reptilesandsmallmammalsinlowlandremnanthabitatfragmentsofBrisbane’surbanand urbanisinglandscapes,butarealsorelevantforlocallandmanagersinotherAustraliancities andinternationally.

Key Words:Urbanwildlife,guidelines,speciesrichness,site,patch,landscape,collaboration.

6.2. INTRODUCTION

Acommonproblemforurbanplannersandlandmanagersisbalancingtheneedsofhumans andwildlife.Thatis,howcanweachievedevelopmentwithminimalenvironmentalimpact?

Almosthalftheworld’spopulationcurrentlyresidesinurbanareas,andby2030this proportionisexpectedtoreach60%(UnitedNations,2006).Humans,therefore,willbea

162 predominantlyurbanspecies.Thedemandforspacetoaccommodatenewurbanhabitatsfor humansmeansthedestruction,fragmentation,anddegradationofnaturalhabitatsformany nativefaunapopulations.Unfortunately,thecharacteristicsthatmakealocationsuitablefor urbandevelopmentoftencoincidewithareasthatsupporthighlevelsofbiodiversity(Botkin andBeveridge1997;Lugo2002;MillerandHobbs2002),therebyproducingveryrealand increasingthreatstobiodiversityconservationworldwide.Consequently,asnatural ecosystemscontinuetobereplacedbyexpandingurbansettlements,itisincreasingly importantthatnativewildlifepopulationsareconservedwithintheurbancontext.

Creatingsustainableurbandevelopmentisacomplexchallengeforresearchers,urban managers,planners,developers,landholders,andthewidercommunity(Johnson1995;

Adamsetal.2006;Fraseretal.2006).Ourabilitytobalanceconservationanddevelopmentis influencedbyamultitudeofsocial,political,economic,andecologicalvalues,whichoften conflict(Johnson1995;Campbell1996;Ahern1999).Decisionsareoftendrivenmoreby societalandeconomicdemands,withscienceandecologicalprincipleshavinglessimpact

(Termorshuizeninpress).Werecognisethatalltheseinfluencesareimportant,yetifweare seriousaboutsuccessfullyachievingtrulysustainableurbanenvironments,whicheffectively conservenativebiodiversity,soundecologicalsciencemustbeaprimaryinfluence underpinningdecisionmaking.

Ecologicalknowledgeisveryimportantifwewishtoefficientlyallocateresourcesinanurban setting.Tobeofpracticalvalue,researchersshouldfocusoninvestigatingpriorityissues facedbyplannersandmanagers(Risser1996).Forexample,knowingwhetherlocallevel attributessuchashabitatquality,orpatchlevelattributessuchasthesizeofahabitatpatch,

163 aremoreimportantwillinfluenceatradeoffbetweenlandscaperestorationandhabitat management.Similarly,spatiallyexplicitplanningwillbeinfluencedbyknowingwhether patchlevelattributes,suchaspatchsizeandshape,aremoreimportantthanthestructureof thewholelandscape.Ecologicalresearchersshouldrecognisetheirimportantrolein informingurbanlandscapemanagersandplannersoftheecologicalprincipleswhichunderpin biodiversitysensitiveurbandesign,andeffectiveandefficientmanagementactionsfor conservingarangeofhabitattypesandassociatedfaunaassemblages(Hobbs1997;Opdamet al.2002).Thiswillrequireresearcherstoinvestigaterelationshipsbetweenvariousspecies andhabitatattributesoperatingacrossmultiplespatialscales,andtocomparethese relationships,patterns,andprocessovertime,andwithinvariousurbancontexts.Urban landscapeecologycanplayavitalroleinunderstandingthetemporalchangesandspatially complexinteractionsbetweenwildlifepopulationdynamics,environmentalpatternsand processes,andurbanlandscapedesignandchange.Thechallengeistotranslatethis informationintodecisionsupporttoolstounderpinsustainableurbanplanning,design,and management(Moss2000;Opdametal.2002;Oreskes2004).

Activelyaddressingthischallengeinurbanlandscapesformultiplespeciesacrossmultiple spatialscalesisvitalforrapidlyurbanisingareas,suchasAustralia’sfastesturbanisingregion, southeastQueensland(QueenslandGovernment2005).Comparedtootherrapidlyurbanising areas,suchastheNetherlands,where“…spatialplanningiswidelyaccepted…andlandscape valuesarebecomingstrongcomponentsinthecompetitionforspace…”(Opdametal.2002, pp.777),Australia’splanningframeworkslackacomprehensiveandintegratedspatial planningfoundation(Petersonetal.inpress).

164

Theaimofthispaperistopresentasetofplanningandmanagementguidelinesasonemeans forintegratingecologicalknowledgeintoplanningframeworksandmanagementstrategies.

Theseguidelineswerebasedontheoutcomesfromacasestudy(Gardenetal.inreviewb;in press)conductedforterrestrialreptilesandsmallmammalslivinginremnantforestfragments ofBrisbane,Queensland.WebeginbypresentinganoverviewofQueensland’splanning frameworkinordertosetthecontextfortheensuingguidelinesandenablecomparisons betweenotherurbanlandscapes,nationallyandinternationally.Next,wesynthesisethe design,analysis,andmajoroutcomesoftheBrisbanecasestudy,andfinally,wepresentthe guidelinesandadecisionsupporttree,whichusethecasestudyoutcomestoprioritiseurban planningandmanagementobjectives.Wealsooutlinerecommendationstoachievethese objectives.

6.3. QUEENSLAND PLANNING FRAMEWORK

Australia’spoliticalhierarchyiscomposedofCommonwealth(broadestsphere),State,and localgovernments.TheCommonwealthisresponsibleforbiodiversityconservation, particularlyendangeredspecies,throughthe EnvironmentProtectionandBiodiversity

ConservationAct1999 (CommonwealthofAustralia2005).TheQueenslandIntegrated

PlanningAct1997 (IPA)(QueenslandGovernment2006),isthefoundationoftheState’s planninganddevelopmentassessmentlegislation,whichidentifiesanumberofplanning instrumentstoachieveitspurpose“…toseektoachieveecologicalsustainability…”(IPA s1.2.1).Oneimportantinstrumentistherequirementforeachlocalgovernmenttodevelop andimplementaplanningschemewhichwill:

165

• identify‘corematters’(e.g.,ecologicallyvaluableareas);

• identifydesiredenvironmentaloutcomesfortheplanningschemearea;and,

• includemeasuresthatfacilitatetheachievementofthestateddesiredenvironmental

outcome.

Itisimperativethattheseplanninginstrumentsareinformedbysoundecologicalknowledge derivedfromcontextspecificurbanecologyresearch.InQueensland,whilethe Vegetation

ManagementAct1999 ( VMA ,QueenslandGovernment2006)currentlyregulatestheclearing ofnativevegetation,recentamendmentstothislegislationhaverevisedthedefinitionofan

‘urbanarea’toexcludeallruralresidentialland.Further,theclearingofvegetationinurban areasremainslargelyexemptfromassessmentunlessthevegetationis‘endangered’(i.e.<

10%ofitspreclearingextentremains),inwhichcaseitisassessedagainstthe VMA .

Consequently,remnantvegetationwithinthedefinedurbanfootprintofBrisbane(Queensland

Government2005)isgivenlittlelegislativeprotectionattheStatelevel,withreliancebeing placedonlocalgovernmentplanningschemes,whichthusplayasignificantroleineither protecting,ornotprotecting,importantecosystemsandassociatedwildlifewithintheurban footprint.

BrisbaneCityPlan2000 (BrisbaneCityCouncil2002)hasbeenapprovedunder IPA asthe planningschemeforguidingdevelopmentinBrisbane. BrisbaneCityPlan2000 identifiesthe needforecologicallysensitiveurbandesignandmanagementwithintheurbanfootprint.

Planningtoolsincumbentwithinthelocalplanningschemetoguideplanningand developmentassessmentsinclude:

• astrategicplan;

166

• developmentcodes;

• developmentassessmenttables;and,

• performancecriteria.

However,withintheurbanfootprint,manyecologicallyvaluablehabitatsidentifiedbyState legislation,suchasthe RegionalNatureConservationStrategyforSouthEastQueensland

20032008 (EnvironmentalProtectionAgency2006),areoftenineffectivelyidentifiedand protectedbylocalplanningschemesandassociatedtoolsduetoalackofknowledgeand/or limitedresourcestoenabledetailedecologicalassessmentstobeconductedatthelocallevel.

Consequently,clearingandfragmentationofecologicallyvaluableareasandassociatedfauna assemblagescontinueswithintheurbanfootprint.Thereis,therefore,aneedtoimprove integrationbetweenState,regional,andlocalstrategiesinorderforurbandevelopmentinthe mostrapidlyurbanisingregionstobesustainablyandcomprehensivelyplannedandmanaged.

Todoso,itisimperativethat:(1)State,regional,andlocallevelplanningschemesaccurately identifyandactivelyprotecthabitatsofState,regional,andlocalsignificance;and(2)local levelplanningandmanagementdecisionsconsiderbroaderlandscapepatternsandprocesses.

Tofacilitatethisdecisionmaking,spatiallyexplicit,multiscaledandmultispecies knowledge,derivedfromsoundurbanecologyresearch,isrequiredandmustfurtherbe reliablyandclearlycommunicatedtodecisionmakers(Daleetal.2000;Villard2002).

6.4. BRISBANE CASE STUDY

167

ThecasestudywasconductedwithinQueensland’scapitalcityofBrisbane(153°02’E,

27°28S;area1,220km 2;population~1million).BrisbaneisAustralia’sthirdlargestcapital city,andislocatedinthecoastalsoutheastoftheState(Figure6.1),whichisAustralia’smost rapidlydevelopingregionwithanaverageannualpopulationincreaseofapproximately55000 people(QueenslandGovernment2005).Morethanonethirdofthispopulationresideswithin thelocalgovernmentareaofBrisbane(QueenslandGovernment2005),makingthecity

Australia’smostrapidlyurbanisingcapitalcity(BrisbaneCityCouncil2002).Thepopularity ofBrisbaneisdueinlargeparttoitssubtropicalclimateandhighqualityoflife.Thecity areasupportsarichnativebiodiversityduetoitslocationwithintheMcPhersonMacleay

Overlapzone(Burbidge1960;QueenslandGovernment2003).Thiszoneischaracterisedby themergingofthelongitudinalextremitiesoftwoofAustralia’smajorphytogeographic regions–thenortherntropical(supportingTorresianspecies)andthesoutherntemperate

(supportingBassianspecies)–andsoischaracterisedbyexceptionallyhighfloristicand faunaldiversityrepresentativeofthesetworegions(Burbidge1960).

Clearingofremnantvegetationwithinthelocalgovernmentareahasbeenextensive,withlittle morethanathirdofthepresettlementoriginalwoodyvegetationcoverremaining(Catterall andKingston1993;EnvironmentalProtectionAgency2006).Theterm‘remnant’refersto woodyvegetationwherethe“…dominantcanopyhasgreaterthan70%oftheheightand greaterthan50%ofthecoverrelativetotheundisturbedheightandcoverofthatstratumand dominatedbyspeciescharacteristicsofthevegetation’sundisturbedcanopy…”( VMA ,

QueenslandGovernment2006).ThemajorityofBrisbane’sremnantvegetationexistsas contiguousforestintheD’AguilarRangestothecity’swestduetounsuitabletopography whichpreventedurbanoragriculturaldevelopmentinthepast.Incomparison,morethan80%

168 oftheoriginallowlandforests(<100mASL)havebeenclearedforurbanandagricultural development,resultinginhighlyfragmentedlowlandremnantvegetationpatchesthatvaryin theirinternalcondition,size,shape,isolation,context,anddisturbanceandmanagement histories(CatterallandKingston1993;EnvironmentalProtectionAgency2006).

Figure 6.1. LocationoftheBrisbanecasestudyareainthesouthandsoutheastperiurban suburbsoftheBrisbaneCitylocalgovernmentarea.Quickbirdsatelliteimageryfrom2006 showsthelocationoffaunasurveysites( )withinremnantfragmentsintheperiurbanzone. The pale line indicates the Brisbane city council local government area boundary, with RedlandShireCouncilandthecoastlinetotheeastandLoganShireCounciltothesouth.

169

Themajorityofthisremaininglowlandvegetation,includingthelargestoftheremaining lowlandremnantfragments,occursintheperiurbanfringeofBrisbane’ssouthandsoutheast suburbs.‘Periurban’isusedheretodescribeareassubjecttorapidurbanisation,often occurringatthejuxtapositionofhighdensityurbandevelopmentandrurallanduses.These remnantfragmentsareofhighconservationvaluefortheecosystemstheyrepresentand associatedwildlifepopulations,manyofwhicharenotfoundinthewesternrangesorlowland wetlandareas.Accordingly,manyoftheselowlandremnantfragmentshavebeenidentified asareasofnatureconservationsignificanceinthe RegionalNatureConservationStrategyfor

SouthEastQueensland20032008 (QueenslandGovernment2003).

Amajorchallengethen,withinBrisbane,ishowtoplanandmanageurbanandperiurban landscapessothatnativebiodiversityisconservedwithoutnegativelyinfluencing opportunitiesforurbangrowth.Brisbanehastheadvantageoverothercitiesinthatithasa singlelocalgovernmentcouncilbody,BrisbaneCityCouncil(BCC),governingthewhole city.Thisallowsplanningdecisionsandmanagementactionstobeappliedacrossthegreater metropolitanarea.ItisthereforeimportantthatBCChasasoundscientificbasistohelp developandimproveitsadoptionofecologicallysustainableplanning,management, development,andrestorationdecisions,therebymaximisingthepotentialforlongterm protectionofthecity’sandtheregion’snativebiodiversity.

6.4.1. Synthesis of Study Findings

OurBrisbanecasestudyfocussedonterrestrialreptilesandsmallmammalsinhabiting lowlandremnantvegetationfragmentswithintheBCClocalgovernmentarea(Figure6.1).

170

Manyofthesespeciesdonotoccurwithinthehighlymodifiedinnersuburbs(<10%native vegetationremaining)astheyarehighlysensitivetohabitatdisturbancesbecauseoftheir specifichabitatand/ordietaryrequirements,andlimiteddispersalabilities.Theyarelargely forestdependentandsooccurprimarilywhereforestcoverisavailableforshelterand ensuringlowriskdispersals.Inurbandominatedlandscapes,terrestriallocomotionand dependenceoncoveroftenlimitsthedispersalsuccessofthesegrounddwellingspecies, particularlyincomparisontobirds,forinstance,whicharecapableofflyingbetweenhabitat fragments.Terrestrialreptilesandsmallmammalsarethereforeatahighriskofundergoing localisedextinctionsiftheirhabitatrequirementsandsensitivitiesarenotincorporatedinto urbanplanningandmanagementdecisionmakingprocesses.

Faunasurveysof51siteslocatedwithin32remnantforestfragmentswereconductedinthe spring/summerseasonsof2004and2005(Gardenetal.inreviewa).Habitatassessmentsof eachsiterecordedthestructuralcomplexity,vegetationcomposition,anddisturbancesatthe locallevel.Patchlevelattributes,suchastheshapeandsizeofforestfragments,and landscapecompositionandspatialconfigurationwereobtainedusingGISdataandhigh resolutionQuickbirdsatelliteimagery.

Thefaunasurveysdetectedatotalof19reptilespeciesandninesmallmammalspecies(Table

6.1).Habitatattributesateachspatiallevelwerefoundtobeimportantforinfluencingspecies assemblages,althoughtherelativeimportanceofattributeswithineachspatiallevelvaried betweenreptileandmammalassemblages(Table6.2).Overall,reptilesweremostinfluenced bylandscapecompositionandconfigurationaswellaslocallevelhabitatstructureand composition;whereas,mammalsweremostinfluencedbylandscapecomposition,followedby

171 locallevelhabitatstructureandcomposition,andthenpatchsizeandshape(Table6.2)

(Gardenetal.inreviewb,inpress).Thesefindingshighlighttheneedforresearchersto investigatetheresponsesofmultiplespeciesandfaunaassemblagestoattributesoperating acrossmultiplespatiallevels.Studiesthatinvestigateonlyasinglespatiallevel(e.g.,local level)orsinglespecies/taxamaymaskorexaggeratetheinfluenceofpatternsandprocesses occurringatotherlevels(Wiens1994;Hobbs1999)andtheirinfluencesonotherspecies.

Table 6.1. Cumulativelistofnativereptilesandsmallmammalsdetectedduringthe Brisbanecasestudyfaunasurveys.

FAMILY GROUP SCIENTIFIC NAME COMMON NAME Diporiphoraaustralis Tommyroundhead Agamidae Physignathuslesuerii Easternwaterdragon Pogonabarbata Beardeddragon Colubridae Dendrelaphispunctulata Commontreesnake Elapidae Pseudechisporphyriacus Redbelliedblacksnake Gekkonidae Diplodactylusvittatus Easternstonegecko Pygopodidae Lialisburtonis Burton’ssnakelizard Pythonidae Moreliaspilota Carpetpython Anamalopusverreauxii Verreaux’sskink Native Calyptotisscutirostrum Scutesnoutedcalyptotisskink Reptiles Carliafoliorum Treebaselitterskink Carliapectoralis Openlitterrainbowskink Carliavivax Storr’srainbowskink Scincidae Cryptoblepharusvirgatus Fenceskink Ctenotustaeniolatus Coppertailedskink Eulamprusquoyii Easternwaterskink Lampropholisamicula Secretiveskink Lampropholisdelicata Gardenskink Varanidae Varanusvarius Lacemonitor Antechinusflavipes Yellowfootedantechinus Antechinussubtropicus Subtropicalantechinus Dasyuridae Planigalemaculata Commonplanigale Sminthopsismurina Commondunnart Native Melomys sp. Unknownspecies Mammals Muridae Rattusfuscipes Bushrat Rattuslutreolus Swamprat Isoodonmacrourus Northernbrownbandicoot Peramelidae Peramelesnasuta Longnosedbandicoot

172

Table 6.2. Summaryofthekeyhabitatattributes,ateachspatiallevel,forreptilesandsmall mammalsinBrisbane’slowlandremnanthabitatfragments.Theseattributeswere characteristicofsurveysitesthatwerefoundtosupportahighdiversityofreptileand/orsmall mammalspecies.

SPATIAL LEVEL REPTILES MAMMALS

Landscape • Highdegreeofforestpatch • Predominantlyforesthabitat connectivitywithin5kmofsurvey withinalowdensity/ruralhabitat (100s – 1000s ha) sites contextwithin5kmofsurvey • Predominantlyforesthabitatwithin sites 1kmofsurveysites • Largerforestmeanpatcharea within4kmofsurveysites • Lowproportionofroadreserves within500mofsurveysites

Patch • N/A • Largerforestpatchsize • (1 – 100s ha) Lesslinearforestpatchshape

Local • Nolowweedcover • Largenumberofgrasstrees • • (< 1 ha) Lowsoilcompaction Largenumberofpaperbarks • Largeamountoffallenwoody • Lowtomoderatesoil material compaction • Presenceoftermitemounds

6.5. MANAGEMENT GUIDELINES

Inthissectionwebrieflydiscusstheroleofguidelinesforurbanplanningandmanagement.

Thenwelistsixguidelinesandexplainhowtheobjectivesforeachguidelinemaybe achieved,byprovidingpracticalexamplesandrecommendationsforurbanplanningand management.Foreachguideline,wealsoprovideabriefecologicalrationalebasedonthe

173 findingsfromourBrisbanecasestudy,andothernationalandinternationalecologicalstudies.

Giventhedynamicandnovelinfluencesofurbanbaseddisturbancesonnaturalenvironments, coupledwithspeciesspecificdisturbancesensitivitiesandhabitatrequirements,theeffectsof urbanisationaredifficulttotranslateintosimplemanagementrules(Villard2002).Itis thereforeimportantthatplanningandmanagementdecisionsarebasedonrigorousecological knowledgeinordertopromotedecisionsthatwillmitigatedetrimentallongtermorbroad scaleecologicalimpacts(Daleetal.2000).Afirststepinmakinginformedandecologically sensitivedecisionsisacomprehensiveunderstandingofspeciesoccurrenceswithinremnant fragments,theirdistributionsacrossthelandscape,andthespecifichabitatrequirementsof thosespeciesmostsensitivetohabitatdisturbances.Thisecologicalknowledgewillenable decisionstofocusonavoidingorminimisingdevelopmentinpriorityconservationareas,and designingandmanagingurbanareassothatimportanthabitatelementsnecessaryforthe survivalofsensitivespeciesareprotectedandsustainablymanaged.Suchdisturbance sensitivespeciesmaycurrentlypersistinurbanfragmentswithlittlemanagementattention, andsoareoftenoverlookedbyresearchers,planners,andmanagers,infavourofthreatened species.However,managementdecisionsmadeonlywithconsiderationforthreatenedspecies areunlikelytobeeffectiveforconservingthesuiteofurbansensitivespecies,particularly whentheseurbansensitivespecieshavevastlydifferentlifehistorytraits(e.g.,koala,

Phascolarctoscinereus ,versuscommondunnart, Sminthopsismurina ).Further,manyurban sensitivespeciespopulationsarealsoexperiencinggradualdeclinesinabundance.Without proactiveconsiderationofthehabitatrequirementsofurbansensitivespecies,manyarelikely toundergolocalisedextinctionsinthefuture,makingtoday’surbansensitivespecies tomorrow’sthreatenedspecies.

174

Itisthereforevitalthatthelocalstatus(i.e.stable,increasing,ordeclining)ofsensitive speciespopulationsoccurringwithinanurbanareaisaccuratelydetermined,anddecisionsare prioritisedtopreventdeclinesinthelongtermviabilityofthesepopulations.Todoso comprehensivelyrequireslongtermmonitoringprogramsoperatingover1020years,as manyspeciesexhibittimelagsintheirresponsestohabitatdisturbances(Tilman1994;Hanski

1998;Carlson2000;PossinghamandField2001).However,shorttermresearchisequally important,providinginformationfordeterminingpriorityhabitatattributesforspecies,and formulatingguidelinesforfutureplanning,andcurrentandfuturemanagementofurban landscapes.

Thefollowingguidelinesprovideanexampleofhowecologicalknowledgemaybeintegrated intourbanplanningandmanagementdecisionmakingprocesses.Theseguidelinesarebased onthefindingsfromourBrisbanecasestudyandsoidentifyprioritymultiscaledhabitat attributesforterrestrialreptilesandsmallmammalsthatmustbeconsideredinthedecision makingprocesses(Gardenetal.inreviewb,inpress).Overall,theguidelinesareapplicable toState,regionalandlocallevelsofplanningandmanagement,althoughtheyareparticularly importantforunderpinningplanningframeworksthatregulatefutureurbandevelopment,as theseframeworksidentifyareasofecologicalsignificance,andmanagethelocation,scale,and formofurbandevelopment.Specificguidelinesforaddressingkeyattributesatdifferent spatiallevels,however,maybestbeaddressedbyplanningand/ormanagementatdifferent spatiallevels(Figure6.2).

175

KEY ECOLOGICAL PLANNING/MANAGEMENT COMPONENTS OPTIONS LANDSCAPE-LEVEL (100s – 1000s ha)

• Habitat amount • Identify and protect • Habitat configuration biodiversity values in • Habitat connectivity local to state level • Road density planning frameworks. • Revegetation

PATCH-LEVEL (1 – 100 ha)

• Patch size • Planning/management • Patch shape tools. • Patch isolation • Compatible development • Patch context • Development assessment • Road proximity codes (e.g., envelopes, development lot size and placement). • Revegetation

LOCAL-LEVEL (< 1 ha)

• Structural complexity • Align planning & • Floristic composition infrastructure design with • Habitat disturbance natural assets (e.g., roads). • Management controls & actions (e.g., habitat restoration, mitigation of aesthetic clearing & off-track trampling)

Figure 6.2. Integratingecology,planning,andmanagementatmultiplespatiallevels.Left handcolumn=multilevelkeyecologicalcomponentsforterrestrialreptilesandsmall mammals,determinedfromtheBrisbanecasestudy;Righthandcolumn=examplesof planningandmanagementactionsforaddressingthekeycomponentsateachspatiallevel. Thelandscapelevelandpatchlevelschematicsshowremnantfragment/slocatedwithin variouslanduses( remnantforest, urban, rural),andacrossjurisdictionalboundaries (dottedlines).Thesitelevelschematicshowshabitatwithhighverticalandhorizontal structuralcomplexity. 176

Eachoftheensuingsixguidelinesarepresentedinfourparts:(i)theprincipaltarget instrument(e.g.,State,regional,orlocalplanningormanagement)isidentifiedforeach guideline;(ii)theobjectiveforaddressingtheguidelineisidentified;(iii)examplesof planningand/ormanagementactionsthatcouldachievetheguidelineobjectiveareprovided; and,(iv)theecologicalrationaleunderpinningtheguideline.Tofacilitateprioritisationof conservationactionsandfundingallocation,theguidelinesarepresentedinorderofrelative importance(highestpriorityfirst)forreptilesandsmallmammals,asconcludedfromour

Brisbanecasestudy.Inaddition,adecisionsupporttreelinkedtotheguidelines,presentsa hierarchicalseriesofquestionswhichmaybeeasilyincorporatedintoplanningand managementdecisions(Figure6.3).Theguidelinesanddecisionsupporttreearedirectly applicableforconservationplanningandmanagementinBrisbane,butarealsosuggestedasa suitableframeworkforfacilitatingtheintegrationofotherecologicalresearchfindingson variousspecieswithindifferenturbanlandscapes,intoplanningandmanagementstrategies.

177

Determine the presence of reptile and/or small mamm al species and answer questions according to their requirement s.

Is the amount of suitable HIGH Is remnant habitat COMPLEX habitat in the landscape • Avoid habitat loss structure complex or • Mitigate habitat high or low? • Monitor habitat amount simple? disturbances • Monitor habitat condition

LOW SIMPLE • Follow Guideline 1 • Follow Guideline 2

NO • Avoid road development in YES Are roads within • Avoid habitat Is the fragment close proximity 500 m of the fragmentation connected to other • If unavoidable, incorporate fauna crossings into road remnant fragment? • Monitor habitat suitable habitats? plan and monitor usage connectivity

YES NO • Follow Guideline 4 • Follow Guideline 3

RURAL/NATURAL LARGE AND CIRCULAR Is the land-use Is the fragment large and • Avoid habitat loss and • Avoid high density development surrounding the between habitat fragments circular, or small and/or fragmentation • Where unavoidable, ensure linear? • Monitor habitat fragment rural/natural condition or highly urbanised? guidelines 1-5 are integrated into planning process. SMALL AND/OR URBANISED LINEAR • Follow Guideline 6 • Follow Guideline 5

Key multi-level attributes have been addressed for reptiles and small mammals. Continue long-term, adaptive monito ring.

Figure 6.3. Decisionsupporttreeforplanningandmanagement.Dottedlinesindicatereevaluationactions.Inanideal,ecologically sensitiveurbanlandscape,answerstoeachquestionwoulddirectlyfollowthepathofthethickestarrows.

178

Guideline1:Theamountofsuitablehabitatinthelandscapeisthemostimportant consideration .

TargetInstrument: State,regional,andlocalplanningandmanagementstrategies.

Objective: Tomaintainand/orincreasetheamountofsuitablehabitatwithinthelandscape.

Suitablehabitat,inthissense,referstohighqualityhabitatthatfulfilsthehabitatandresource requirementsofsensitivereptilesandsmallmammals(seeGuideline2).

Actions: SuitablehabitatsofhighecologicalvalueshouldbeidentifiedandprotectedinState, regional,andlocalplanningframeworks.Theidentificationofsuchhabitatsshouldoccurin collaborationwithecologicalresearcherstoensuremultiplehabitatrequirementsfordifferent speciesareaddressed.Thesevaluablehabitatsneedtobeallocatedappropriatelanduse classifications(e.g.,conservationorprotectionareas),whichonlyallowdevelopmentthatis compatiblewiththeconservationofthesevalues.Thiswillrequireplanningtoolstoidentify appropriateoutcomesatmultiplescales,anddesignspecificationsthatareappropriateatthe localscale.Atthelevelofthelocalgovernment,avarietyofplanningtoolsmaybeutilisedto maintainandincreasesuitablehabitatincluding:developmentcodes,tradeabledevelopment rights,covenants,mitigationbanking,andvoluntaryconservationagreements.Theselection ofappropriatetoolswilldependonseveralfactors,suchasthelevelofcertaintythatis required,thecost,thesocialandpoliticalacceptability,equity,andeaseofenforcement

(GunninghamandYoung1997).Itisimportantthatecologicalknowledgeisalsoakey influenceinselectingappropriateplanningtools.

179

Locallandscapemanagementstrategiesarealsoimportantforfulfillingthisguidelinein alreadydevelopedlandscapes.Appropriaterevegetationandrehabilitationactivitiesonpublic andprivatelandswillincreasetheamountofsuitablehabitatinthelandscape.Ecological knowledgewillbeimportantforidentifyingpriorityactivitiesandtargetareasformanagement strategiesthatwillproduceamoreeffectiveandresourceefficientconservationoutcome.

Communitysupportandcooperationforsuchmanagementstrategiesmaybestbefacilitated througheducationcampaignsthathighlightthebenefitstohumanhealthandqualityoflifeby adoptingecologicallysustainableurbanmanagement.Appropriateincentivesshouldalsobe usedinconjunctionwitheducationcampaignstogainsupportfromcommunitymembersand encourageappropriateactivitiesonprivatelyownedland.Ifcarefullyplanned,revegetation andrehabilitationactivitiesmayaddressmultipleguidelinerequirements,suchasincreasing patchsizeandreducingedgeeffects(Guideline5),increasingconnectivity(Guideline3),and enhancinghabitatcondition(Guideline2),whichwillhelptominimiseadditionalcosts associatedwithtacklingtheseissuesindependently.

Rationale: TheBrisbanecasestudyshowedthatnativemammalandreptilespeciesrichness washigherinforestfragmentsforwhichahighamountofsuitablesimilarhabitatexisted withinthebroaderlandscape.Clearinghabitatsdecreasestheavailabilityofcriticalresources forvariousspecies,whichinhibitstheshorttermsurvivalofindividualsandthelongterm viabilityofpopulations.Theimpactsofhabitatlossarewelldocumentedinthescientific literatureforawidevarietyofspecies,suchaskoalasandglidersinAustralia(McAlpineetal.

2006a;McAlpineandEyre2002),butterfliesintheUnitedKingdom(WoodandPullin2002), whitebackedwoodpeckersinEurope(Carlson2000),birdcommunitiesinMalaysia(Soh

2006),andreptile,mammal,andbirdassemblagesinMadagascar(Scottetal.2006).The

180 sensitivitiesofspeciestohabitatloss,however,arehighlyvariableamongspeciesandacross differentlandscapes(Andrén1994;BascompteandSolé1996;Pearsonetal.1996;Withand

King2001;Fahrig2003;Scottetal.2006).Itisthereforeessentialthatsoundecological knowledgeunderpinsmanagementandplanningdecisions,andthatthisknowledgeiscontext specific.

Guideline2:Thecondition(quality)ofhabitatisthesecondmostimportantconsideration .

TargetInstrument: Locallevelplanningandmanagementstrategies.

Objective: Tomaintaintheinternalconditionofundisturbedhabitatfragmentsandincrease theinternalconditionofdegradedhabitatfragments.

Actions: Theinternalconditionofhabitatfragmentsmustbeassessedpriortomaking planningandmanagementdecisionsthatwillinfluencethosehabitatfragments.Local governmentplanningschemesmustaimtoidentifyandprotectimportantelementsofhabitat structureandcomposition.Prohibitinghighdensitydevelopmentandensuringcompatible lowdensitydevelopmentisofhighprioritywherehabitatfragmentshavehighstructural complexity(Figure6.4).Inthesesituations,planningdesigns(e.g.,road/buildingdesignand location)mustberequiredtomaintainnaturalassetsofecologicalimportance(e.g.,termite mounds,fallenwoodymaterial,andgrasstrees).Thiswillrequireplanningdesignssuchas: lowdensity,clustereddevelopmentsinmorevaluableareas;highdensityclustered developmentinareasoflowenvironmentalsignificance;and,theregulationofbuilding locationenvelopes(whichdictatethelocationandlimitationsofstructures)thatprotect structurallycomplexvegetationatthelotscalebylimitingstructurestoappropriatesiteson

181 eachallotment.Prioritymanagementactionstomaintainhighstructuralcomplexityinhabitat fragmentsincludemitigatingtheeffectsofhumanhabitatmisuse(e.g.,offtracktrampling, aestheticclearing,andgardenwastedumping)thatdegradestructuralelements,and investigatingappropriatefireregimesthatprotecthumanlifeandproperty,yetarenotso frequentorintensethatkeystructuralelementsaredegraded.

Fragmentswithlowstructuralcomplexity(Figure6.4),suchasthosedegradedbyhuman landuseandpastdevelopmentsshouldberehabilitatedtoincreasethecomplexityof importanthorizontal(e.g.,fallenwoodymaterialandcoarseleafygroundcover)andvertical structures(e.g.,understorey,midstorey,andcanopylayers).Thismaybestbeachieved throughrevegetationguidelinesandongoingmanagementactionsthatmitigatehumanhabitat misuse,asdescribedpreviously.Inaddition,planningcodesandguidelinesforfuturepublic parksandgardens,andprivatelandholdingsshouldstipulatetheuseofnativeplantingsand naturalcomponentsthatwillincreasestructuralcomplexity.Existingpublicparksand gardensshouldalsobeassessedfortheirstructuralcomplexityandretrofittedappropriately wherecomplexityislow.Privatelandholdersmustalsobeinformedoftheimportanceof structuralcomplexityandencouraged,byusingappropriateincentivesandeducation programs,tomanagetheirowngardensandbackyardsaccordingly.Appropriateplanningand managementofmodifiedgreenspaceareasisparticularlyimportantwhentheseareasare adjacenttoremnanthabitatfragments.

182

High Structural Complexity Poor Structural Complexity

Figure 6.4. Structural habitat complexity at selected survey sites from the Brisbane case study.Lefthandcolumn=examplesofsiteswithhighstructuralcomplexity(nativereptiles and small mammals detected); Righthand column = examples of sites with poor structural complexity(nonativemammalsandonlytwonativereptilesdetected).

183

Rationale: ThefindingsfromtheBrisbanecasestudyindicatedthatlocallevelhabitat structureandcompositionwereveryimportantforreptilesandmammals,withstructural elementsbeingmoreimportantthancompositionalelements.Faunasurveysitesthatwere structurallycomplexsupportedahigherdiversityofnativeterrestrialreptileandsmall mammalspecies.Thesefindingsareconsistentwithpreviousecologicalresearchthathave positedtheimportanceofmaintaininghighhabitatqualityforthepersistenceofbird, mammal,andreptileassemblages(Fischeretal.2003;Jellineketal.2004;Kanowskietal.

2006),withtherelativeimportanceofvariousstructuralandcompositionalattributesvarying accordingtothespeciesofinterest(WoodandPullin2002).Themaintenanceandsuccessful restorationofhighqualityhabitatswillalsodependonidentifyingandmitigating anthropogenicdisturbancesthatmaydegradehabitatquality(Lindenmayeretal.1998).

Guideline3:Thethirdmostimportantconsiderationistomaintainandincreaseconnectivity betweenforestfragments .

TargetInstrument: State,regional,andlocalplanningmanagementstrategies.

Objective: Tomaintainandincreaseconnectivitybetweenhabitatfragmentsthatwill facilitatemovementsbydispersallimitedanddisturbancesensitivespecies.

Actions: Ideally,continuedclearingandfragmentationofvaluableremnantvegetationmust bestopped.Asthisisnotalwayspossible,appropriateconnectivitystrategiesmustbe incorporatedintofutureplanningstrategies.Connectivitystrategiesmayinclude:continuous vegetatedwildlifecorridors(Bowneetal.1999;Pirnat2000);vegetated‘steppingstones’

184 withinasuitablematrix(Haddad2000;vanLangeveldeetal.2002;Baumetal.2004);and, artificialstructuressuchasroadoverandunderpasses(TaylorandGoldingay2003;

Clevenger2005).Astheappropriateconnectivitystrategy,design,andsubsequent functionalityinenablinglowriskspeciesdispersalswillvaryfordifferentspeciesandwithin differentlandusecontexts,itisimportantthatconnectivitydecisionsarebasedonlocalfauna andhabitatassessmentscoupledwithecologicalknowledgeofspeciesdispersalabilities, habitatrequirements,andsensitivities(DickmanandDoncaster1989;Bowneetal.1999;

LidickerandPeterson1999).

Inalreadyfragmentedurbanlandscapes,optionstorestoreconnectivitymustbeinvestigated bylocalmanagers.Thisislikelytorequirethecooperationofprivatelandholders,locatedin thematrixbetweenpriorityhabitatpatches,tomanagebackyardsandgardenstoachievea combined,lowriskconnectionsuitableforcertainspecies(Ruddetal.2002).Successful connectivitythroughprivatepropertieswillrequiresubstantialgovernmentpracticalsupport, suchascommunityeducationworkshopsandnativeplantgiveaways,aswellasongoing guidanceandadvice,andtargetedincentives.Inaddition,artificialconnectionsacrossand/or underroadsthatbisectpriorityhabitatpatchesmustbeinvestigatedandimplementedwhere possible.

Rationale: Inurbanandperiurbanlandscapes,habitatfragmentsareoftenisolatedbythe builtmatrixandassociatedinfrastructure.Thispreventsnaturaldispersalsbymanyreptileand smallmammalspecies,increasingthedemandonlimitingresourceswithinfragments,and limitinggeneticflowbetweenfragments,whichultimatelyinfluencesthelongtermviability ofwildlifepopulationsacrossthelandscape.TheBrisbanecasestudyshowedthatthe

185 occurrenceofnativereptilesinremnantfragmentswaspositivelyinfluencedbyahighdegree ofconnectivitybetweenfragmentsinthebroaderlandscape.Thissupportspreviousstudies thathavealsoshowntheneedtomaintainandincreaselandscapeconnectivityforvarious species(Soule1991;Ferreras2001;Lindenmayeretal.2006;Withetal.2006).

Achievingconnectivityacrossvariouslanduseswillrequirepartnershipsbetweendecision makers,researchers,andprivatelandholders.Anexampleofsuchsuccessfulcollaboration betweendecisionmakersandresearchersistheComptonRoadupgradeprojectinBrisbane.

Anintegralcomponentintheplanninganddesignofthisroadupgradewastheincorporation ofacombinationofartificialcrossingsandassociatedinfrastructure,suchasfencing(Figure

6.5),designedtopromotelowriskspeciesdispersalsbetweentheecologicallysignificant

KarawathaForestononesideoftheroad,andKurabybushlandontheotherside(Bondand

Jones2006).Thesefaunacrossingsandassociatedstructuressuccessfullyreducedpreviously highincidentsofroadkillandalsofacilitatedlowriskdispersalsbyavarietyofterrestrialand arborealspecies(BondandJones2006).Thisexamplehighlightstheabilityforplanners, managers,andecologiststoworktogethertoachieveanoutcomethatsupportsurbanprogress andisalsoecologicallysensitive.

186

(a)

(b) Rope ladder Land bridge Glider poles Exclusion Fencing

Figure 6.5. Compton Road, Brisbane: (a) the original twolane road at the start of the upgrade, and (b) the final fourlane road following the upgrade. Both photos, taken at approximatelythesamepositiononComptonroad,showKarawathaforestreserveontheleft andKurabyforestontheright.Thepostupgradephotoin(b)showsoneoftheropeladders locatedatvariouspointsacrosstheroadforcrossingsbyarborealspeciessuchaspossums,the specialisedroadsideexclusionfencingtopreventfaunaroadmortalities,andthelandscaped faunalandbridgewithfencingandgliderpolesalongitslength.Notvisibleinthephotoare twodesignatedfaunaunderpassestofacilitatecrossingbysmallterrestrialfaunaspecies.

187

Guideline4:Avoidingtheimpactofroadsonforestfragmentsisthefourthmostimportant consideration .

TargetInstrument: State,regional,andlocalplanningandmanagementstrategies.

Objective: Tominimisethenegativeinfluenceofroadsonhabitatfragmentsandassociated nativespeciesassemblages.

Actions: Urbanplanningdecisionsatalllevelsofgovernmentmustavoidplacementofroads, orincreasedtrafficvolumeonexistingroads,adjacenttoorwithincloseproximityofhigh qualityremnantfragments.Basedonecologicalknowledge,planningschemesand incorporatedcodes/policiesmustalsoidentifydesignoptions,suchasroadwidths,curvatures, faunacrossings,andsignage,thatwillprotectthevalueofremnantvegetation,minimisethe impactofroadsonwildlife,andretainthenaturalcharacteristicsofanarea.Whereroads alreadyexistincloseproximitytoremnantfragments,orwheretheirconstructionorupgrade isinevitable,managersandplannersmustworkwithresearcherstoincorporateappropriate faunacrossings(seeGuideline3andFigure6.5)intotheroaddesignsothattheimpactson speciesareminimised.

Rationale: TheBrisbanecasestudyfoundanegativerelationshipbetweennativereptile speciesrichnessinforestfragmentsandthedensityofroadsincloseproximity(within500m) tofragments.Roadsbisectthelandscape,fragmenthabitatpatches,andpresentsignificant dispersalbarrierstospecieslivingwithinhabitatfragments(Andrews1990;Forman1999;

Rampetal.2006).Thenegativedirecteffectsofroadsonfaunaassemblagesaswellas associatedindirectimpacts,suchaspollutionandalteredhabitatquality,arebroadly

188 recognisedintheecologicalliterature(Quarlesetal.1974;ReijnenandFoppen1994;Forman

1999;Diqueetal.2003;Hawbakeretal.2006).Despitethis,littleisdonetomitigatethe impactofroadsinurbanareas.Asamajorcomponentofurbanenvironments,theimpactof roadsonremnanthabitatsandspeciesassemblagesmustbecarefullyconsidered,managed, andmitigated,whereverpossible.

Guideline5:Thefifthmostimportantconsiderationistomakeforestfragmentsaslargeand nonlinearaspossible .

TargetInstrument: State,regional,andlocalplanningandmanagementstrategies.

Objective: Tomanageforestfragmentssothattheyareaslargeandnonlinearaspossible.

Actions: Urbanplanningandmanagementneedtomaintainandpromotelarge,nonlinear fragments,preventthecreationofsmalland/orlinearfragments,andrequirefutureplanningto incorporatevegetatedbuffersaroundexistingremnantfragments.Comprehensivelyachieving thisactionwillrequireintegrationacrosslocal,regional,andstatelevels,withlocallevel actionssupportingstatewideassessmentsofbiodiversityvalues.Whenplanningnew developments,itisvitalthatplannersavoiddevelopmentsthatwillclearremnantnative vegetation.Asthisisnotalwayspossibleduetoexistingandfuturedevelopmentrights,itis importantthatplannerspromoteurbanconsolidation(e.g.,highdensityhousing)ratherthan acreagedevelopment(e.g.,¼acreblocks)(seeGuideline1).However,wherethepublic demandforacreagedevelopmentishigh,unconsolidateddevelopmentshouldoccuronlyin lessenvironmentallysensitiveareas.Indevelopedareas,remnantfragmentsizeandshape maybemanipulatedbyencouragingappropriatemanagementofpublicandprivategardens

189 thatareadjacenttoremnantfragments.Thiswillrequirefollowingsimilarrevegetationand gardenmanagementactionsoutlinedinGuidelines1and3.Inperiurbanzones,andwhere possibleinurbanareas,revegetationprojectsthatincreasefragmentsizeanddecreaselinearity willbenefitwildlifespecies.

Rationale: TheshapeandsizeofforestfragmentsintheBrisbanecasestudyhadanimpacton mammalrichness(Gardenetal.,inreviewb),withrichnessbeinghigherinlargerandmore circular(lesslinear)fragments.Thesefindingssupportpreviousstudies,suchasWiens

(1994),whichconcludethatlargerpatchessupportmorespecies.Thesefindingsarealso indicativeofedgeeffects.Themagnitudeofedgeeffectsonspeciesisrelatedtothecontrast betweenthehabitatedgeandtheadjacentlanduse(LindenmayerandFischer2006).

Comparedtotheirnonurbancounterparts,edgeeffectsinurbansettingsareintensifiedasthe boundarybetweenlandscapetypesisoftenmoreabruptandinvolvesnovel,manmade structures,surfaces,andintensivelymanagedvegetation(Adamsetal.2006).Edgeeffectsare importantastheyalterspeciescompositionsbyinfluencingtheflowoforganismsbetween fragments,andfacilitatingtheincursionofdisturbancesandexoticpests,competitors,and predators,intocorehabitatareas(RutledgeandLepczyk2002).Largeandrobustfragments, forinstance,willcontainedgeandcorehabitats,andsosupportavarietyofspeciesassociated withthesedifferenthabitattypes.Smalland/orlinearfragments,however,aremorelikelyto becomposedofedgehabitatonly,andsowillsupportlowerspeciesrichness.Givenspecies specificresponsestopatchsizeandedgeeffects,itisimportantthatmanagementandplanning decisionsareunderpinnedbysoundscientificresearchregardingthehabitatrequirementsand sensitivitiesofmultiplespecies.

190

Guideline6:Consideringthewholelandscapeandnotjustpatchesisthenextmostimportant consideration .

TargetInstrument: State,regional,andlocalplanningandmanagementstrategies.

Objective: Topromoteaggregatedhabitatfragmentsandmanagetheurbanmatrixforthe benefitofwildlifespecies.

Actions: Thespatialarrangementoffragmentswithinthelandscape,andthelandscape surroundingremnantfragments,mustbemanagedappropriatelyforfauna.Thisrequires researchers,planners,andmanagersrejectingthebinarylandscapeview,whichconsiders landscapestobecomposedofhabitatpatcheswithinanonhabitatmatrix.Instead,landscapes mustbeinvestigated,planned,andmanagedasaspatiallycomplexmosaicofhabitattypes thatvaryintheirpermeabilityandfunctionalusefordifferentspecies(Danielson1991;

LidickerandPeterson1999;Fahrig2002;Lindenmayeretal.2003;Opdametal.2003).

Achievingtheseactionswillrequireintegrationacrossstate,regionalandlocallevels,andwill alsorequiredecisionmakingprocessesregardingappropriatespatialconfigurationsand contextsoffragmentsfordifferentspeciesbeingunderpinnedbyecologicalknowledge.

Rationale: ThefindingsfromtheBrisbanecasestudyshowedthattheconfigurationand contextofhabitatfragmentswasimportantfornativespeciesrichness,implyingthatthe abilitytodisperseisimportanthereformammalsandmanyofthereptiles(Watsonetal.

2005).Thishighlightstheimportanceofplanningandmanagingurbanlandscapessoasto maintainanappropriatespatialarrangementofhabitatfragments.Inaddition,nativemammal speciesrichnesswaspositivelyassociatedwiththeproportionofthelandscapecomprisedby

191 rurallanduse,andbothreptilesandmammalswerenegativelyassociatedwiththeamountof builthabitatinthelandscape(Gardenetal.inreviewb).Thesefindingssupportprevious researchthatalsodemonstratesthatthematrixmatters,andthatthelocationofforestremnant fragmentswithinthisvariedmatrixisimportantforvariousspecies(Andrén1994;Friesenet al.1995;WithandKing2001;Brotonsetal.2003;Riffelletal.2003;DunfordandFreemark

2004;Maioranoetal.2006).Consequently,planningandmanagementmustconsiderthe matrixaswellasthehabitatfragments.Inparticular,itisimportanttoavoidurban intensificationbetweenlarge,highqualitypatches,asthiswoulddecreasedispersalsuccess bydifferentspecies.

6.6. CONCLUSION

Today’slandscapesarethelegacyofyesterday’slanduseplanningandmanagement decisions,justastomorrow’slandscapeswillreflectourcurrentuses,managementsuccesses andfailures(Marucci2000).Urbandevelopmentandexpansionwillcontinuewithorwithout theinputofecologicalresearch.However,ifweareseriousaboutsuccessfullyconserving biodiversityforthelongterm,inthefaceofurbanexpansion,urbanplannersandmanagers requirescientificallysoundknowledgeand“…toolstounderstandtheircitiesandregions as…environmentalsystemsthatarepartofregionalandglobalnetworks…”(Campbell1996, pp.306).

Thechallengeofsustainabledevelopmentiscomplicatedbythenumerousprivate stakeholdersandvariousadministrativeunitswhomakeindependentplanningand

192 managementdecisionsoftenwithlittleregardforinfluencesonandfromareasbeyondthe boundaryoftheirfocalarea.Asfaunaspeciesdonotrecogniseanthropogenicboundaries, successfulurbanplanningandmanagementwillalsorequirecrossboundarycollaborationand cooperationbetweenlocalgovernmentauthorities,andbetweenlocalgovernmentsand private/publicsectors(Stubbsetal.2000;WoinarskiandFischer2003;vanderReeand

McCarthy2005;McAlpineetal.2007;Plumptreetal.2007).Encouragingthecooperationof privatesectorsislikelytorequiretargetededucationprograms,andappropriategovernment supportandcompensation(Christensenetal.1996;MarzluffandEwing2001;McAlpineetal.

2007).

Thelongtermsuccessofecologicallysensitivedevelopmentandmanagementisdependent notonlyonamultispecies,multilevel,collaborative,andcooperativeapproach,butalsoon ourabilitytolearnandadaptfromourpastsuccessesandfailures,andourwillingnesstotry novelapproachestourbandesignandmanagement.Suchadaptivemanagementisanongoing processthatisrefinedovertimewithaccumulatedknowledgeandcontinuallearning,andis essentialforfruitionoftheultimategoalinurbanareas;thatofincreaseddevelopmentwith decreasedecologicalimpacts.

193

(a) Scute -snouted calyptotis ski nk (Calyptotisscutirostrum ) • Family:Scincidae • Fossorial,shadelovingskink. • Averagesize:SVL55mm. • Distribution:SoutheastQueensland,northeastNew SouthWales. • InBrisbane:commoningardensandbushlandwith suitablehabitat. Thisphotoshowsanadultcalyptotisskinkonmyhand. (b) Tree -base litter skink (Carliafoliorum ) • Family:Scincidae • Secretive,sunlovingskink. • Averagesize:SVL39mm. • Distribution:Queensland,NewSouthWales. • InBrisbane:restrictedtosuitableremnantbushland habitatinperiurbanlandscapes. Thisphotoshowsabreedingmaleonmyhand,notethepinkorangecolourof thetail. (c) Open -litter rainbow skink (Carliapectoralis ) • Family:Scincidae • Active,sunlovingskink. • Averagesize:SVL52mm. • Distribution:Queensland. • InBrisbane:restrictedtosuitableremnantbushland habitatinperiurbanlandscapes. Thisphotoshowsanopenlitterrainbowskinkonmyhand–mostlikelya female. (d) Fence skink (Cryptoblepharusvirgatus ) • Family:Scincidae • Swift,agile,sunlovingskink. • Averagesize:SVL40mm • Distribution:Queensland,NewSouthWales,South Australia,WesternAustralia. • InBrisbane:Ubiquitous,thrivesinurbanisedlandscape, favoursbrick/stonewalls,pavements,andpalingfences. Thisphotoshowsafenceskinkonmyhand. Plate 7.Skinks:(a)Scutesnoutedcalyptotisskink;(b)Treebaselitterskink;(c)Openlitter rainbowskink;(d)Fenceskink.

194

Chapter 7

GENERAL DISCUSSION

Likemanyothersubtropicalregionsoftheworld,Brisbaneisanareanaturallyhighinnative faunaspeciesdiversityandendemism,andisalsocurrentlyundergoingrapidlandscape transformationduetourbandevelopment.Ifwearetosuccessfullyconserveournativefauna inthefaceofrapidurbanexpansions,conservationwithintheurbanlandscapemustbea reality.Thisthesisprovidesnewinformationabouttheecologyandmanagementofnative wildlifeinfragmentedurbanlandscapes.Inthisfinalchapter,Ibrieflysynthesisethemajor findingsdiscussedindetailinearlierchaptersandhighlighthowthesefindingscontributeto ecologicalknowledge.Ithenidentifyimplicationsfortheconservationofreptilesandsmall mammalsinurbanlandscapes,basedontheproject’sfindings.Finally,Ioutlinelimitationsto theprojectandusethesetosuggestrecommendationsforfutureresearch.

7.1. OVERVIEW

Theprimaryaimofthisprojectwastodeterminetherelativeimportanceoflocal,patch,and landscapelevelhabitatattributesforinfluencingnativeterrestrialreptileandsmallmammal speciesassemblageslivinginremnantforestfragmentswithinBrisbane,southeast

195

Queensland.ThefirstobjectivewastoreviewthecontemporaryAustralianurbanecology literatureinordertodeterminethecurrentknowledgebaseandidentifypriorityareasfor futureresearch(Chapter2).Thisliteraturereviewidentifiedfivemajorgapsinthecurrent urbanecologyknowledgebase:(1)alackofmultiplespeciesstudies;(2)abiasinfocal specieschoicetowardsmoreeasilyidentifiedavianassemblages,oriconic/emotivemammals suchaskoalasandgliders;(3)alackofspatiallyexplicitstudiesthatspecificallyinvestigate influencesacrossahierarchyofmultiplespatiallevels;(4)veryfewlongtermstudiesthat considertemporalvariations;and,(5)fewattemptsbyecologiststointegrateoutcomesinto urbanplanningandmanagement.Byidentifyingthesegaps,thisliteraturereviewhas providedanessentialfoundationfordesigningfutureprojectswithprioritytofillingthese knowledgegaps.Thisprojectwasdesignedtoaddressthesegaps,withtheexceptionof temporalvariations(knowledgegap4),whichwasnotpossiblewithintheshorttimeframeof athesis.

Thesecondprojectobjectivewastoinvestigatethesuccessandcostefficiencyof combinationsofsurveymethods.Thiswasachievedbycomparingthedetectionsuccessand costefficiencyofthesixdetectionmethodsemployedduringfaunasurveys.InChapter3,I presentedthefindingsofthesecomparativeanalysesandmaderecommendationsformethod selectioninfuturestudiesinvestigatingsimilarspeciesassemblages.Reptileswerebest surveyedusingacombinationofpitfalltrapsanddirectobservations,whereasthemost optimalsurveymethodsfordetectingsmallandmediumsizedmammalswerecageandElliott traps,coupledwithhairfunnels.Suchknowledgeisimportantformaximisingfaunasurvey successandminimisingthemanythousandsofdollarsspenteachyear,byresearchersand environmentalconsultants,onterrestrialfaunasurveys.

196

Thethirdobjectivewastodeterminetherelativeimportanceoflocallevelhabitatstructure andhabitatcompositionforinfluencingreptilesandmammals.Thisobjectivewasachieved byinvestigatingpatternsandrelationshipsinthedatacollectedfromfaunaandhabitatfield surveysconductedateachsurveysite.Ipresentedtheanalysesof,andconclusionsdrawn from,thesepatternsandrelationshipsbetweenspeciesassemblagesandlocallevelhabitat attributesinChapter4,concludingthathabitatstructure,ratherthanhabitatcompositionwas ofmostimportanceforreptileandsmallmammalspeciescompositions.Thisinformation providedimportantinformationaboutthekeyhabitatelementsimportantforprioritising managementactionsatthelocallevel.Thefindingsalsoprovideacomparativestudyfor otherresearchers,particularlyforinvestigatingdifferencesinfinescalehabitatrequirements ofvariousspecieswithinurbanlandscapes,andbetweendifferinglanduses.

Objectivefourinvestigatedtheimportanceoflocallevelhabitatstructureandcomposition relativetopatchsizeandshape,andlandscapecompositionandconfiguration.Thisobjective wasachievedbytestingasetof apriori modelsoftheimportanceofmultilevelhabitat attributesforinfluencingreptileandsmallmammalspeciesrichness.Iappliedhierarchical partitioningandmodelaveragingtothelocallevelfaunaandhabitatsurveydata,aswellas patchandlandscapelevelmeasurementsobtainedfromGISdataandhighresolution

Quickbirdsatelliteimagery.TheseanalysesandfindingswerepresentedinChapter5.

Reptilesandmammalswerefoundtobeinfluencedbyhabitatattributesoccurringatmore thanonespatiallevel.Landscapecompositionandconfiguration,andlocallevelhabitat structureandcompositionwereofmostimportanceforreptiles.Mammalsrespondedmostto landscapecomposition,followedbylocallevelhabitatstructureandcomposition,withpatch

197 sizeandshapebeingoflowestrelativeimportance.Thespecificattributesofimportance withineachspatiallevelvariedbetweenreptileandmammalspeciesassemblages.Therewas alsosomevariationinimportanthabitatattributesbetweenthesinglelevel(locallevel)and multilevelanalyses.Forinstance,thenumberoftermitemoundswasakeyhabitatattribute whenonlythelocallevelwasconsidered,yetthisvariablewasnotofkeyimportancewhen influencesatmultiplespatiallevelswereexamined.Thesefindingsprovideinformationon importanthabitatandlandscapefeaturesthatshouldbegivenpriorityattentionbyurban plannersandmanagers.Thefindingsalsohighlighttheneedforamultiscaled,multispecies perspectivetobeadoptedbyresearcherswhendesigningandconductingresearchprojects, andbyurbanplannersandmanagerswhenplanningforfuturedevelopmentormanaging currentandfuturelandscapes.

Thefinalprojectobjectivewastotranslatethesemultilevelkeyecologicalattributesintoaset ofguidelinesforinformingurbanplanningandmanagementdecisions.Theseguidelinesand adecisionsupporttreewerepresentedinChapter6,whereIidentifiedhowplanning frameworksandlocalmanagementstrategiesatlocaltoStatelevelsmayintegratethekey ecologicalattributesintopracticalactions.ExampleswereprovidedbasedontheBrisbane casestudy.Ialsourgedecologistsanddecisionmakerstoformcooperativepartnershipsand maintainanopendialogueinordertopromoteurbandevelopmentandmanagementthatis underpinnedbysound,scientificknowledge.Further,Irecommendedmorecrossboundary planningandmanagementtofacilitatebiodiversityconservationacrosslandscapes,ratherthan independentactionswithindifferentboundariesthatresultinamismatchbetweenecosystem boundariesandhumanimposedboundaries(SaundersandBriggs2002).The recommendationspresentedinChapter6formacrucialstepinintegratingecological

198 knowledgeintopracticalapplication,andrepresentamethodforecologiststoconveypriority habitatelementsandrequirementsfordifferentspeciesinawaythatmaybeeasilyunderstood andintegratedindecisionmakingprocesses.

7.2. BROAD CONTRIBUTION TO ECOLOGICAL THEORY

Thisthesisaddressedthecomplexitiesofplanningandmanagingurbanlandscapesforthe effectiveconservationofmultiplenativefaunaspecies.Thefindingshavecontributedto broadecologicaltheorybyextendingthecurrentknowledgebasetoincludethehabitat requirementsofsmallgrounddwellingvertebratesinurbanenvironments.Inaddition,the findingshaveadvancedurbanecologyknowledgebypresentingamethodfordeterminingthe relativeimportanceofmultiscaledhabitatrequirementsofmultiplespecies.Tothebestof myknowledge,theproject’sinvestigationofsurveymethodsuccessandcostefficiencyisthe firstofitskind.Further,Ibelievetheinvestigationandprioritisationofmultiscaled environmentalelementsforterrestrialreptilesandsmallmammalsinanurbanlandscape,is thefirstofitskindinAustralia,andonlyoneofahandfulofsimilarstudiesintheworld.This studyhasdemonstratedtheimportanceofexplicitlyconsideringmultiplespeciesandmultiple spatiallevels.Thethreemajorconclusionsdrawnaboutthehabitatrequirementsofterrestrial reptilesandsmallmammalsinanurbanlandscapesupportthebroadconsensusfrommany studiesonotherfaunagroups(mainlybirds)in,usually,nonurbanhabitats(e.g.,Andrén

1994;BentleyandCatterall1997;ForysandHumphrey1999;Lindenmayeretal.1999;

Howelletal.2000;Brotonsetal.2003;Kraussetal.2003;Riffelletal.2003;Kanowskietal.

2006):

199

i) Alandscapeperspectiveisvitalforeffectivelyconservingbiodiversityinurban

landscapes(Chapters5&6) .ThefindingsfromtheBrisbanecasestudy

identifiedlandscapecompositionandconfigurationelementsasmostimportantfor

influencingreptileandsmallmammalspeciesrichnesswithinremnantfragments.

Thismeansthatresearchstudiesthatonlyconsiderelementsofthehabitatpatch

(orothersinglelevel),maymaskorexaggeratetheimportanceofelementsacross

multiplespatiallevels.Furthermore,conservationactionsthatfocusonlyonthe

habitatpatchitselfwillbeunsuccessfulforeffectivelyconservingviablespecies

populationsforthelongterm.Itisthereforevitalthatlandscapeelements,suchas

theamountofsuitablehabitat,thedegreeofconnectivity,andthematrix,are

explicitlyconsideredbyurbanresearchers,planners,andmanagers.

ii) Structuralcomplexityismoreimportantthanfloristicdiversity(Chapter4) .For

terrestrialreptilesandmammals,maintaininghighverticalandhorizontal

structuralcomplexitywithinhabitatpatcheswasmoreimportantthanthefloristic

compositionofpatches.Thisfindingisparticularlyimportantforguiding

commonurbanhabitatmanagementactions,suchasrevegetationand

rehabilitation,forwhichthefirststepisoftenaestheticclearingofnaturaldebris,

andtheremovalofhumanlitterandnonnativeplants.However,incertaincases,

theseactionsmaydecreasestructuralcomplexity,whichwillnegativelyinfluence

theoccurrenceanddiversityofreptilesandsmallmammals.Forinstance,natural

debrissuchasfallenwood,humanlittersuchasoldcarbodiesandtinsheets,and

certainweeds,mayactuallybefulfillingimportantstructuralrequirements.Itis

200

thereforeimportantthatthestructuralcomplexityoffocalhabitatsisassessedand

stepsaretakentomaintainorincreasestructuralelements.

iii) Landscapesmustbemanagedformultiplespecies (Chapters26) .TheBrisbane

casestudyshowedthattherelativeimportanceofhabitatattributesvariedbetween

reptilesandsmallmammals.Whencomparedtothescientificliterature,these

importantattributeswerealsofoundtovaryincomparisontootherfaunaspecies

andhabitattypes.Thisindicatesthatresearchfocussedonlyonasinglespecies

mayobscureorexaggeratetherelativeimportanceofhabitatvariablesformultiple

species.Asaresult,urbanplanningandmanagementdecisionsthatarebasedon

recommendationsfromsinglespeciesresearchareunlikelytobesuccessfulin

conservingbiodiversity.Researchers,urbanplanners,andmanagersmust,

therefore,takestepsto:(a)recognisethefullcomplementofspeciespresentwithin

thelandscape;(b)understandthemultilevelhabitatrequirementsforthese

species;and,(c)planandmanageurbandevelopmentbasedonthehabitat

requirementsofmultiplespecies.

Thisstudyalsoprovidednewknowledgeonthesuccessandcostefficiencyofcombinations ofdifferenttrappingmethods.Althoughtangentialtothemainprojectaim,thisnew knowledgeprovidesanimportantcomparativestudytohelprefinetheselectionofappropriate surveymethods,andmanagecommonlylimitingresources(e.g.,timeandmoney),infuture terrestrialfaunasurveys.Theanalysespresented(Chapter3)alsoprovideanexamplefor analysingthesuccessandefficiencyofsurveymethodsinfuturestudies.

201

Iadditionallyshowedhowresearchfindingsmaybeintegratedintoregionalandlocal planningschemesandlocalmanagementstrategies(Chapter6).Thetranslationofresearch outcomesintoaformatreadilyunderstoodandappliedbyurbanplannersandmanagersisa vitalsteptobridgingthegapbetweenresearchersanddecisionmakers.Withoutthe integrationofurbanecologyresearchfindings,urbanplannersandmanagersareillequipped withtheknowledgenecessarytomakedecisionsregardingpriorityactions,and funding/resourceallocation,forsuccessfullyachievebiodiversityconservationwithinthe urbancontext.

7.3. IMPLICATIONS FOR URBAN PLANNING AND MANAGEMENT

Thisfindingspresentedinthisthesishavesignificantimplicationsforfutureurbanplanning, andcurrentandfutureurbanmanagement.Ofhighpriorityistheneedtoplanandmanage urbanlandscapesbasedontherequirementsofmultiplespecies.Iftherequirementsofonlya singlespeciesorasmallsubsetofspeciesareconsidered,planningandmanagementactions arelikelytobeineffectiveforconservingawiderangeofspecies.Complementingthis,isthe needfordecisionmakerstoadoptahierarchicallandscapeperspective,whichconsiders environmentalattributesacrossthenestedhierarchyofspatiallevels,ratherthanjust consideringattributeswithinasinglespatiallevel(e.g.,patchlevel).Thisperspectivealso promotesthelandscapeasaheterogeneousmosaicoflandusetypes,ratherthanabinary landscapeofhabitatandnonhabitat.Accordingly,itisimportanttoplanandmanagethe matrixbetweenhabitatfragments,aswellastheforestfragmentsthemselves.Toeffectively

202 achievethislandscapeperspectiveandrecognisebiodiversityconservationacrossurbanising landscapesrequiresinterdisciplinaryandcrossboundarycollaborationandcommunication.

7.4. FUTURE RESEARCH

Oneofthemajorlimitationstothisprojectisthatitoccurredoverashorttimeframe.Many ofthespeciesinvestigatedintheproject,particularlythesmallmammals,exhibitdistinct seasonalfluctuationsinpopulations,which,coupledwiththeircrypticbehaviour,arelikelyto haveresultedinaproportionoffalseabsencerecords.Thatis,sitesthatwerefoundtobe devoidofcertainspeciesmayactuallyhavebeenoccupied,butthespecieswerenotdetected duringthesurveyperiod.Tominimisetheinfluenceoffalseabsencerecords,werepeat surveyedsitesintwoseparateyearsduringthespring/summerbreedingseasons;thetimeof yearwhenspeciesweremostactive,andsoweremostlikelytobedetected.Inaddition,we surveyedasmanysitesaspossiblewithintheshorttimeframe.Werecognisethatadditional sites,longersurveyperiods,andadditionalrepetitionsovermoreyearsandseasonsarelikely tohavestrengthenedourdetectionrecords.Inaddition,shortterm‘snapshot’surveys,such asthatconductedforthisproject,areunabletodeterminethestatus(i.e.stable,increasing,or declining)anddynamics(i.e.extinctionandcolonisationrates)ofspeciespopulations.For instance,wouldthesameresultsbefoundinanotherfiveyearsand/orwithdifferentrainfall history?Theseareimportantquestionsforfutureresearch,whichshouldattempttoconduct faunasurveysoverlongertimeframesand,wherepossible,atmoresites.Thiswillenablea morecomprehensiveinvestigationoftheecologicalconditionsthatfavourspatialpopulation

203 dynamics,whichwillprovideimportantinformationforinfluencingplanningand managementdecisions.

Theselectionofeffectivecombinationsofsurveymethods(Chapter3)alsohelpstominimise falseabsencerecordsbyenablingthemosteffectivecombinationstobeselectedandused intensivelyduringsitesurveys.Itwouldbeuseful,therefore,forfuturestudiestoalsoinclude successandefficiencycalculationsintheirresults.Further,astudythatextendsthis investigationbyapplyingamorestructuredandstratifiedapproachtoansweringthequestion ofhowmany,andwhatkindoftrapsarebest,wouldbeavaluablecontributiontothe ecologicalknowledgebase.

7.5. CONCLUSION

Biodiversityconservationisasignificantandcomplicatedchallengeinurbanandurbanising landscapes.However,itisnecessaryifweareseriousaboutconservingviablepopulationsof arangeofnativefaunainthelongterm.Researchers,decisionmakers,andcommunity factionsalikewillneedtochangetheirperspectiveandworktogethertoensureconservation acrossmultiplespatiallevelstakespriorityintheincreasingdemandforspace.Thiswill requireacomprehensiveunderstandingoftheecologyofmultiplespeciestoinformdecision makingprocesses.Thefindingsandguidelinespresentedinthisthesisprovideimportant informationforconservingreptilesandsmallmammalsinBrisbane’slowlandforestremnants, aswellasacomparativebasisforfutureresearch,andascientificframeworkforguiding decisionmakingprocessesinotherurbanareas.

204

(a) Storr’s rainbow skink (Carliavivax ) • Family:Scincidae • Active,sunlovingskink. • Averagesize:SVL47mm. • Distribution:Queensland,NewSouthWales. • InBrisbane:restrictedtosuitablebushlandhabitatinperi urbanlandscapes. ThisphotoshowsmeholdingabreedingmaleStorr’srainbowskink. (b) Eastern water skink (Eulamprusquoyii ) • Family:Scincidae • Sunlovingskink. • Averagesize:SVL115mm. • Distribution:Queensland,NewSouthWales,South Australia. • InBrisbane:foundalongwaterwayswheresuitable coverisavailable,includinginnersuburbs. Photofrom: http://www.users.bigpond.com/neen105/Lizard3.htm (c) Secretive skink (Lampropholisamicula ) • Family:Scincidae • Secretive,sunlovingskink. • Averagesize:SVL35mm. • Distribution:SoutheastQueensland,northeastNew SouthWales. • InBrisbane:restrictedtosuitableremnantbushland habitatinperiurbanlandscapes. Thisphotoshowsasecretiveskinkonmyhand.

(d) Garden skink (Lampropholisdelicata ) • Family:Scincidae • Sunlovingskink. • Averagesize:SVL51mm • Distribution:Queensland,NewSouthWales,Victoria, Tasmania,SouthAustralia. • InBrisbane:Ubiquitous,thrivesindisturbedareassuch assuburbangardens. Thisphotoshowsanadultgardenskinkonmyhand. Plate 8. Skinks:(a)Storr’srainbowskink;(b)Easternwaterskink;(c)Secretiveskink;(d) Gardenskink.

205

REFERENCES

AdamsL.W.(1994)Urbanwildlifehabitats:Alandscapeapproach.UniversityofMinnesota

Press,Minneapolis.

AdamsC.E.,LindseyK.J.,AshS.J.(2006) UrbanWildlifeManagement .CRCPress,Taylor

andFrancisGroup,Florida.

AhernJ.(1999)Spatialconcepts,planningstrategies,andfuturescenarios:Aframework

methodforintegratinglandscapeecologyandlandscapeplanning.In: Landscape

EcologicalAnalysis:IssuesandApplications (Eds.J.M.Klopatek,R.H.Gardener),

SpringerVerlag,NewYork,pp.175201.

AkaikeH.(1983)InformationMeasuresandModelSelection. InternationalStatistical

Institute , 44 ,277291.

AmreinD.,RusterholzH.,BaurB.(2005)Disturbanceofsuburban Fagus forestsby

recreationalactivities:Effectsonsoilcharacteristics,abovegroundvegetationandseed

bank. AppliedVegetationScience , 8,175182.

AndersonL.,BurginS.(2002)Influenceofwoodlandremnantedgesonsmallskinks

(Richmond,NSW). AustralEcology ,27, 630637.

AndrénH.(1994)Effectsofhabitatfragmentationonbirdsandmammalsinlandscapeswith

differentproportionsofsuitablehabitat:Areview. OIKOS , 71 ,355366.

AndrewsA.(1990)Fragmentationofhabitatbyroadsandutilitycorridors:Areview.

AustralianZoologist , 26, 130141.

206

AngoldP.G.(1997)Theimpactofaroaduponadjacentheathlandvegetation:Effectsonplant

speciescomposition. JournalofAppliedEcology ,34, 409417.

AngoldP.,SadlerJ.P.,PeatyL.,WhitehandJ.W.R.,BaleJ.,PullinA.(2001) Biodiversityin

UrbanHabitatPatchesSummary .TheUniversityofBirmingham,UK.

BakerP.J.,AnsellR.J.,DoddsP.A.A.,WebberC.E.,HarrisS.(2003)Factorsaffectingthe

distributionofsmallmammalsinanurbanarea. MammalReview , 33 ,95100.

BanksP.B.(2004)Populationviabilityanalysisinurbanwildlifemanagement:Modelling

managementoptionsforSydney’squarantinedbandicoots.In: UrbanWildlife:MoreThan

MeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouth

Wales,NSW,pp.7077.

BarrattD.G.(1997)Predationbyhousecats, Feliscatus (L),inCanberra,Australia.1.Prey

compositionandpreference. WildlifeResearch , 24, 263277.

BarrosF.(2001)Ghostcrabsasatoolforrapidassessmentofhumanimpactsonexposed

sandybeaches. BiologicalConservation , 97 ,399404.

BarrowC.J.(1991) Landdegradation:DevelopmentandBreakdownofTerrestrial

Environments .CambridgeUniversityPress,Cambridge,England.

BascompteJ.,SoléR.V.(1996)Habitatfragmentationandextinctionthresholdsinspatially

explicitmodels. JournalofAnimalEcology , 65 ,465473.

BaskinY.(1998)Winnersandlosersinachangingworld. BioScience , 48, 788792.

BassettI.E.,SimcockR.C.,MitchellN.D.(2005)Consequencesofsoilcompactionfor

seedlingestablishment:Implicationsfornaturalregenerationandrestoration. Austral

Ecology ,30 ,827833.

Bastin L., Thomas C.D. (1999) The distribution of plant species in urban vegetation

fragments. LandscapeEcology , 14,493507.

207

BaumK.A.,HaynesK.J.,DillemuthF.P.,CroninJ.T.(2004)Thematrixenhancesthe

effectivenessofcorridorsandsteppingstones. Ecology , 85 ,26712676.

BauwensD.,HertzP.E.,CastillaA.M.(1996)Thermoregulationinalacertidlizard:The

relativecontributionsofdistinctbehaviouralmechanisms. Ecology , 77 ,18181830.

BelbinL.(1993) PATNPatternAnalysisPackage:TechnicalReference .CSIRODivisionof

WildlifeandEcology,Australia.

BelbinL.(1994) PATN.PatternAnalysisPackage .CSIRODivisionofWildlifeandEcology,

Australia.

BenderD.J.,ContrerasT.A.,FahrigL.(1998)Habitatlossandpopulationdeclines:Ameta

populationanalysisofthepatchsizeeffect. Ecology , 79 ,517533.

BenderD.J.,TischendorfL.,FahrigL.(2003)Usingpatchisolationmetricstopredict

animalmovementinbinarylandscapes. LandscapeEcology , 18 ,1739.

BennettA.F.(1990)Habitatcorridorsandtheconservationofsmallmammalsinafragmented

forestenvironment. LandscapeEcology , 4,109122.

BennettA.F.(1993)Microhabitatusebythelongnosedpotoroo, Potoroustridactylus ,and

othersmallmammalsinremnantforestvegetationofsouthwesternVictoria. Wildlife

Research , 20 ,267285.

BentleyJ.M.,CatterallC.P.(1997)Theuseofbushland,corridorsandlinearremnantsby

birdsinsoutheasternQueensland,Australia. ConservationBiology ,11,11731189.

BhullarS.,MajerJ.(2000)Arthropodsonstreettrees:Afoodresourceforwildlife. Pacific

ConservationBiology , 6, 171173.

BisevacL.,MajerJ.(2002)Costeffectivenessanddatayieldofbiodiversitysurveys. Journal

oftheRoyalSocietyofWesternAustralia , 85 ,129132.

208

BisonnetteJ.A.(2002)Scalingroadsandwildlife:TheCinderellaprinciple. Zeitschriftfuer

Jagdwissenschaft , 48, 208214.

BondA.,JonesD.(2006) FaunauseofunderpassesandthelandbridgeatComptonroad:

Resultsfromsixmonthspassivemonitoring .AreportforBrisbaneCityCouncil.Griffith

University,Brisbane.

BotkinD.B.,BeveridgeC.E.(1997)Citiesasenvironments. UrbanEcosystems , 1,319.

BowmanJ.,CappucinoN.,FahrigL.(2002)Patchsizeandpopulationdensity:Theeffectof

immigrationbehaviour. ConservationEcology , 6,916.

BowneD.R.,PelesJ.D.,BarrettG.W.(1999)Effectsoflandscapespatialstructureon

movementpatternsofthehispidcottonrat(Sigmodonhispidus). LandscapeEcology, 14 ,

5365.

BraggJ.G.,TaylorJ.E.,FoxB.J.(2005)Distributionsoflizardspeciesacrossedgesdelimiting

openforestandsandminedareas. AustralEcology ,30 ,188200.

BrayJ.R.,CurtisJ.T.(1957)Anordinationoftheuplandforestcommunitiesofsouthern

Wisconsin. EcologicalMonographs , 27 ,325349.

BrisbaneCityCouncil(2000) BrisbaneCityPlan2000 .NaturalAssetsPlanningScheme

Policy(vol.2),BrisbaneCityCouncil,Brisbane.

BrisbaneCityCouncil(2001) StateoftheEnvironmentReport:Brisbane2001 .Brisbane

CityCouncil,Brisbane.

BrisbaneCityCouncil(2002) BrisbaneCityPlan2000:InteractiveProfessional [CDROM].

BrisbaneCityCouncil,Brisbane.

BrookerL.C.,BrookerM.G.(1994)Amodelfortheeffectsoffireandfragmentationonthe

populationviabilityoftheSplendidFairywren. PacificConservationBiology , 1,344

358.

209

BrotonsL.,MönnkkönenM.,MartinJ.L.(2003)Arefragmentsislands?Landscapecontext

anddensityarearelationshipsinborealforestbirds. AmericanNaturalist , 162 ,343357.

BrownG.W.,NichollsA.O.(1993)Comparativecensustechniquesandmodellingofhabitat

utilizationbyreptilesinnorthernVictoria.In:HerpetologyinAustralia:ADiverse

Discipline (Eds.D.Lunney,D.Ayers.),RoyalZoologicalSocietyofNewSouthWales,

Mosman,pp.283290.

BuistM.,YatesC.J.,LaddP.G.(2000)Ecologicalcharacteristicsof Brachychitonpopulneus

(Streculiaceae)(kurrajong)inrelationtotheinvasionofurbanbushlandinsouthwestern

Australia. AustralEcology ,25 ,487496.

BurbidgeN.T.(1960)ThephytogeographyoftheAustralianRegion. AustralianJournalof

Botany , 8,75211.

BurgmanM.A.,LindenmayerD.B.(1998) ConservationBiologyfortheAustralian

Environment .SurreyBeattyandSonsPtyLtd,Australia.

BurnhamK.P.,AndersonD.R.(2002) ModelselectionandMultimodelInference:APractical

InformationtheoreticApproach. Springer,NewYork.

BurrowA.L.,KazmaierR.T.,HellgrenE.C.,RuthvenIIID.C.(2001)Microhabitatselection

byTexashornedlizardsinsouthernTexas. JournalofWildlifeManagement ,65 ,645652.

BurwellC.J.,GrimbacherP.(2005)BiodiversityintheBrisbanebush–Asurveyoftheants

ofselectedbushlandreservesinmetropolitanBrisbane.In: BiodiversityConference

Proceedings (Eds.G.L.Siepen,D.N.Jones),TheUniversityofQueensland–Gatton,

Qld,pp.6276.

CampbellS.(1996)Greencities,growingcities,justcities?Urbanplanningandthe

contradictionsofsustainabledevelopment. JournaloftheAmericanPlanningAssociation ,

62 ,296312.

210

CarlsonA.(2000)Theeffectofhabitatlossonadeciduousforestspecialistspecies:

Thewhitebackedwoodpecker( Dendrocoposleucotos ). ForestEcologyand

Management , 131 ,215221.

CastellónT.D.,SievingK.E.(2006)Anexperimentaltestofmatrixpermeabilityandcorridor

usebyandendemicunderstoreybird. ConservationBiology , 20 ,135145.

CatlingP.C.,Burt,R.J.,Kooyman,R.(1997)Acomparisonoftechniquesusedinasurveyof

thegrounddwellingandarborealmammalsinforestsinnortheasternNewSouthWales.

WildlifeResearch , 24 ,417432.

CatterallC.P.(2004)Birds,gardenplantsandsuburbanbushlots:Wheregoodintentionsmeet

unexpectedoutcomes.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.

Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.2131.

CatterallC.P.,GreenR.J.,JonesD.N.(1989)Occurrenceofbirdsinrelationtoplantsina

subtropicalcity. AustralianWildlifeResearch , 16 ,289306.

CatterallC.P.,KingstonM.(1993) RemnantBushlandofSouthEastQueenslandinthe1990s:

ItsDistribution,Loss,EcologicalConsequencesandFutureProspects .Griffith

University,Brisbane.

CatterallC.P.,KingstonM.,ParkK.,SewellS.(1998)Deforestation,urbanisationand

seasonality:Interactingeffectsonabirdassemblage. BiologicalConservation , 84 ,6581.

ChaceJ.F.,WalshJ.J.(2006)Urbaneffectsonnativeavifauna:Areview. Landscapeand

UrbanPlanning , 74 ,4669.

ChambersL.K.,DickmanC.R.(2002)Habitatselectionofthelongnosedbandicoot,

Peremelesnasuta (Mammalia,Peramelidae),inapatchyurbanenvironment. Austral

Ecology , 27, 334342.

211

ChevanA.,SutherlandM.(1991)Hierarchicalpartitioning. TheAmericanStatistician , 45 ,90

96.

ChildressW.M.,McLendonT.,PriceD.L.(1999)Amultiscaleecologicalmodelforallocation

oftrainingactivitiesonU.S.armyinstallations.In: LandscapeEcologicalAnalysis:Issues

andApplications (Eds.J.M.Klopatek,R.H.Gardener),SpringerVerlag,NewYork,pp.

80108.

ChristensenN.L.,BartuskaA.M.,BrownJ.H.,CarpenterS.,D’AntonioC.,FrancisR.,

FranklinJ.F.,MacMahonJ.A.,NossR.F.,ParsonsD.J.,PetersonC.H.,TurnerM.G.,

WoodmanseeR.G.(1996)ThereportoftheEcologicalSocietyofAmericaCommitteeon

thescientificbasisforecosystemmanagement. EcologicalApplications , 6,665691.

ClaridgeA.W.,BarryS.C.(2000)Factorsinfluencingthedistributionofmediumsized

grounddwellingmammalsinsoutheasternmainlandAustralia. AustralEcology , 25 ,676

688.

ClarkS.A.(2004)Nativesnailsinanurbanenvironment–Conservationfromthegroundup.

In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),Royal

ZoologicalSocietyofNewSouthWales,NSW,pp.7881.

ClemannN.,LongK.,SkurrieD.,DzurisJ.(2005)Atrappingsurveyofsmall,ground

dwellingvertebratesintheLittleDesertNationalPark,Victoria. AustralianZoologist , 33 ,

119126.

ClevengerA.P.(2005)Conservationvalueofwildlifecrossings:Measuresofperformanceand

researchdirections. Gaia–EcologicalPerspectivesforScienceandSociety , 14 ,124129.

Cogger,H.G.(2000) ReptilesandAmphibiansofAustralia .ReedNewHolland,Sydney.

CollinsJ.P.,KinzingA.,GrimmN.B.,FaganW.F.,HopeD.,WuJ.,BorerE.T.(2000)Anew

urbanecology. AmericanScientist , 88 ,416424.

212

CommonwealthofAustralia(2003a) GeoScienceAustralia .[Internetwebsite]Accessed6

February2005.URLhttp://www.ga.gov.au/education/facts/capital/q.htm.

CommonwealthofAustralia(2003b) AustralianSocialTrends:PopulationPopulation

Distribution:PopulationCharacteristicsandRemoteness .AustralianBureauofStatistics.

[Internetwebsite]Accessed11July2005.URLhttp://www.abs.gov.au/ausstats.

CommonwealthofAustralia(2005) EnvironmentProtectionandBiodiversityConservation

Act1999 .DepartmentoftheEnvironmentandHeritage.AustralianGovernment.

[Internetwebsite]Accessed1December,2006.URL

http://www.deh.gov.au/epbc/index.html.

CookeR.,WallisR.,WhiteJ.(2002)Useofvegetationstructurebypowerfulowlsinouter

urbanMelbourne,Victoria,Australia–Implicationsformanagement. JournalofRaptor

Research , 36 ,294299.

CooperN.K.(1995)Vertebratefaunaofanisolatedbushlandreserve(No18325)ininner

Perth. WesternAustralianNaturalist , 20 ,2128.

CorkS.J.,CatlingP.C.(1996)Modellingdistributionsofarborealandgrounddwelling

mammalsinrelationtoclimate,nutrients,plantchemicaldefencesandvegetation

structureintheeucalyptforestsofsoutheasternAustralia. ForestEcologyand

Management , 85 ,163175.

CousinsS.H.(1993)Hierarchyinecology:itsrelevancetolandscapeecologyandgeographic

informationsystems.In: LandscapeEcologyandGIS (Eds.P.A.R.Young,D.R.Green,

S.H.Cousins),TaylorandFrancisLtd.,London,Chapter6.

CoxM.P.,DickmanC.R.,HunterJ.(2003)Effectsofrainforestfragmentationonnonflying

mammalsoftheeasternDorrigoPlateau,Australia. BiologicalConservation ,115, 175

189. 213

CrosswhiteD.L.,FoxS.F.,ThillR.E.(1999)Comparisonofmethodsformonitoring

reptilesandamphibiansinuplandforestsofOuachitaMountains. Proceedingsofthe

OklahomaAcademyofScience , 79 ,4550.

CunninghamR.B.,LindenmayerD.B.,MacGregorC.,BarryS.,WelshA.(2005)Effectsof

trapposition,traphistory,microhabitatandseasononcaptureprobabilitiesofsmall

mammalsinaweteucalyptforest. WildlifeResearch , 32 ,657671.

CushmanS.A.,McGarigalK.(2002)Hierarchical,multiscaledecompositionof

speciesenvironmentrelationships. LandscapeEcology , 17 ,637646.

DaleV.H.,BrownS.,HaeuberR.A.,HobbsN.T.,HuntyN.,NalmanR.J.(2000)Ecological

principlesandguidelinesformanagingtheuseofland. EcologicalApplications , 10 ,639

670.

DanielsonB.J.(1991)Communitiesinalandscape:Theinfluenceofhabitatheterogeneityon

theinteractionsbetweenspecies. AmericanNaturalist , 138 ,11051120.

DebinskiD.M.,RayC.,SaveraidE.H.(2001)Speciesdiversityandthescaleofthelandscape

mosaic:Doscalesofmovementandpatchsizeaffectdiversity? BiologicalConservation ,

98, 179190.

DickmanC.R.,DoncasterC.P.(1987)Theecologyofsmallmammalsinurbanhabitats.I.

Populationsinapatchyenvironment. JournalofAnimalEcology , 56 ,629640.

DickmanC.R.,DoncasterC.P.(1989)Theecologyofsmallmammalsinurbanhabitats.II.

DemographyandDispersal. JournalofAnimalEcology , 58 ,119127.

DiqueD.S.,PreeceH.J.,ThompsonJ.,deVilliersD.L.(2004)Determiningthedistribution

andabundanceofaregionalkoalapopulationinsoutheastQueenslandforconservation

management. WildlifeResearch ,31 ,109117.

214

DiqueD.S.,ThompsonJ.,PreeceH.J.,PenfoldG.C.,deVilliersD.L.,LeslieR.S.(2003)

KoalamortalityonroadsinsoutheastQueensland:Thekoalaspeedzonetrial. Wildlife

Research ,30 ,419426.

DixonJ.D.,OliM.K.,WootenM.C.,EasonT.H.,McCownJ.W.,PaetkauD.(2006)

EffectivenessofaregionalcorridorinconnectingtwoFloridablackbearpopulations.

ConservationBiology , 20 ,155162.

DoanT.M.(2003)Whichmethodsaremosteffectiveforsurveyingrainforestherpetofauna?

JournalofHerpetology , 37 ,7281.

DornerB.,LertzmanK.,FallJ.(2002)Landscapepatternintopographicallycomplex

landscapes:Issuesandtechniquesforanalysis. LandscapeEcology , 17 ,729743.

DowC.L.,DewalleD.R.(2000)TrendsinevapotranspirationandBowenrationon

urbanizingwatershedsineasternUnitedStates. WaterResourcesResearch , 7, 18351845.

DoverJ.W.,RowlingsonB.(2005)Thewesternjewelbutterfly( Hypochrysopshalyaetus ):

FactorsaffectingadultbutterflydistributionwithinnativeBanksiabushlandinanurban

setting. BiologicalConservation ,122 ,599609.

DrinnanI.N.(2005)ThesearchforfragmentationthresholdsinasouthernSydneysuburb.

BiologicalConservation ,124 ,339349.

DuftyA.C.(1994)Habitatandspatialrequirementsoftheeasternbarredbandicoot

(Peramelesgunnii )atHamilton,Victoria. WildlifeResearch ,21 ,459471.

DunfordW.,FreemarkK.(2004)Matrixmatters:Effectsofsurroundinglandusesonforest

birdsnearOttawa,Canada. LandscapeEcology , 20 ,497511.

EmeryT.J.,EmeryD.L.(2004)InsectbiodiversityinthreeSydneyurbanparklandswith

differinglevelsofhumanusage.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.

Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.124130.

215

EnvironmentalProtectionAgency(2006) RemnantvegetationinQueensland:Analysisof

remnantvegetation1997199920020012003,includingregionalecosysteminformation .

QueenslandGovernment,Brisbane.

ESRIInc.,19992005. ArcMAP:GISandMappingSoftware .USA.[Softwarepackage]

URLhttp://www.esri.com.

EverdingS.E.,JonesD.N.(2006)CommunalroostinginasuburbanpopulationofTorresian

crows( Corvusorru ). LandscapeandUrbanPlanning , 74 ,2133.

EyreT.J.,JermynD.,KellyA.L.(2000) ForestConditionandHabitatAssessmentinQld:

StandardsforForestAssessmentTechnicalReport01/00 (vol.2),Queensland

GovernmentDepartmentofNaturalResources,Australia.

FahrigL.(1997)Relativeeffectsofhabitatlossandfragmentationonpopulationextinction.

JournalofWildlifeManagement , 61 ,603610.

FahrigL.(2001)Howmuchhabitatisenough? BiologicalConservation ,100, 6574.

FahrigL.(2002)Effectofhabitatfragmentationontheextinctionthreshold:Asynthesis.

EcologicalApplications , 12 ,346353.

FahrigL.(2003)Effectsofhabitatfragmentationonbiodiversity. AnnualReviewEcology,

EvolutionandSystematics , 34 ,487515.

FahrigL.,PedlarJ.H.,PopeS.E.,TaylorP.D.,WegnerJ.F.(1995)Effectofroadtraffic

onamphibiandensity. BiologicalConservation , 73 ,177182.

FaulknerS.(2004)Urbanizationimpactsonthestructureandfunctionofforestedwetlands.

UrbanEcosystems , 7, 89106.

FearnS.,RobinsonB.,SambonoJ.,ShineR.(2001)Pythonsinthepergola:Theecologyof

'nuisance'carpetpythons(Moreliaspilota)fromsuburbanhabitatinsoutheastern

Queensland. WildlifeResearch ,28, 573579.

216

FerrerasP.(2001)Landscapestructureandasymmetricalinterpatchconnectivityin

metapopulationoftheendangeredIberianlynx. BiologicalConservation , 100 ,125136.

FischerJ.,LindenmayerD.,CowlingA.(2003)Habitatmodelsforthefourfingeredskink

(Carliatetradactyla )atthemicrohabitatandlandscapescale. WildlifeResearch , 30 ,495

504.

FischerJ.,LindenmayerD.,CowlingA.(2004)Thechallengeofmanagingmultiplespeciesat

multiplescales:ReptilesinanAustraliangrazinglandscape. JournalofAppliedEcology ,

41 ,3244.

FitzGibbonS.I.,PutlandD.A.,GoldizenA.W.(submitted)Effectsofhabitatfragmentation

andtheurbanlandscapeonthedistributionofthenorthernbrownbandicoot( Isoodon

macrourus )inBrisbane,Australia. BiologicalConservation .

FitzsimonsJ.A.,PalmerG.C.,AntosM.J.,WhiteJ.G.(2003)Refugeesandresidents:

DensitiesandhabitatpreferencesoflorikeetsinurbanMelbourne. AustralianField

Ornithology ,20 ,27.

FlemmingP.A.,LoveridgeJ.P.(2003)Miombowoodlandtermitemounds:Resourceislands

forsmallvertebrates? JournalofZoology(London) , 259 ,161168.

FordH.A.(1983)Relationbetweennumberofhoneyeatersandintensityoffloweringnear

Adelaide,SouthAustralia. Corella , 7,2531.

FormanR.T.T.(1995) LandMosaics:TheEcologyofLandscapeandRegions .Cambridge

UniversityPress,Cambridge.

FormanR.T.T.(1999)Horizontalprocesses,roads,suburbs,societalobjectivesandlandscape

ecology.In: LandscapeEcologicalAnalysis:IssuesandApplications (Eds.J.M.

Klopatek,R.H.Gardener),SpringerVerlag,NewYork,pp.3553.

217

FormanR.T.T.,AlexanderL.E.(1998)Roadsandtheirmajorecologicaleffects. Annual

ReviewofEcologyandSystematics , 29 ,207231.

FormanR.T.T.,CollingeS.K.(1997)Natureconservedinchanginglandscapeswithand

withoutspatialplanning. LandscapeandUrbanPlanning , 37, 129135.

FormanR.T.T.,GodronM.(1986) LandscapeEcology .JohnWileyandSons,NewYork.

FormanR.T.T.,SperlingD.,BisonnetteJ.A.,ClevengerA.P.,CutshalC.D.,DaleV.H.,Fahrig

L.,FranceR.,GoldmanC.R.,HeanueK.,JonesJ.A.,SwansonF.J.,TurrentineT.,Winter

T.C.(2003) RoadEcology:ScienceandSolutions .IslandPress,WashingtonD.C.

ForysE.,HumphreyS.R.(1999)Theimportanceofpatchattributesandcontexttothe

managementandrecoveryofanendangeredlagomorph. LandscapeEcology , 14 ,177

185.

FoxB.J.(1982)FireandmammaliansecondarysuccessioninanAustraliancoastalheath.

Ecology , 63 ,13321341.

FoxB.J.(1995)Commondunnart, Sminthopsismurina .In: TheMammalsofAustralia (Ed.

R.Strahan),TheAustralianMuseumTrust,NewHollandPublishers,Sydney,pp.15051.

FoxB.J,FoxM.D.,TaylorJ.E.,JacksonG.P.,SimpsonJ.,HiggsP.,RebecL.,AveryR.

(1996)Comparisonofregenerationfollowingburning,clearingormineralsandminingat

Tomago,NSW:I.Structureandgrowthofthevegetation. AustralianJournalofEcology ,

21 ,184199.

FoxB.J.,TaylorJ.E.,ThompsonP.T.(2003)Experimentalmanipulationofhabitatstructure:

Aretrogressionofthesmallmammalsuccession. JournalofAppliedEcology , 72 ,927

940.

218

FraserD.A.,GaydosJ.K.,KarlsenE.,RylkoM.S.(2006)Collaborativescience,policy

developmentandprogramimplementationinthetransboundaryGeorgiaBasin/Puget

Soundecosystem. EnvironmentalMonitoringandAssessment , 113 ,4969.

FrenchK.,MajorR.,HelyK.(2005)Useofnativeandexoticgardenplantsbysuburban

nectarivorousbirds. BiologicalConservation ,121 ,545559.

FriendG.R.(1978)Acomparisonofpredatorscatanalysiswithconventionaltechniquesina

mammalsurveyofcontrastinghabitatsinGippsland,Victoria. AustralianWildlife

Research , 5,7583.

FriendG.R.,SmithG.T.,MitchellD.S.,DickmanC.R.(1989)Influenceofpitfallanddrift

fencedesignoncaptureratesofsmallvertebratesinsemiaridhabitatsofWestern

Australia. AustralianWildlifeResearch , 16 ,110.

FriesenL.E.,EaglesP.F.J.,MackeyR.J.(1995)Effectsofresidentialdevelopmentonforest

dwellingneotropicalmigrantsongbirds. ConservationBiology , 9, 14081414.

FuhlendorfS.D.,WoodwardA.J.W.,LeslieD.M.J.,ShackfordJ.S.(2002)Multi

scaleeffectsofhabitatlossandfragmentationonlesserprairiechickenpopulations

oftheUSSouthernGreatPlains. LandscapeEcology , 17 ,617628.

FultonG.R.,FordH.A.(2001)Thepiedcurrawong’sroleinaviannestpredation:Apredator

removalexperiment. PacificConservationBiology , 7,154160.

GardenJ.G.(2000)Locomotionandenergeticsofthenorthernbrownbandicoot, Isoodon

macrourustorosus .HonoursThesis,TheUniversityofQueensland,Brisbane.

GardenJ.G.,McAlpineC.A.,JonesD.N.,PossinghamH.P.(inreviewa)Usingmultiple

surveymethodstodetectterrestrialreptilesandmammals:Whatarethemostsuccessful

andconstefficientcombinations? WildlifeResearch .

219

GardenJ.,McAlpineC.,PetersonA.,JonesD.,PossinghamH.(2006)Reviewoftheecology

ofAustralianurbanfauna:Afocusonspatiallyexplicitprocesses. AustralEcology ,31 ,

126148.

GardenJ.G.,McAlpineC.A.,PossinghamH.P.(inreviewb)Therelativeimportanceofsite,

patchandlandscapelevelinfluencesforwildlifeinafragmentedurbanlandscapeof

SoutheastQueensland,Australia:Asmallmammalandreptilecasestudy. Biological

Conservation .

GardenJ.G.,McAlpineC.A.,PossinghamH.P.,JonesD.N.(inpress)Habitatstructureismore

importantthanvegetationcompositionforlocallevelmanagementofnativeterrestrial

reptileandsmallmammalspecieslivinginurbanremnants:AcasestudyfromBrisbane,

Australia. AustralEcology .

GibbH.,HochuliD.F.(2002)Habitatfragmentationinanurbanenvironment:Largeandsmall

fragmentssupportdifferentarthropodassemblages. BiologicalConservation , 106 ,91

100.

GibbsP.J.(2004)Fishinurbanenvironments.In:UrbanWildlife:MoreThanMeetstheEye

(Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.

8291.

GoldingayR.L.,SharpeD.J.(2004)HowdoweconservethesquirrelgliderinBrisbane’s

urbanmatrix?In: ConservationofAustralia’sForestFauna (Ed.D.Lunney),Royal

ZoologicalSocietyofNewSouthWales,NSW,pp.663677.

GreenR.J.(1984)Nativeandexoticbirdsinasuburbanhabitat. AustralianWildlifeResearch ,

11 ,181190.

220

GriffithsA.D.,ChristianK.A.(1996)Theeffectsoffireonthefrillnecklizard

(Chlamydosauruskingii )innorthernAustralia. AustralianJournalofEcology , 21 ,386

398.

GrimmN.B.,GroveM.,PickettS.T.A.,RedmanC.L.(2000)Integratedapproachestolong

termstudiesofurbanecologicalsystems. BioScience , 50 ,571584.

GroverD.R.,SlaterP.J.(1994)ConservationvaluetobirdsofremnantsofMelaleucaforestin

suburbanBrisbane. WildlifeResearch ,21 ,433444.

GrovesC.R.,KellerB.L.(1983)Ecologicalcharacteristicsofsmallmammalsonaradioactive

wastedisposalareainsoutheasternIdaho. AmericanMidlandsNaturalist , 109 ,253265.

GunninghamN.,YoungM.D.(1997)Towardoptimalenvironmentalpolicy:Thecaseof

biodiversityconservation. EcologyLawQuarterly , 24 ,243298.

HaddadN.(2000)Corridorlengthandpatchcolonisationbyabutterfly,Junoniacoenia.

ConservationBiology , 14 ,738745.

HaddenS.A.,WestbrookeM.E.(1996)Habitatrelationshipsoftheherpetofaunaofremnant

BulokewoodlandsoftheWimmeraPlains,Victoria.WildlifeResearch , 23 ,363372.

HaeringR.,FoxB.J.(1995)Habitatutilizationpatternsofsympatricpopulationsof

Pseudomysgracilicaudatus and Rattuslutreolus incoastalheathland:Amultivariate

analysis. AustralianJournalofEcology ,20 ,427441.

HalligerM.(1993)ReptilesonregeneratingminesitesinwesternNewSouthWales.In:

HerpetologyinAustralia:ADiverseDiscipline (Eds.D.Lunney,D.Ayers),Royal

ZoologicalSocietyofAustralia,NSW,pp.327332.

HannahD.S.,SmithG.C.,AgnewG.(1998)Reptileandamphibiancompositioninprescribed

burntdryschlerophyllforest,southernQueensland. AustralianForestry ,61 ,349.

HanskiI.(1998)Metapopulationdynamics. Nature , 396, 4149.

221

HanskiI.,OvaskainenO.(2002)Extinctiondebtatextinctionthreshold. Conservation

Biology , 16 ,666673.

HasebeM.,FranklinD.C.(2003)Foodsourcesoftherainbowlorikeet Trichoglossus

haeatodus duringtheearlywetseasonontheurbanfringeofDarwin,NorthernAustralia.

Corella , 28 ,6874.

HawbakerT.J.,RadeloffV.C.,ClaytonM.K.,HammerR.B.,GonzalelzAbrahamC.E.(2006)

Roaddevelopment,housinggrowth,andlandscapefragmentationinNorthernWisconsin:

19371999. EcologicalApplication , 16 ,12221237.

HazellD.(2003)FrogecologyinmodifiedAustralianlandscapes:Areview. Wildlife

Research ,30 ,193205.

HeterickB.E.,CasellaJ.,MajerJ.D.(2000)InfluenceofArgentineandcoastalbrownants

(Hymenoptera:Formicidae)invasionsonantcommunitiesinPerthgardens,Western

Australia. UrbanEcosystems , 4,277292.

HilbornR.,MangelM.(1997) TheEcologicalDetective:ConfrontingModelswith

Data .PrincetonUniversityPress,Princeton,NewJersey.

HobbsR.(1997)Futurelandscapesandthefutureoflandscapeecology. Landscapeand

UrbanPlanning , 37 ,19.

HobbsR.J.(1999)ClarkKentorSuperman:WhereisthephoneboothforLandscape

Ecology?In: LandscapeEcologicalAnalysis:IssuesandApplications (Eds.J.M.

Klopatek,R.H.Gardner),SpringerVerlag,NewYork,USA,pp.1123.

HochuliD.F.,GibbH.,BurrowsS.E.,ChristisF.J.(2004)EcologyofSydney’surbanhabitat

fragments:Hasfragmentationtakenthestingoutofinsectherbivory?In: UrbanWildlife:

MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNew

SouthWales,NSW,pp.6369.

222

HokitD.G.,StithB.M.,BranchL.C.(1999)EffectsoflandscapestructureinFloridascrub:A

populationperspective. EcologicalApplication ,9, 124134.

HostetlerM.,HollingC.S.(2000)Detectingthescalesatwhichbirdsrespondtostructuresin

urbanlandscapes. UrbanEcosystems , 4, 2554.

HoughM.(1995) CitiesandNaturalProcess .Routledge,London.

HowR.,DellJ.(1993)VertebratefaunaofthePerthmetropolitanregion:Consequencesofa

modifiedenvironment.In: UrbanBushManagement [SeminarProceedings],Australian

InstituteofUrbanStudies,WA,pp.2847.

HowR.A.,DellJ.(1994)Thezoogeographicsignificanceofurbanbushlandremnantsto

reptilesinthePerthregion,WesternAustralia. PacificConservationBiology ,1,132140.

HowR.A.,DellJ.(2000)GroundvertebratefaunaofPerth'svegetationremnants:Impactof

170yearsofurbanization. PacificConservationBiology ,6, 198217.

HowR.A.,KerleJ.A.(1995)Commonbrushtailpossum, Trichosurusvulpecula .In: The

MammalsofAustralia (Ed.R.Strahan),TheAustralianMuseumTrust,NewHolland

Publishers,Sydney,pp.651653.

HowellC.A.,LattaS.C.,DonovanT.M.,PorneluziP.A.,ParksG.R.,FaaborgJ.(2000)

LandscapeeffectsmediatebreedingbirdabundanceinMidwesternforests. Landscape

Ecology , 15 ,547562.

HoyeG.,SpenceJ.(2004)ThelargeBentwingBat Miniopterusschreibersii inurban

environments:Asurvivor?In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.

Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.138147.

HueyR.B.(1991)Physiologicalconsequencesofhabitatselection. AmericanNaturalist , 137 ,

S91S115.

JaarsmaC.F.,WillemsG.P.A.(2002)Reducinghabitatfragmentationbyminorrural 223

roadsthroughtrafficcalming .LandscapeandUrbanPlanning , 58 ,125135.

JellinekS.,DriscollD.A.,KirkpatrickJ.B.(2004)Environmentalandvegetationvariables

haveagreaterinfluencethanhabitatfragmentationinstructuringlizardcommunitiesin

remnanturbanbushland. AustralEcology ,29 ,294304.

JohnsonC.W.(1995)Planninganddesigningforthemultipleuserolesofhabitatsin

urban/suburbanlandscapesintheGreatBasin. LandscapeandUrbanPlanning , 32 ,219

225.

JohnsonJ.B.,OmlandK.S.(2004)Modelselectioninecologyandevolution. Trends

inEcologyandEvolution , 19 ,101108.

JonesD.N.(1981)Temporalchangesintheavifaunaofaninlandcity. AustralianWildlife

Research , 8,109119.

JonesD.N.(1983)ThesuburbanbirdcommunityofTownsville:Atropicalcity. Emu 83 ,12

18.

JonesD.N.(2003)Contemporaryurbanecology:TheviewfromtheAntipodes.In:

EcosystemsandSustainableDevelopmentIV (Eds.E.Tiezzi,C.A.Brebbia,J.L.Usó),

WITPress,UK,pp.745753.

JonesM.E.(2000)Roadupgrade,roadmortalityandremedialmeasures:impactsona

populationofeasternquollsandTasmaniandevils. WildlifeResearch , 27 ,289296.

JonesD.N.,EverdingS.E.(1991)Australianbrushturkeysinasuburbanenvironment:

implicationsforconflictandconservation. WildlifeResearch , 18 ,285297.

JonesD.N.,WienenkeJ.(2000)ThesuburbanbirdcommunityofTownsvillerevisited:

Changesover16years. Corella ,24 ,5360.

224

KanowskiJ.J.,ReisT.M.,CatterallC.P.,PiperS.D.(2006)Factorsaffectingtheuseof

reforestedsitesbyreptilesinclearedrainforestlandscapesintropicalandsubtropical

Australia. RestorationEcology , 14 ,6776.

KavanaghR.P.(2004)ConservingowlsinSydney’surbanbushland:Currentstatusand

requirements.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),

RoyalZoologicalSocietyofNewSouthWales,NSW,pp.93108.

KavanaghR.P.,StantonM.A.(1998)Nocturnalbirdsandarborealmarsupialsofthe

southwesternslopes,NewSouthWales. AustralianZoologist , 30 ,449466.

KeiperP.,JohnsonC.N.(2004)DietandhabitatpreferenceoftheCapeYorkshortnosed

bandicoot( Isoodonobesuluspeninsulae )innortheastQueensland. WildlifeResearch , 31 ,

259265.

Klopatek J.M., Gardener R.H. (Eds.) (1999) Landscape Ecological Analysis: Issues and

Applications ,SpringerVerlag.,NewYork.

KnutsonM.G.,SauerJ.R.,OlsenD.A.,MossmanM.J.,HemesathL.M.,LannooM.J.(1999)

Effectsoflandscapecompositionandwetlandfragmentationonfrogandtoadabundance

andspeciesrichnessinIowaandWisconsin,USA. ConservationBiology , 13 ,14371446.

KoenigJ.,ShineR.,SheaG.(2002)Thedangersoflifeinthecity:Patternsofactivity,injury

andmortalityinsuburbanlizards( Tiliquascincoides ).JournalofHerpetology , 36 ,6268.

KofronC.P.,SmithR.(2001)Statusofestuarinecrocodilesinthepopulatedcoastofnortheast

Queensland. MemoirsoftheQueenslandMuseum , 46 ,603610.

KraussJ.,SteffanDewenterI.,TscharntkeT.(2003)Howdoeslandscapecontextcontribute

toeffectsofhabitatfragmentationondiversityandpopulationdensityofbutterflies?

JournalofBiogeography , 30 ,889900.

225

KrellF.T.,HangayG.(1998)TheAfricanrhinocerosbeetle Temnorhynchusretusus

(Fabricius)establishedineasternAustralia(Coleoptera:Scarabaeidae:Dynastinae).

AustralianJournalofEntomology , 37 ,312314.

KühnI.,BrandlR.,KlotzS.(2004)ThefloraofGermancitiesisnaturallyspeciesrich.

EvolutionaryEcologyResearch ,6, 749764.

LauranceW.F.(1992)AbundanceestimatesofsmallmammalsinAustraliantropical

rainforest:Acomparisonoffourtrappingmethods. WildlifeResearch , 19 ,651655.

LendersA.J.W.,DaamenL.(2004)HabitatmanagementforthesandlizardattheMeinweg

NationalParklongtermeffectsoflargescalesodcuttingandburning. Natuurhistorisch

Maandblad , 93 ,281286.

LeishmanM.R.,HughesM.T.,GoreD.B.(2004)Bushland:Spatialandtemporalchangesand

therelationshipwithinvasiveplants. AustralianJournalofSoilResearch , 42 ,197202.

LeviaJrD.F.,PageD.R.(2000)Theuseofclusteranalysisindistinguishingfarmlandproneto

residentialdevelopment:AcasestudyofSterling,Massachusetts. Environmental

Management , 25 ,541548.

LevinsR.A.(1970)Extinction.In: SomeMathematicalProblemsinBiology (ed.M.

Gertenhaber)pp.75107.AmericanMathematicalSociety,Providence.

LidickerW.Z.J.(1999)Responsesofmammalstohabitatedges:Alandscapeperspective.

LandscapeEcology , 14 ,333343.

LidickerW.Z.J.,PetersonJ.A.(1999)Responsesofsmallmammalstohabitatedges.In:

LandscapeEcologyofSmallMammals (eds.G.W.BarrettandJ.D.Peles)pp.211227.

SpringerVerlag,NewYork.

LindenmayerD.B.,CunninghamR.B.,PopeM.L.(1998)Alargescale‘experiment’to

examinetheeffectsoflandscapecontextandhabitatfragmentationonterrestrial 226

mammals.CentreforResourceandEnvironmentalStudies,TheAustralianNational

University,Canberra.

LindenmayerD.B.,FischerJ.(2006) HabitatFragmentationandLandscapeChange:An

EcologicalandConservationSynthesis .CSIROPublishing,Victoria.

LindenmayerD.B.,IncollR.D.,CunninghamR.B.,PopeM.L.,DonnelleyC.F.,MacGregor

C.I.,TriboletC.,TriggsB.E.(1999)Comparisonofhairtubetypesforthedetectionof

mammals. WildlifeResearch , 26 ,745753.

LindenmayerD.B.,McIntyreS.,FischerJ.(2003)Birdsineucalyptandpineforests:

Landscapealterationanditsimplicationsforresearchmodelsoffaunalhabitatuse.

BiologicalConservation , 110 ,4553.

LiuJ.,TaylorW.W.(2002)Landscapechangeandadaptivemanagement.In: Integrating

LandscapeEcologyIntoNaturalResourceManagement (Eds.J.Liu,W.W.Taylor),

CambridgeUniversityPress,Cambridge,UK,pp.263264.

LobertB.,LumsdenL.,BrunnerH.,TriggsB.(2001)Anassessmentoftheaccuracyand

reliabilityofhairidentificationofsoutheastAustralianmammals. WildlifeResearch , 28 ,

637641.

LowT.(2002) Thenewnature .Viking,Camberwell,Vic.

LugoA.E.(2002)Canwemanagetropicallandscapes?AnanswerfromtheCaribbean

perspective. LandscapeEcology , 17, 601615.

LunneyD.(1995)Bushrat, Rattusfuscipes .In: TheMammalsofAustralia (Ed.R.Strahan),

TheAustralianMuseumTrust,NewHollandPublishers,Sydney,pp.651653.

227

LunneyD.,BurginS.(2004)Urbanwildlifemanagement:Anemergingdiscipline.In: Urban

Wildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoological

SocietyofNewSouthWales,NSW,pp.17.

LunneyD.,O'NeillL.,MatthewsA.,SherwinW.B.(2002)Modellingmammalianextinction

andforecastingrecovery:KoalasatIluka(NSW,Australia). BiologicalConservation ,

106, 101113.

MacArthurR.H.,MacArthurJ.W.(1961)Onbirdspeciesdiversity. Ecology , 42 ,594598.

MacArthurR.H.,WilsonE.O.(1967) Thetheoryofislandbiogeography .Princeton

UniversityPress,Princeton,NewJersey.

MacNallyR.(2000)Regressionandmodelbuildinginconservationbiology,biogeography

andecology:Thedistinctionbetween–andreconciliationof–‘predictive’and

‘explanatory’models. BiodiversityandConservation , 9,655671.

MacNallyR.,BennettA.F.(1997)Speciesspecificpredictionsoftheimpactofhabitat

fragmentation:LocalextinctionofbirdsintheBoxIronbarkforestsofcentralVictoria,

Australia. BiologicalConservation , 82 ,147155.

MacNallyR.,BennettA.F.,HorrocksG.(2000)Forecastingtheimpactsofhabitat

fragmentation:Evaluationofspeciesspecificpredictionsoftheimpactofhabitat

fragmentationonbirdsinboxironbarkforestsofcentralVictoria,Australia.Biological

Conservation , 95 ,729.

MaioranoL.,FalcucciA.,BoitaniL.(2006)GapanalysisofterrestrialvertebratesinItaly:

Prioritiesforconservationplanninginahumandominatedlandscape. Biological

Conservation , 133 ,455473.

228

MajorR.E.,GowingG.,KendalC.E.(1996)NestpredationinAustralianurbanenvironments

andtheroleofthepiedcurrawong, Streperagraculina . AustralianJournalofEcology ,

21 ,399409.

MarchesanD.,CarthewS.M.(2004)Autoecologyoftheyellowfootedantechinus( Antechinus

flavipes )inafragmentedlandscapeinsouthernAustralia. WildlifeResearch , 31 ,273282.

MarksC.A.,BloomfieldT.E.(1999)Baituptakebyfoxes( Vulpesvulpes )inurban

Melbourne:Thepotentialfororalvaccinationforrabiescontrol. WildlifeResearch , 26 ,

777787.

MarkusN.,HallL.(2004)Foragingbehaviouroftheblackflyingfox( Pteropusalecto )inthe

urbanlandscapeofBrisbane,Queensland. WildlifeResearch , 31 ,345355.

MarucciD.J.(2000)Landscapehistoryasaplanningtool. LandscapeandUrbanPlanning ,

49, 6781.

MarzluffJ.M.,EwingK.(2001)Restorationoffragmentedlandscapesfortheconservationof

birds:Ageneralframeworkandspecificrecommendationsforurbanizinglandscapes.

RestorationEcology , 9, 280292.

MasonP.(1985)TheimpactofurbandevelopmentonbirdcommunitiesofthreeVictorian

towns:Lilydale,ColdstreamandMtEvelyn,Victoria,Australia. Corella , 9,1421.

MatthewsA.,LunneyD.,WaplesK.,HardyJ.(2004)Brushtailpossums:“Championofthe

suburbs”or“Ourtormentors”?In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.

Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.159168.

MenkhorstP.,KnightF.(2001) AFieldGuidetotheMammalsofAustralia .Oxford

UniversityPress,Melbourne.

229

McAlpineC.A.,BowenM.E.,CallaghanJ.G.,LunneyD.,RhodesJ.R.,MitchellD.L.,Pullar

D.V.,PossinghamH.P.(2006b)Testingalternativemodelsfortheconservationofkoalas

infragmentedurbanrurallandscapes. AustralEcology , 31 ,529544.

McAlpineC.A.,CallaghanJ.G.,LunneyD.,BowenM.E.,RhodesJ.R.,MitchellD.L.,

PossinghamH.P.(2005)ConservingsoutheastQueenslandkoalas:Howmuchhabitatis

enough?In: BiodiversityConferenceProceedings (Eds.G.L.Siepen,D.Jones),The

UniversityofQueensland–Gatton,Qld,pp.1117.

McAlpineC.A.,EyreT.J.(2002)Testinglandscapemetricsasindicatorsofhabitatlossand

fragmentationincontinuouseucalyptforests(Queensland,Australia). Landscape

Ecology , 17 ,711728.

McAlpineC.A.,FenshawR.J.,TempleSmithD.E.(2002)Biodiversityconservationand

vegetationclearinginQueensland:Principlesandthresholds. RangelandJournal , 24 ,36

55.

McAlpineC.A.,RhodesJ.R.,CallaghanJ.G.,BowenM.E.,LunneyD.,MitchellD.L.,Pullar

D.V.,PossinghamH.P.(2006a)Theimportanceofforestareaandconfigurationrelative

tolocalhabitatfactorsforconservingforestmammals:Acasestudyofkoalasin

Queensland,Australia. BiologicalConservation ,132,153165.

McAlpineC.A.,SpiesT.A.,NormanP.,PetersonA.(2007)Conservingforestbiodiversity

acrossmultiplelandownerships:LessonsfromtheNorthwestForestPlanandthe

SoutheastQueenslandregionalforestsagreement(Australia). BiologicalConservation ,

134,580592.

McDonnellM.J.,PickettS.T.A.GroffmanP.,BohlenP.,PouyatR.V.,Zipperer,W.C.(1997)

Ecosystemprocessesalonganurbantoruralgradient. UrbanEcosystems , 1,2136.

230

McDonnellM.J.,PickettS.T.A.,PouyatR.V.(1993)Theapplicationoftheecological

gradientparadigmtothestudyofurbaneffects.In: HumansasComponentsof

Ecosystems:TheEcologyofSubtleHumanEffectsandPopulatedAreas (Eds.M.J.

McDonnell,S.T.A.Pickett),SpringerVerlag,NewYork,pp.175189.

McGarigalK.,CushmanS.A.,NeelM.C.,EneE.(2004) FRAGSTATS:SpatialPattern

AnalysisProgramforCategoricalMaps .UniversityofMassachusetts,Amherst,USA.

[Computersoftware]URLhttp://www.umass.edu/landeco/research/fragstats/fragstats.html.

McGarigalK.,McCombW.C.(1995)Relationshipsbetweenlandscapestructureandbreeding

birdsintheOregonCoastRange. EcologicalMonographs , 65, 235260.

McIntyreN.E.(1995)Effectsofforestpatchsizeonaviandiversity. LandscapeEcology , 10 ,

8599.

McKinneyM.L.(2002)Urbanization,biodiversity,andconservation. BioScience , 52 ,883

890.

MengakM.T.,GuynnJr.D.C.(1987)Pitfallsandsnaptrapsforsamplingsmallmammalsand

herpetofauna. AmericanMidlandsNaturalist , 118 ,284288.

MenkhorstP.,KnightF.(Eds.)(2001) AFieldGuidetotheMammalsofAustralia .Oxford

UniversityPress,Melbourne.

MilledgeD.(1991)AsurveyoftheterrestrialvertebratesofcoastalByronShire. Australian

Zoologist , 27 ,6690.

MillenniumEcosystemAssessment(2005) EcosystemsandHumanWellbeing:Biodiversity

Synthesis .WorldResourcesInstitute,Washington,DC.[Internetwebsite]Accessed15

May2006.URLhttp://www.millenniumassessment.org//en/index.aspx.

MillerK.K.,BrownP.R.,TembyI.(1999)Attitudestowardspossums:Aneedforeducation?

VictorianNaturalist , 116 ,120126.

231

MillerJ.R.,HobbsR.J.(2002)Conservationwherepeopleliveandwork. Conservation

Biology , 16, 330337.

MillsD.J.,HarrisB.,ClaridgeA.W.,BarryS.C.(2002)Efficacyofhairsamplingtechniques

forthedetectionofmediumsizedterrestrialmammals.I.Acomparisonbetweenhair

funnels,hairtubesandindirectsigns. WildlifeResearch , 29 ,379387.

MonamyV.,FoxB.J.(2005)Differentialhabitatusebyalocalpopulationofsubadult

commondunnarts, Sminthopsismurina ,followingwildfireincoastalwetheath,New

SouthWales,Australia. WildlifeResearch , 32 ,617624.

MonjeauJ.A.,BirneyE.C.,GhermandiL.,SikesR.S.,MarguttiL.,PhillipsC.J.(1998)Plants,

smallmammals,andthehierarchicallandscapeclassificationsofPatagonia. Landscape

Ecology , 13 ,285306.

MooreB.D.,WallisI.R.,MarshK.J.,FoleyW.J.(2004)Theroleofnutritioninthe

conservationofmarsupialfolivoresofeucalyptforests.In: ConservationofAustralia's

ForestFauna (Ed.D.Lunney),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.

549575.

MoriartyA.J.(2004)WilddeerherdsinAustralia’surbanfringe:Issues,managementand

politics.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),

RoyalZoologicalSocietyofNewSouthWales,NSW,pp.179185.

MosebyK.E.,ReadJ.L.(2001)Factorsaffectingpitfallcaptureratesofsmallground

vertebratesinaridSouthAustralia.II.Optimumpitfalltrappingeffort. WildlifeResearch ,

28 ,6171.

MossM.R.(2000)Interdisciplinarity,landscapeecologyandthe‘Transformationof

AgriculturalLandscapes’. LandscapeEcology , 15 ,303311.

232

MuellerDomboisD.,EllengerH.(1974) AimsandMethodsofVegetationEcology .Wiley,

NewYork.

MunyenyembaF.,HarrisJ.,HoneJ.,NixH.(1989)Determinantsofbirdpopulationsinan

urbanarea. AustralianJournalofEcology ,14 ,549558.

MurrayG.W.,SchrammD.(1987)Acomparativestudyofthedietofthewedgesnoutedsand

lizard Merolescuneirostris (Strauch),andthesanddivinglizard Aporosauraachietae

(Bocage),(Lacertidae),intheNamibdesert. Madoqua , 15 ,5562.

MusacchioL.R.,WuJ.(2004)Collaborativelandscapescaleecologicalresearch:Emerging

trendsinurbanandregionalecology. UrbanEcosystems , 7,175178.

NewT.R.,SandsD.P.A.(2002)Conservationconcernsforbutterfliesinurbanareas. Journal

ofInsectConservation ,6,207215.

NewallP.,WalshC.J.(2005)Responseofepilithicdiatomassemblagestourbanisation

influences. Hydrobiologia , 532 ,5367.

NiemeläJ.(1999a)Ecologyandurbanplanning. BiodiversityConservation , 8,119131.

NiemeläJ.(1999b)Isthereaneedforatheoryofurbanecology? UrbanEcosystems , 3,57

65.

OpdamP.,FoppenR.,VosC.(2002)Bridgingthegapbetweenecologyandspatialplanning

inecology. LandscapeEcology , 16, 767779.

OpdamP.,VerboomJ.,PouwelsR.(2003)Landscapecohesion:Anindexforthe

conservationpotentialoflandscapesforbiodiversity. LandscapeEcology , 18 ,113126.

OreskesN.(2004)Scienceandpublicpolicy:What’sproofgottodowithit? Environmental

ScienceandPolicy , 7,369383.

233

ParryJonesK.A.,AugeeM.L.(2001)Factorsaffectingtheoccupationofacolonysitein

Sydney,NSWbythegreyheadedflyingfox Pteropuspoliocephalus (Pteropodidae).

AustralEcology ,26 ,4755.

ParsonsH.,FrenchK.,MajorR.E.(2003)Theinfluenceofremnantbushlandonthe

compositionofsuburbianbirdassemblagesinAustralia. LandscapeandUrbanPlanning ,

66 ,4356.

ParsonsH.,MajorR.E.(2004)BirdinteractionsinSydneygardens:Someinitialfindingsof

theBirdsinBackyardsprogram.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.

Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.211215.

PearsonS.M.,TurnerM.G.,GardnerR.H.,O'NeillR.V.(1996)Anorganismperspectiveof

habitatfragmentation.In: BiodiversityinManagedLandscapes:TheoryandPractice

(Eds.R.C.Szaro,D.W.Johnston),OxfordUniversityPress,NewYork,pp.7795.

PetersonA.,McAlpineC.A.,WardD.,RaynerS.(inpress)Newregionalismandnature

conservation:LessonsfromSouthEastQueensland.LandscapeandUrbanPlanning .

PickettS.T.A.,CadenassoM.L.,GroveJ.M.,NilonC.H., PouyatR.V.,ZippererW.C.,

CostanzaR.(2001)Urbanecologicalsystems:Linkingterrestrialecological,physicaland

socioeconomiccomponentsofmetropolitanareas. AnnualReviewofEcology,Evolution

andSystematics , 32, 127157.

PirnatJ.(2000)Conservationandmanagementofforestpatchesandcorridorsinsuburban

landscapes. LandscapeandUrbanPlanning , 52 ,135143.

PlumptreA.J.,KujirakwinjaD.,TrevesA.,OwiunjiI.,RainerH.(2007)Transboundary

conservationinthegreaterVirungalandscape:Itsimportanceforlandscapespecies.

BiologicalConservation , 134 ,279287.

234

PodaniJ.,SchmeraD.(2006)Ondendogrambasedmeasuresoffunctionaldiversity. Oikos ,

115 ,179185.

PonderW.,LunneyD.(1999) TheOther99%:TheConservationandBiodiversityof

Invertebrates .RoyalZoologicalSocietyofNewSouthWales,NSW.

PossinghamH.P.,FieldS.A.(2001)Regionalbirdextinctionsandtheirimplicationsfor

vegetationclearancepolicy. Lifeline , 7,1516.

QuarlesIIIH.D.,HanawaltR.B.,OdumW.E.(1974)Leadinsmallmammals,plantsandsoil

atvaryingdistancesfromahighway. JournalofAppliedEcology ,11, 937949.

QueenslandGovernment(2003) RegionalNatureConservationStrategyforSouthEast

Queensland20032008 .QueenslandGovernmentEnvironmentalProtectionAgency,

Brisbane.[Internetwebsite]Accessed15November,2006.URL

http://www.epa.qld.gov.au/.

QueenslandGovernment(2005) SouthEastQueenslandRegionalPlan20052026 .

QueenslandGovernment,Queensland.

QueenslandGovernment(2006) ActsasPassed .QueenslandGovernment,Queensland.

[Internetwebsite]Accessed17October2006.URL

http://www.legislation.qld.gov.au/Acts_Passed/Acts_Passed.htm.

QueenslandEnvironmentalProtectionAgency(2004) RegionalEcosystems:12.910.4 .

QueenslandGovernment,Queensland.[Internetwebsite]Accessed7March2006.URL

http://www.epa.qld.gov.au/.

QueenslandMuseum(1995) WildlifeofGreaterBrisbane .QueenslandMuseum,Brisbane.

QueenslandMuseum(2003) WildPlantsofGreaterBrisbane .QueenslandMuseum,

Brisbane,Australia.

235

RampD.,WilsonV.K.,CroftD.B.(2006)Assessingtheimpactsofroadsinperiurban

reserves:RoadbasedfatalitiesandroadusagebywildlifeintheRoyalNationalPark,New

SouthWales,Australia. BiologicalConservation ,129 ,348359.

RecherH.F.(2002)Thepast,futureandpresentofbiodiversityconservationinAustralia.

PacificConservationBiology ,8,811.

RecherH.F.(2004)TheKing’sParkavifauna:Keepingbirdsinthecity.In: UrbanWildlife:

MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNew

SouthWales,NSW,pp.820.

RecherH.F.,ServentyD.L.(1991)Longtermchangesintherelativeabundancesofbirdsin

KingsPark,Perth,WesternAustralia. ConservationBiology ,5,90102.

ReesW.E.(1997)UrbanEcosystems:Thehumandimension. UrbanEcosystems , 1,6375.

ReijnenR.,FoppenR.(1994)Theeffectsofcartrafficonbreedingbirdpopulationsin

woodland.I.Evidenceofreducedhabitatqualityforwillowwarblers( Phylloscopus

trochilus )breedingclosetoahighway .JournalofAppliedEcology , 31 ,8594.

RhodesJ.R.,WiegandT.,McAlpineC.A.,CallaghanJ.,LunneyD.,BowenM.,Possingham

H.P.(2006)Modellingspeciesdistributionsforimprovingconservationinsemiurban

landscapes:Akoalacasestudy. ConservationBiology , 20 ,449459.

RhodesM.,WardellJohnsonG.(2006)Roosttreecharacteristicsdetermineusebythewhite

stripedfreetailbat( Tadaridaaustralis ,Chiroptera:Molossidae)insuburbansubtropical

Brisbane,Australia. AustralEcology ,31 ,228239.

RiffelS.K.,KeasB.E.,BurtonT.M.(2003)BirdsinNorthAmericanGreatLakescoastalwet

meadows:Islandscapecontextimportant? LandscapeEcology , 18 ,95111.

236

RileyS.J.,BanksR.G.(1996)Theroleofphosphorusandheavymetalsinthespreadofweeds

inurbanbushlands:AnexamplefromtheLaneCoverValley,NSW,Australia. Scienceof

theTotalEnvironment , 182 ,3952.

RisserP.G.(1993)Ecotonesatlocaltoregionalscalesfromaroundtheworld. Ecological

Applications , 3,367368.

RisserP.G.(1996)Decisionmakersmustleadindefiningsomeenvironmentalscience.

EcologicalApplications , 6,2426.

RollinsonD.J.,JonesD.N.(2002)VariationinbreedingparametersoftheAustralianmagpie

Gymnorhinatibicen insuburbanandruralenvironments. UrbanEcosystems , 6,257269.

RootR.B.(1974)Organisationofaplantarthropodassociationinsimpleanddiversehabitat:

ThefaunaofCollards(BrassicaOleracea). EcologicalMonographs , 43 ,95124.

RoseS.(1997)Influenceofsuburbanedgesoninvasionof Pittosporumundulatum intothe

bushlandofnorthernSydney,Australia. AustralianJournalofEcology , 22 ,8999.

RossG.A.(2004)IbisinurbanSydney:AgiftfromRaofaPharaoh’scurse?In: Urban

Wildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoological

SocietyofNewSouthWales,NSW,pp.148152.

RowstonC.,CatterallC.P.,HurstC.(2002)Habitatpreferencesofsquirrelgliders, Petaurus

norfolcensis ,inthefragmentedlandscapeofsoutheastQueensland. ForestEcologyand

Management , 164 ,197209.

RuddH.,ValaJ.,SchaeferV.(2002)Importanceofbackyardhabitatinacomprehensive

biodiversityconservationstrategy:Aconnectivityanalysisofurbangreenspaces.

RestorationEcology , 10 ,368375.

RutledgeD.L.,LepczykC.A.(2002)Landscapechange:Patterns,effects,andimplicationsfor

adaptivemanagementofwildliferesources.In: IntegratingLandscapeEcologyInto

237

NaturalResourceManagement (Eds.J.Liu,W.W.Taylor),CambridgeUniversityPress,

Cambridge,pp.312333.

RyanT.J.,PhilippiT.,LeidenY.A.,DorcasM.E.,WingleyT.B.,GibbonsJ.W.(2002)

Monitoringherpetofaunainamanagedforestlandscape:Effectsofhabitattypesand

censustechniques. ForestEcologyandManagement , 167 ,8390.

SalaO.E.,ChapinIIIF.S.,ArmestoJ.J.,BerlowE.,BloomfieldJ.,DirzoR.,HuberSanwald

E.,HuennekeL.F.,JacksonR.B.,KinzigA.,LeemansR.,LodgeD.M.,MooneyH.A.,

OesterheldM.,LeRoyPoffN.,SykesM.T.,WalkerB.H.,WalkerM.,WallD.H.(2000)

Globalbiodiversityscenariosfortheyear2100. Science , 287 ,17701774.

Saunders,D.A.,BriggsS.V.(2002)Naturegrowsinstraightlinesordoesshe?Whatarethe

consequencesofthemismatchbetweenhumanimposedlinearboundariesandecosystem

boundaries?AnAustralianexample.LandscapeandUrbanPlanning , 61,7182.

SavardJ.P.L.,ClergeauP.,MennechezG.(2000)Biodiversityconceptsandurbanecosystems.

LandscapeandUrbanPlanning , 48 ,131142.

SawadaM.(1999)ROOKCASE:AnExcel97/2000visualbasic(VB)addinforexploring

globalandlocalspatialautocorrelation. BulletinoftheEcologicalSocietyofAmerica , 80 ,

231234.URLhttp://www.lpc.uottawa.ca/data/scripts/index.html

SchlesingerC.A.,ShineR.(1994)Choosingarock:Perspectivesofabushrockcollectorand

asaxicolouslizard. BiologicalConservation ,67 ,4956.

ScottD.M.,BrownD.,MahoodS.,DentonB.,SilburnA.,RakotondraparanyF.(2006)The

impactsofforestclearanceonlizard,smallmammalandbirdcommunitiesinthearid

spinyforest,southernMadagascar. BiologicalConservation , 127 ,7287.

238

ScottL.K.,HumeI.D.,DickmanC.R.(1999)Ecologyandpopulationbiologyoflongnosed

bandicoots( Peramelesnasuta )atNorthHead,SydneyHarbourNationalPark. Wildlife

Research , 26 ,805821.

ScottsD.J.,CraigS.A.(1988)Improvedhairsamplingtubeforthedetectionofsmall

mammals. AustralianWildlifeResearch , 15 ,469472.

SeabrookL.M.,McAlpineC.A.,PhinnS.R.,CallaghanJ.,MitchellD.(2003)Landscape

legacies:KoalahabitatchangeinNoosaShire,SoutheastQueensland. Australian

Zoologist ,32, 446461.

SerenaM.,ThomasJ.L.,WilliamsG.A.,OfficerR.C.E.(1998)Useofstreamandriver

habitatsbytheplatypus, Ornithorynchusanatinus ,inanurbanfringeenvironment.

AustralianJournalofZoology , 46 ,267282.

SewellS.R.,CatterallC.P.(1998)Bushlandmodificationandstylesofurbandevelopment:

TheireffectsonbirdsinsoutheastQueensland. WildlifeResearch , 25 ,4163.

ShineR.,KoenigJ.(2001)Snakesinthegarden:Ananalysisofreptiles“rescued”by

communitybasedwildlifecarers. BiologicalConservation ,102 ,271283.

SilveiraL.,JácomoA.T.A.,DinizFilhoJ.A.F.(2003)Cameratrap,linetransectcensusand

tracksurveys:Acomparativeevaluation. BiologicalConservation , 114 ,351355.

SinghS.,SmythA.K.,BlombergS.P.(2002)Effectofcontrolburnonlizardsandtheir

structuralenvironmentinaeucalyptopenforest.WildlifeResearch , 29 ,447454.

SmithV.W.(2002)AvianpopulationchangesinadevelopingurbanareainWesternAustralia

overaneighteenyearperiod. Corella ,26 ,7984.

SmithG.T.,ArnoldG.W.,SarreS.,AbenspergTraunM.,StevenD.E.(1996)Theeffectof

habitatfragmentationandlivestockgrazingonanimalcommunitiesinremnantsofgimlet

239

Eucalyptussulabris woodlandintheWesternAustraliaWheatbelt.II.Lizards. Journalof

AppliedEcology , 33 ,13021310.

SmithG.C.,CarlileN.(1993)Foodandfeedingecologyofbreedingsilvergulls( Larus

novaehollandiae )inurbanAustralia. ColonialWaterbirds , 16 ,917.

SmithA.P.,MurrayM.(2003)Habitatrequirementsofthesquirrelglider( Petaurus

norfolcensis )andassociatedpossumsandglidersontheNewSouthWalescentralcoast.

WildlifeResearch , 30, 291301.

SmithP.,SmithJ.(1990)Declineoftheurbankoala( Phascolarctoscinereus )populationin

WarringahShire,Sydney. AustralianZoologist ,26 ,109129.

SohM.C.K.,SodhiN.S.,LimS.L.H.(2006)Highsensitivityofmontanebirdcommunitiesto

habitatdisturbanceinPeninsularMalaysia. BiologicalConservation , 129 ,149166.

SouleM.E.(1991)Landuseplanningandwildlifemaintenance:Guidelinesforconserving

wildlifeinanurbanlandscape. JournaloftheAmericanPlanningAssociation , 57 ,313

323.

SouthgateR.,PalmerC.,AdamsM.,MastersP.,TriggsB.,WoinarskiJ.(1996)Population

andhabitatcharacteristicsofthegoldenbandicoot( Isoodonauratus )onMarchinbar

Island,NorthernTerritory. WildlifeResearch , 23 ,647664.

SpencerR.J.,CavanoughV.C.,BaxterG.S.,KennedyM.S.(2005)Adultfreezonesinsmall

mammalpopulations:ResponseofAustraliannativerodentstoreducedcover. Austral

Ecology ,30 ,868876.

SpoonerD.R.,MaherW.,OtwayN.(2003)Tracemetalconcentrationsinsedimentsand

oystersofBotanyBay,NSW,Australia. ArchivesofEnvironmentalContaminationand

Toxicology ,45 ,92101.

240

StanisicJ.(2005)Urbaninvertebrates:TheBrisbanecityproject.In: BiodiversityConference

Proceedings (Eds.G.L.Siepen,D.Jones),TheUniversityofQueensland–Gatton,Qld,

pp.5461.

StathamM.,StathamH.L.(1997)Movementsandhabitsofbrushtailpossums( Trichosurus

vulpecula Kerr)inanurbanarea. WildlifeResearch , 24 ,715726.

StrahanR.(1995) TheMammalsofAustralia:RevisedEdition .ReedNewHolland,Sydney.

StenhouseR.N.(2004)Fragmentationandinternaldisturbanceofnativevegetationreservesin

thePerthmetropolitanarea,WesternAustralia. LandscapeandUrbanPlanning , 68 ,389

401.

StubbsM.,LemonM.,LonghurstP.(2000)Intelligenturbanmanagement:learningtomanage

andmanagingtolearntogetherforachange. UrbanStudies , 37 ,18011811.

SutherlandW.J.(Ed.)(1996a) EcologicalCensusTechniques:AHandbook .Cambridge

UniversityPress,Cambridge.

SutherlandW.J.(1996b)Mammals.In: EcologicalCensusTechniques:AHandbook .(Ed.

W.J.Sutherland),CambridgeUniversityPress,Cambridge,pp.260280.

SzackiJ.(1999)Spatiallystructuredpopulations:Howmuchdotheymatchtheclassic

metapopulationconcept? LandscapeEcology , 14 ,369379.

TaitC.J.,DanielsC.B.,HillR.S.(2005)ChangesinspeciesassemblageswithintheAdelaide

metropolitanarea,Australia,18362002. EcologicalApplications , 15 ,346359.

TaylorB.D.,GoldingayR.L.(2003)Cuttingthecarnage:Wildlifeusageofroadculvertsin

northeasternNewSouthWales. WildlifeResearch , 30 ,529537.

TaylorB.D.,GoldingayR.L.(2004)Wildliferoadkillsonthreemajorroadsinnortheastern

NewSouthWales. WildlifeResearch , 31 ,8391.

241

TembyI.D.(2004)SilverGulls:Urbanwastecreatesflyingproblems.In: UrbanWildlife:

MoreThanMeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNew

SouthWales,NSW,pp.153158.

TermorshuizenJ.W.,OpdamP.,vanderBrinkA.(inpress)Incorporatingecological

sustainabilityintolandscapeplanning. LandscapeandUrbanPlanning .

TheRDevelopmentCoreTeam(2004) R:TheRProject forStatisticalComputing (v2.0.1)

LanguageandEnvironmentCopyright.[Computerfreeware]Accessed2February2006.

URLhttp://www.rproject.org/.

TheStateofQueensland(2006)SoutheastQueenslandInfrastructurePlanandProgram2006

2026 .QueenslandGovernment,OfficeofUrbanManagement,Australia.[Internet

website]Accessed20October2006.URLhttp://www.oum.qld.gov.au

TilmanD.,MayR.M.,LehmanC.L.,NowakM.A.(1994)Habitatdestructionandthe

extinctiondebt. Nature , 371 ,6566.

TischendorfL.,BenderD.J.,FahrigL.(2003)Evaluationofpatchisolationmetricsinmosaic

landscapesforspecialistvs.generalistdispersers. LandscapeEcology , 18 ,4150.

TriggsB.(1996) Tracks,ScatsandOtherTraces .OxfordUniversityPress,Melbourne.

TurnerM.G.(1989)Landscapeecology:Theeffectofpatternonprocess. AnnualReviewof

EcologyandSystematics , 20 ,171197.

TurnerM.G.,GardenerR.H.,O’NeillR.V.(2001) LandscapeEcologyinTheoryandPractice:

PatternsandProcess .SpringerVerlag,USA.

UnderwoodA.J.(1995)Ecologicalresearchand(andresearchinto)environmental

management. EcologicalApplications ,5,232247.

242

UnitedNations(2006) WorldPopulationProspects:The2004RevisionPopulationDatabase

UnitedNationsPopulationDivision.[Internetwebsite]Accessed10November2006.

URLhttp://esa.un.org/unpp. vanderReeR.(2004)TheimpactofurbanisationonthemammalsofMelbourne–Doatlas

recordstellthewholestoryofjustsomeofthechapters?In: UrbanWildlife:MoreThan

MeetstheEye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouth

Wales,NSW,pp.195204. vanderReeR.,McCarthyM.A.(2005)Inferringpersistenceofindigenousmammalsin

responsetourbanisation. AnimalConservation , 8,309319. vanLangeveldeF.,ClaassenF.,SchotmanA.(2002)Twostrategiesforconservationplanning

inhumandominatedlandscapes. LandscapeandUrbanPlanning , 58 ,281295.

VerbeylenG.,deBruynL.,AdriaensenF.,MatthysenE.(2003)Doesmatrixresistance

influenceredsquirrel( Sciurusvulgaris L.1758)distributioninanurbanlandscape?

LandscapeEcology , 18 ,791805.

VerboomB.,vanApeldoornR.(1990)Effectsofhabitatfragmentationontheredsquirrel,

Sciurusvulgaris L.LandscapeEcology , 4,171176.

VernesK.(2003)Finescalehabitatpreferencesandhabitatpartitioningbythree

mycophagousmammalsintropicalwetsclerophyllforest,northeasternAustralia. Austral

Ecology , 28 ,471479.

VernesK.,PopeL.C.(2001)Stabilityofnestrange,homerangeandmovementofthe

northernbettong( Bettongiatropica )followingmoderateintensityfireinatropical

woodland,northeasternQueensland. WildlifeResearch , 28 ,141150.

243

VeskP.A.,MacNallyR.(2006)Theclockisticking:Revegetationandhabitatforbirdsand

arborealmammalsinrurallandscapesofsouthernAustralia. AgricultureEcosystemsand

Environment ,112 ,356366.

VillardM.A.(2002)Habitatfragmentation:Majorconservationissueofintellectualattractor?

EcologicalApplications , 12 ,319320.

VillardM.A.,TrzcinskiM.K.,MerriamG.(1999)Fragmentationeffectsonforestbirds:

Relativeinfluenceofwoodlandcoverandconfigurationonlandscapeoccupancy.

ConservationBiology , 13 ,774783.

VitousekP.M.,MooneyH.A.,LubchencoJ.,MelilloJ.M.(1997)Humandominationofthe

Earth'secosystems. Science , 277 ,494499.

VittL.J.,AvilaPiresT.C.S.,CaldwellJ.P.,OlivieraV.R.L.(1998)Theimpactofindividual

treeharvestingonthermalenvironmentsoflizardsinAmazonianrainforest.

ConservationBiology , 12 ,654664.

WalshC.,MacNallyR.(2005) hier.part:HierarchicalPartitioning .Rpackageversion1.0.1.

[Computerfreeware]URLhttp://cran.rproject.org/src/contrib/Descriptions/hier.part.html.

WalshC.J.,PapasP.J.,CrowtherD.,SimP.T.,YooJ.(2004)Stormwaterdrainagepipesasa

threattoastreamdwellingamphipodofconservationsignificance, Austrogammarus

australis ,insoutheasternAustralia. BiodiversityConservation ,13 ,781793.

WardS.,CloseR.(2004)SouthernSydney’surbankoalas:Communityresearchand

educationatCampbelltown.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.

Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.4454.

WardellJohnson G., Williams M. (1996) A floristic survey of the Tingle Mosaic, south

western Australia: Applications in land use planning and management. Journal of the

RoyalSocietyofWesternAustralia ,79 ,249276.

244

WarneR.M.,JonesD.N.(2003)EvidenceoftargetspecificityinattacksbyAustralian

magpiesonhumans. WildlifeResearch , 30 ,265267.

WatsonJ.E.M.,WhittakerR.J.,FreudenbergerD.(2005)Birdcommunityresponsestohabitat

fragmentation:Howconsistentaretheyacrosslandscapes? JournalofBiogeography , 32,

13531370.

WebbJ.K.,ShineR.(2000)Pavingthewayforhabitatrestoration:Canartificialrocksrestore

degradedhabitatsofendangeredreptiles? BiologicalConservation ,92 ,9399.

WebsterA.,CookeR.,JamesonG.,WallisR.(1999)Diet,roostsandbreedingofpowerful

owls Ninoxstrenua inadisturbed,urbanenvironment:Acaseofcannibalism?Oracaseof

infanticide? Emu , 99 ,8083.

WestphalM.I.,FieldS.A.,TyreA.J.,PatonD.,PossinghamH.P.(2003)Effectsoflandscape

patternonbirdspeciesdistributionintheMt.LoftyRanges,SouthAustralia. Landscape

Ecology , 18 ,413426.

WhiteA.W.,BurginS.(2004)Currentstatusandfutureprospectsofreptilesandfrogsin

Sydney’surbanimpactedbushlandreserves.In: UrbanWildlife:MoreThanMeetsthe

Eye (Eds.D.Lunney,S.Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,

pp.109123.

WhiteJ.G.,AntosM.J.,FitzsimonsJ.A.,PalmerG.C.(2005)Nonuniformbirdassemblages

inurbanenvironments:Theinfluenceofstreetscapesvegetation. LandscapeandUrban

Planning , 71 ,123135.

WhiteD.,PrestonE.M.,FreemarkK.E.,KiesterA.R.(1999)Ahierarchicalframeworkfor

conservingbiodiversity.In LandscapeEcologicalAnalysis:IssuesandApplications (Eds.

J.M.Klopatek,R.H.Gardener),SpringerVerlag.NewYork,pp.127153.

245

WiensJ.A.(1994)Habitatfragmentation:Islandvlandscapeperspectivesonbird

conservation. Ibis ,137, 97104.

WikramanayakeE.D.,DrydenG.L.(1993)Thermalecologyofhabitatandmicrohabitatuse

bysympatric Varanusbengalensis and V.salvator inSriLanka. Copeia , 3,709714.

WilcoveD.S.,RothsteinD.,DubowJ.,PhillipsA.,LasosE.(1998)Quantifyingthreatsto

imperilledspeciesintheUnitedStates. BioScience ,48 ,607615.

WilsonS.(Ed.)(2005) AFieldGuidetoReptilesofQueensland .NewHollandPublishersPty.

Ltd.,Sydney.

WilsonS.,SwanG.(2003) ACompleteGuidetoReptilesofAustralia .ReedNewHolland,

Sydney.

WilsonB.A.,BourneA.R.,JessopR.E.(1986)Ecologyofsmallmammalsincoastal

heathlandatAnglesea,Victoria. AustralianWildlifeResearch , 13 ,397406.

WithK.A.,KingA.W.(2001)Analysisoflandscapesourcesandsinks:Theeffectofspatial

patternonaviandemography. BiologicalConservation , 100 ,7588.

WithK.A.,SchrottG.R.,KingA.W.(2006)Theimplicationsofmetalandscapeconnectivity

forpopulationviabilityinmigratorysongbirds. LandscapeEcology , 21 ,157167.

WoinarskiJ.C.Z.,FischerA.(2003)Conservationandthemaintenanceofbiodiversityinthe

rangelands. TheRangelandJournal , 25 ,157171.

WoinarskiJ.C.Z.,HornerP.,FisherA.,BrennanK.,LindnerD.,GamboldN.,ChattoR.,

MorrisI.(1999a)DistributionalpatterningofterrestrialherpetofaunaontheWesseland

EnglishCompanyIslandgroups,northeasternArnhemLand,NorthernTerritory,Australia.

AustralianJournalofEcology , 24 ,6079.

246

WoinarskiJ.C.Z.,PalmerC.,FisherA.,SouthgateR.,MastersP.,BrennanK.(1999b)

DistributionalpatterningofmammalsontheWesselandEnglishCompanyislands,

ArnhemLand,NorthernTerritory,Australia. AustralianJournalofEcology , 47 ,87111.

WoinarskiJ.C.Z.,FisherA.,BrennanK.,MorrisI.,ChattoR.(2001)Patternsofbird

speciesrichnessandcompositiononislandsoffArnhemLand,NorthernTerritory,

Australia. AustralEcology , 26 ,113.

WoodK.A.(1993)TheavianpopulationofanurbanbushlandreserveatWollongong,New

SouthWales:Implicationsformanagement. LandscapeandUrbanPlanning , 23 ,8195.

WoodB.C.,PullinA.S.(2002)Persistenceofspeciesinafragmentedurbanlandscape:The

importanceofdispersalabilityandhabitatavailabilityforgrasslandbutterflies.

BiodiversityandConservation , 11 ,14511468.

WoodP.,RecherH.F.(2004)LongtermpersistenceoftheAustralianmagpie, Gymnorhina

tibicen ,inKing’sPark,Perth. Emu , 104 ,251259.

WoolleyP.A.(1989)NestlocationbyspoolandlinetrackingofdasyuridmarsupialsinNew

Guinea. JournalofZoology , 218 ,689700.

WuJ.,HobbsR.(2002)Keyissuesandresearchprioritiesinlandscapeecology:An

idiosyncraticsynthesis.LandscapeEcology , 17 ,355365.

YeomanF.,MacNallyR.(2005)Theavifaunasofsomefragmented,periurban,coastal

woodlandsinsoutheasternAustralia. LandscapeandUrbanPlanning , 71 ,263275.

YermanM.N.,RossP.M.(2004)Landscapeissuesforthemacrofaunaintemperateurban

mangroveforests.In: UrbanWildlife:MoreThanMeetstheEye (Eds.D.Lunney,S.

Burgin),RoyalZoologicalSocietyofNewSouthWales,NSW,pp.205210.

247

YoungP.A.R.,DillewaardH.A.(1999)SoutheastQueensland.In: TheConservationStatusof

Queensland’sBioregionalEcosystems (Eds.P.S.Sattler,R.D.Williams),Environmental

ProtectionAgency,Brisbane,pp.12/112/48.

248