Shellfish Reef Habitats-STANDARD-Revised 10 May 2016.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Shellfish Reef Habitats-STANDARD-Revised 10 May 2016.Pdf Shellfish Reef HabitatsA synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries Australia EXECUTIVE SUMMARY This report should be cited as: Gillies CL, Creighton C and McLeod IM (eds) (2015) Shellfish reef habitats: a synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries. Report to the National Environmental Science Programme, Marine Biodiversity Hub. Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Townsville, 68 pp. For further information, contact: IAN MCLEOD Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University [email protected] TROPWATER ATSIP Building 145 James Cook University Townsville, QLD 4811 This publication has been compiled by the Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University. Copyright This report is licensed by the University of Tasmania for use under a Creative Commons Attribution 4.0 Australia Licence. For licence conditions, see https://creativecommons.org/licenses/by/4.0/. Enquiries about reproduction, including downloading or printing the web version, should be directed to [email protected]. Acknowledgments This work was undertaken for the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Programme (NESP). NESP Marine Biodiversity Hub partners include the University of Tasmania, CSIRO, Geoscience Australia, Australian Institute of Marine Science, Museum Victoria, Charles Darwin University, the University of Western Australia, Integrated Marine Observing System, NSW Ofce of Environment and Heritage, NSW Department of Primary Industries. The Authors would like to thank the Marine Biodiversity Hub Directors: Nic Bax and Paul Hedge for providing valuable project support and for facilitating this project. Simon Branigan, James Fitzsimons and Boze Hancock from The Nature Conservancy provided valuable contributions and expert input into earlier drafts of this report. We thank members of the Australian Shellfish Reef Restoration Network for contributing to early discussions and providing the initial impetus for this work. Important Disclaimer The NESP Marine Biodiversity Hub advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, the NESP Marine Biodiversity Hub (including its host organisation, employees, partners and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Front cover: (Plate 1) Mixed flat oyster and mussel reef, George’s Bay Tasmania. C Gillies 2 Shellfish Reef Habitats – TropWATER Report No 15/60 2015 3 EXECUTIVE SUMMARY Shellfish reef habitats: a synopsis to underpin the repair and conservation of Australia’s environmentally, socially and economically important bays and estuaries A Report for the National Environmental Science Programme: Marine Biodiversity Hub TropWATER Report No. 15/60 30th of October 2015 Editors: CHRIS GILLIES IAN MCLEOD The Nature Conservancy, Carlton, Victoria Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Queensland COLIN CREIGHTON Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Queensland Contributing authors: HEIDI ALLEWAY EMMA LEBRAULT Primary Industries and Regions South Australia, Adelaide, Fisheries NSW, NSW Department of Primary Industries, South Australia Port Stephens, Australia PETER COOK AGNÈS LE PORT Centre of Excellence in Natural Resource Management, Centre for Tropical Water and Aquatic Ecosystem Research, University of Western Australia, Albany, Australia James Cook University, Townsville, Queensland CHRISTINE CRAWFORD IAN MCLEOD Institute of Marine and Antarctic Studies, University of Centre for Tropical Water and Aquatic Ecosystem Research, Tasmania, Hobart, Tasmania James Cook University, Townsville, Queensland COLIN CREIGHTON KYLIE RUSSELL Centre for Tropical Water and Aquatic Ecosystem Research, Fisheries NSW, NSW Department of Primary Industries, James Cook University, Townsville, Queensland Port Stephens, NSW BEN DIGGLES MARCUS SHEAVES Digsfish Services, Banksia Beach, Queensland Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Queensland JOHN FORD Biosciences, The University of Melbourne, Parkville, BRYN WARNOCK Victoria Centre of Excellence in Natural Resource Management, University of Western Australia, Albany, Western Australia CHRIS GILLIES The Nature Conservancy, Carlton, Victoria PAUL HAMER Fisheries Victoria, Department of Economic Development, Jobs, Transport and Resources, Queensclif, Victoria 2 Shellfish Reef Habitats – TropWATER Report No 15/60 2015 3 EXECUTIVE SUMMARY Plate 2. Mixed flat oyster and mussel reef. George’s Bay, Tasmania. C. Gillies 4 Shellfish Reef Habitats – TropWATER Report No 15/60 2015 5 EXECUTIVE SUMMARY Table of contents EXECUTIVE SUMMARY ................................................................................................................................................................6 TABLE 1. SUMMARY OF HISTORIC SHELLFISH REEF FISHERIES AND CAUSES OF DECLINE .............................................8 1 INTRODUCTION ................................................................................................................................................................10 2 SHELLFISH REEFS: THEIR ROLE IN ENSURING A HEALTHY AND PRODUCTIVE COASTAL AUSTRALIA ............12 2.1 TYPES OF SHELLFISH REEFS ......................................................................................................................................... 12 2.2 SHELLFISH REEF DEFINITION ....................................................................................................................................... 12 2.3 AUSTRALIAN SHELLFISH REEF-FORMING SPECIES ............................................................................................... 12 2.4 THE ECOLOGICAL, SOCIAL AND ECONOMIC VALUE OF SHELLFISH REEFS ................................................... 18 3 SHELLFISH REEFS OF THE GREAT BARRIER REEF REGION ..........................................................................................22 4 SHELLFISH REEFS OF SOUTH EAST QUEENSLAND .....................................................................................................28 5 SHELLFISH REEFS OF NEW SOUTH WALES ...................................................................................................................32 6 SHELLFISH REEFS OF VICTORIA ......................................................................................................................................38 7 SHELLFISH REEFS OF TASMANIA ...................................................................................................................................42 8 SHELLFISH REEFS OF SOUTH AUSTRALIA ....................................................................................................................46 9 SHELLFISH REEFS OF WESTERN AUSTRALIA ...............................................................................................................50 10 REPAIRING AUSTRALIA’S SHELLFISH REEFS .................................................................................................................54 10.1 OBJECTIVES OF SHELLFISH REEF RESTORATION ................................................................................................... 54 10.2 LIKELIHOOD OF RECOVERY AND RISKS ASSOCIATED WITH RESTORATION ............................................... 54 10.3 BENEFICIARIES OF SHELLFISH REEF RESTORATION .............................................................................................. 55 10.4 AUSTRALIAN REEF RESTORATION EFFORTS........................................................................................................... 57 10.5 BUILDING ON INTERNATIONAL EXPERIENCE ........................................................................................................ 58 10.6 RESTORATION METHODS ............................................................................................................................................ 58 10.7 COMMUNITY ENGAGEMENT ..................................................................................................................................... 58 11 RECOMMENDED KEY ACTIONS TO SUPPORT SHELLFISH REEF RESTORATION ...................................................60 11.1 PRIORITY AREAS FOR INVESTMENT ......................................................................................................................... 60 11.2 VALUE OF PARTNERSHIPS - INDUSTRY, COMMUNITY AND INDIGENOUS ................................................... 60 11.3 OPPORTUNITIES FOR INNOVATION AND INTEGRATED ENVIRONMENTAL SOLUTIONS ........................
Recommended publications
  • Louisiana Oyster Landings, 2000-2014
    Updated November 23, 2016 LouisianaFishery OysterManagement Plan Louisiana Department of Wildlife and Fisheries Office of Fisheries Authors: Patrick Banks, Steve Beck, Katie Chapiesky, and Jack Isaacs Editor/Point of Contact: Katie Chapiesky, kchapiesky@ wlf.la.gov 1 Table of Contents LIST OF TABLES AND FIGURES 5 EXECUTIVE SUMMARY 7 INTRODUCTION 8 Definition of Management Unit 8 Management Authority and Process 8 Management Goals and Objectives 8 DESCRIPTION OF THE STOCK 9 Biological Profile 9 Physical Description 9 Distribution 9 Habitat 10 Reproduction 10 Age and Growth 10 Predator-Prey Relationships 10 Stock Status and Assessment Methods 11 Stock Unit Definition 11 Current Stock Assessment 11 Reference Points 12 Harvest Control Rules 12 Oyster Monitoring and Assessment Methods 13 Stock Resilience 15 DESCRIPTION OF THE FISHERY 17 Data Collection and Analyses 17 Commercial Fishery 18 Volume and Value of Landings 18 Landings by Season 20 Landings by Gear Type 20 Landings by Vessel Length 23 Landings by Area 24 Seed Harvest 25 Commercial Oystermen 27 2 Fishing Effort 27 Seafood Dealers 30 Fresh Products Licenseholders 31 Oyster Processors 31 Oyster Imports 33 Recreational Fishery 36 Economic Conditions 37 Interactions with Other Fisheries or User Groups 37 ECOSYSTEM CONSIDERATIONS AND ENVIRONMENTAL FACTORS 38 Ecosystem Considerations 38 Habitat 38 Bycatch and Discards 40 Lost or Abandoned Fishing Gear 40 Environmental Factors 41 Hydrological Conditions 41 Invasive Species 41 Predation 41 Competition from Other Species 42 Diseases and Parasites
    [Show full text]
  • National Review of Ostrea Angasi Aquaculture: Historical Culture, Current Methods and Future Priorities
    National review of Ostrea angasi aquaculture: historical culture, current methods and future priorities Christine Crawford Institute of Marine and Antarctic Studies ! [email protected] " secure.utas.edu.au/profles/staff/imas/Christine-Crawford Executive summary Currently in Australia Ostrea angasi oysters (angasi) are being cultured on a small scale, with several farmers growing relatively small numbers of angasis on their predominately Sydney rock or Pacifc oyster farms. Very few farmers are culturing commercially viable quantities of angasi oysters. There are several reasons for this. Although angasi oysters occur in the intertidal zone, they are naturally most abundant in the subtidal and are less tolerant of fuctuating environmental conditions, especially temperature and salinity, than other oyster species. They also have a much shorter shelf life and start to gape after one to two days. Additionally, angasi oysters are susceptible to Bonamiosis, a parasitic disease which has caused major mortalities in several areas. Stress caused by extremes or a combination of factors such as high stocking densities, rough handling, poor food, high temperatures and low salinities have all been observed to increase the prevalence of Bonamiosis. Growth rates of angasi oysters have also been variable, ranging from two to four years to reach market size. From discussions with oyster famers, managers and researchers and from a review of the literature I suggest that the survival and growth of cultured angasi oysters could be signifcantly improved by altering some farm management practices. Firstly, growout techniques need to be specifcally developed for angasi oysters which maintain a low stress environment (not modifcations from other oysters).
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Shellfish Reefs at Risk
    SHELLFISH REEFS AT RISK A Global Analysis of Problems and Solutions Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, Matthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang CONTENTS Acknowledgments ........................................................................................................................ 1 Executive Summary .................................................................................................................... 2 Introduction .................................................................................................................................. 6 Methods .................................................................................................................................... 10 Results ........................................................................................................................................ 14 Condition of Oyster Reefs Globally Across Bays and Ecoregions ............ 14 Regional Summaries of the Condition of Shellfish Reefs ............................ 15 Overview of Threats and Causes of Decline ................................................................ 28 Recommendations for Conservation, Restoration and Management ................ 30 Conclusions ............................................................................................................................ 36 References .............................................................................................................................
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi Alvar Carranza, Loren D
    Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, M atthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang Results. Condition of Oyster Reefs Globally Across Bays and Ecoregions. Regional Summaries of the Condition of Shellfish Reefs Overview of Threats and Causes of Decline. Recommendations for Conservation, Restoration and Management Conclusions References Appendix 1 Michael W. Beck“, Robert D. Brumbaughb, Laura AiroldL, Alvar Carranzad, Loren D. Coen*, Christine Crawfordi Omar Defeod, Graham J. Edgarf, Boze Hancock®, Matthew Kayh, Hunter Lenihan11, Mark W. Luckenbach', Caitlyn L. Toropova“, Guofan Zhang “ The Nature Conservancy, Institute of Marine Sciences, University of California, Santa Cruz, CA, 95060 b b The Nature Conservancy; PO Box 420237, Summerland Key, FL 33042 * Dipartimento di Biología Evoluziomstica Sperimentale, Université di Bologna, Via S. Alberto 163,1-48100 Ravenna, Italy d d Marine Science Unit, Ecology Department, Faculty of Sciences, Montevideo, Uruguay * Sanibel-Captiva Conservation Foundation, 9 0 0 A Tarpon Bay Road, Sanibel, FL 33957 f Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Hobart, Tasmania, Australia ® The Nature Conservancy; University of Rhode Island, Narragansett, Rl 028882 h Bren School, University of California, Santa Barbara, CA 93106-5131 ' Virginia Institute of Marine Science, College of William and Mary, Wachapreague, VA 23480 i Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China Cover photo: Oyster reets at Virginia Coastal Reserve. © Barry T ru itt/T N C © Barry T ru itt/T N C Many colleagues contributed to this assessment by The authors in particular thank Christine Shepard, Zach providing access to data sets ranging from local to global Ferdaña, Jeff Vincent, Antonella Fatone, Ximing Guo, and scales, helping to find important and often obscure Bill Arnold for help with the data, figures and maps.
    [Show full text]
  • Phylogeographic Study of the Dwarf Oyster, Ostreola Stentina
    Marine Biology Archimer, archive institutionnelle de l’Ifremer Volume 150, Number 1, October 2006 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s00227-006-0333-1 ©2006 Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris Sylvie Lapègue1, Inès Ben Salah2, Frederico M. Batista3, 4, Serge Heurtebise1, Lassad Neifar2 and Pierre Boudry1 (1) Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France blisher-authenticated version is av (2) Faculté des Sciences de Sfax, Laboratoire d’écobiologie Animale, BP 802, 3038 Sfax, Tunisia (3) Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSul, Av. 5 de Outubro, 8700-305 Olhao, Portugal (4) Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal Corresponding author : [email protected] Abstract: Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I).
    [Show full text]
  • Australian Flat Oyster (Ostrea Angasi) with Bonamia Parasites
    NAAHTWG Slide of the Quarter (January – March 2006) - Australian flat oyster (Ostrea angasi) with Bonamia parasites Cases submitted by Stephen Pyecroft and Judith Handlinger The Fish Health Unit, Mt Pleasant Laboratories, DPIWE, Tasmania Case 1 - 03/0658- 45: Cross section of an Australian flat oyster, Ostrea angasi. Case History The oyster from natural beds at St Helens, was collected during April for routine monitoring. This was part of a series of examinations, at approximately two-year intervals, of a population diagnosed with Bonamia infection approximately one decade previously. Over this period, the beds appeared to remain in good overall health, although some evidence of mortality was seen on several occasions and the extent of the beds was not fully assessed. This oyster was typical of three of 72 oysters examined, the others showing minimal pathology. Histopathology The overall condition is good, with plump Liedig cells indicating abundant glycogen stores, and a high columnar epithelium of most digestive gland tubules, indicating adequate recent feeding. Extensive multi-focal epithelial and sub-epithelial haemocyte infiltrates are present on the palps, main gut (especially stomach) and occasionally digestive gland tubules. Both granulocytes and more hyaline cells are present in the subepithelial reactions, though granulocytes are rarely discernible within the epithelia. In general, no pathogens can be seen in association with these lesions. Epithelial erosion is present in the stomach lesion (plus artefactual loss in some sections). Haemocytes and sloughed epithelial cells are present in the lumen of tubule with focal lesions, as well as in the surrounding interstitium, with necrotic tissue around some affected tubules.
    [Show full text]
  • Aquaculture in Western Australia
    Fact Sheet: Aquaculture in Western Australia Region North Coast, Gascoyne Coast, West Coast, South Coast Summary Despite Western Australia’s long coastline, our aquaculture industry is small by global standards – but it is growing and diversifying, with exciting opportunities on the horizon. Aside from contributing to food security, aquaculture creates employment and business opportunities in areas such as feed and equipment manufacturing. It also has direct and indirect economic benefits to the state, particularly in regional areas. In 2017-18, the total value of WA’s commercial fisheries and aquaculture production was $633 million. Of this, pearling (which is mostly commercially farmed) contributed $52 million (8%) and aquaculture $27 million (4%). Location of main aquaculture species farmed in Western Australia. Generated on 28/09/2021 https://marinewaters.fish.wa.gov.au/resource/fact-sheet-aquaculture-in-western-australia/ Page 1 of 8 Production for the Western Australian aquaculture industry in 2016/17 Current production – main aquaculture species in WA Barramundi Lates cacarifer Popular native table fish with high market demand which is sold as whole fish, live fish and fillets. WA’s barramundi production is largely located in the Kimberley region, at Cone Bay. Barramundi can be farmed in indoor recirculating systems, land-based ponds and sea cages. For more detailed information about barramundi aquaculture in Australia, see: https://www.agrifutures.com.au/farm-diversity/barramundi-aquaculture/ Barramundi farm in Cone Bay Rainbow trout Oncorhynchus mykiss Good eating fish that is popular with freshwater anglers. Trout was introduced to Australia for recreational fishing and aquaculture. It is difficult for the species to spawn naturally in WA’s conditions, so they are artificially bred in earthen and concrete ponds at the Pemberton Freshwater Research Centre.
    [Show full text]
  • Ž Culture Potential of the Pearl Oyster Pinctada / Imbricata from The
    Aquaculture 189Ž. 2000 375±388 www.elsevier.nlrlocateraqua-online Culture potential of the pearl oyster žPinctada imbricata/ from the Caribbean. II. Spat collection, and growth and mortality in culture systems H.-JorgÈ Urban) Facultad de Ciencias, Departamento de Biologõa, Seccion de Biologõa  Marina, UniÕersidad del Valle, A.A. 25360, Cali, Colombia Received 26 August 1999; received in revised form 23 February 2000; accepted 4 April 2000 Abstract Temporal variation in abundance of larvae and spat of the pearl oyster Pinctada imbricata was studied at several locations on the Colombian coast from May 1997 to June 1998. Larvae were sampled with bongo nets and spat were harvested from collectors at monthly intervals. Abun- dances of predators Ž.Cymatium gastropods, and portunid, xanthid and majiid crabs were also recorded. A relationship between salinity, particulate organic matter and larvae abundance was observed, leading to peaks in abundance of spat on collectors some weeks later. Average catch rates of 10 spat collectory1 monthy1, using collectors made of cheap easily accessible materials, indicate that availability of P. imbricata is sufficient to initiate and support aquaculture of this species. Growth and mortality rates of juveniles in three different culture systems at two densities Ž.20% and 30%, i.e. percentage of available area covered by juveniles showed that density within the same culture system had no effect on growth, but that growth differed significantly among the three culture systems. Growth in ``bag'' systems was lower than in boxes whereas growth in ``suspended'' and ``bottom'' boxes was similar and comparable to the growth of a natural population.
    [Show full text]
  • NATURE TERRITORY April 2019 Newsletter of the Northern Territory Field Naturalists' Club Inc
    NATURE TERRITORY April 2019 Newsletter of the Northern Territory Field Naturalists' Club Inc. In This Issue April Meeting p. 2 April Field Trip p. 3 Upcoming Activities p. 3 Death Adders pp. 4-5 Publications p. 5 Podcasts pp. 6-7 Chitter Chatter pp. 8-9 Club notices p. 10 Club web-site: http://ntfieldnaturalists.org.au/ Black-ringed Mangrove Snake (Hydrelaps darwiniensis) swimming around mangroves in Darwin Harbour. Photo: Nick Volpe FOR THE DIARY April Meeting: Wednesday 10 - Oysters going troppo ? research behind the recent success presented by Samantha Nowlands April Field Trip: Sunday 14 - Butterflies at East Point with Tissa Ratnayeke See pages 2 - 3 for m ore det ails Disclaimer: The views expressed in Nature Territory are not necessarily those of the NT Field Naturalists' Club Inc. or members of its Committee. April Meeting Oysters going troppo ? research behind the recent success presented by Samantha Nowland Wednesday 10, 7.45 pm, CDU Casuarina, Room BLUE 2.2.24 Sum m ary: Darwin Aquaculture Centre's (DAC) Black-lip Oyster hatchery research program and work with Aboriginal communities in South Goulburn Island has received a lot of media coverage in recent years, and it isn't stopping any time soon. DAC's collaboration with Traditional Owners in the Warruwi community on South Goulburn Island was showcased nationally this weekend on ABC's Landline program (https://www.abc.net.au/news/2019-03-30/native-oysters:-the-beginning-of-a-new-industry-in/10956306). The DAC team has worked extremely hard to get this program to where it is today.
    [Show full text]
  • Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119
    Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119 Literature Review Editors: Jennifer Cobcroft and Dean Jerry Acknowledgments This research is funded by the CRC for Developing Northern Australia (CRCNA) is supported by the Cooperative Research Centres Program, an Australian Government initiative. The CRCNA also acknowledges the support of its investment partners: the Western Australian, Northern Territory and Queensland Governments. Disclaimer Any opinions expressed in this document are those of the authors. They do not purport to reflect the opinions or views of the CRCNA or its partners, agents or employees. The CRCNA gives no warranty or assurance and makes no representation as to the accuracy or reliability of any information or advice contained in this document, or that it is suitable for any intended use. The CRCNA, its partners, agents and employees, disclaim any and all liability for any errors or omissions or in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document. Peer Review Statement The CRCNA recognises the value of knowledge exchange and the importance of objective peer review. It is committed to encouraging and supporting its research teams in this regard. The author(s) confirm(s) that this document has been reviewed and approved by the project’s steering committee and by its program leader. These reviewers evaluated its: • originality • methodology • rigour • compliance with ethical guidelines • conclusions against results • conformity with the principles of the Australian Code for the Responsible Conduct of Research (NHMRC 2018), and provided constructive feedback which was considered and addressed by the author(s).
    [Show full text]