Ostrea Angasi) Farming Industry in New South Wales

Total Page:16

File Type:pdf, Size:1020Kb

Ostrea Angasi) Farming Industry in New South Wales Paving the way for continued rapid development of the flat (angasi) oyster (Ostrea angasi) farming industry in New South Wales Mike Heasman1, Ben K. Diggles2, David Hurwood3, Peter Mather3, Igor Pirozzi1 and Symon Dworjanyn1 1NSW Fisheries Port Stephens Fisheries Centre Private Bag 1 Nelson Bay NSW 2315 2NIWA Australia Pty Ltd PO Box 359 Wilston Qld 4051 3School of Natural Resource Sciences Queensland University of Technology GPO Box 2434 Brisbane Qld 4001 Final Report to the Department of Transport & Regional Services Project No. NT002/0195 June 2004 NSW Fisheries Final Report Series No. 66 ISSN 1440-3544 Paving the way for continued rapid development of the flat (angasi) oyster (Ostrea angasi) farming industry in New South Wales Mike Heasman1, Ben K. Diggles2, David Hurwood3, Peter Mather3, Igor Pirozzi1 and Symon Dworjanyn1 1NSW Fisheries Port Stephens Fisheries Centre Private Bag 1 Nelson Bay NSW 2315 2NIWA Australia Pty Ltd PO Box 359 Wilston Qld 4051 3School of Natural Resource Sciences Queensland University of Technology GPO Box 2434 Brisbane Qld 4001 Final Report to the Department of Transport & Regional Services Project No. NT002/0195 June 2004 NSW Fisheries Final Report Series No.66 ISSN 1440-3544 Paving the way for continued rapid development of the flat (angasi) oyster (Ostrea angasi) farming in NSW June 2004 Authors: Michael P. Heasman, Ben K. Diggles, David Hurwood and Peter Mather, Igor Pirozzi and Symon Dworjanyn Published By: NSW Fisheries Postal Address: Private Bag 1, Nelson Bay NSW 2315 Internet: www.fisheries.nsw.gov.au NSW Fisheries and the Department of Transport & Regional Services This work is copyright. Except as permitted under the Copyright Act, no part of this reproduction may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. DISCLAIMER The publishers do not warrant that the information in this report is free from errors or omissions. The publishers do not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this report for any consequences arising from its use or any reliance placed on it. The information, opinions and advice contained in this report may not relate to, or be relevant to, a reader’s particular circumstance. ISSN 1440-3544 Table of Contents i TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................................I LIST OF TABLES & FIGURES .....................................................................................................................................I LIST OF PLATES .......................................................................................................................................................... II ACKNOWLEDGMENTS .............................................................................................................................................III NON-TECHNICAL SUMMARY .................................................................................................................................IV 1. BACKGROUND AND NEED..................................................................................................................... 5 2. OBJECTIVES......................................................................................................................................... 6 3. METHODS............................................................................................................................................. 7 3.1. Field survey and sampling of wild O. angasi in southern NSW............................................... 7 3.2. Disease survey of wild O. angasi in southern NSW................................................................. 9 3.3. Genetics survey of wild O. angasi.......................................................................................... 10 4. RESULTS AND DISCUSSION................................................................................................................. 11 4.1. Disease survey of wild O. angasi in southern NSW............................................................... 11 4.2. Genetics survey of wild O. angasi.......................................................................................... 16 5. KEY FINDINGS, CONCLUSIONS & RECOMMENDATIONS ................................................................... 19 5.1. Disease survey of wild O. Angasi in southern NSW .............................................................. 19 5.2. Genetics survey of wild O. angasi.......................................................................................... 19 5.3. Implications of findings for industry ...................................................................................... 20 6. REFERENCES...................................................................................................................................... 21 7. APPENDICES....................................................................................................................................... 23 7.1. Five surveyed collection sites on the south coast of NSW ..................................................... 23 7.2. Parasites and lesions observed in O. angasi from NSW......................................................... 23 7.3. Parasites and lesions observed in O. angasi from NSW......................................................... 29 LIST OF TABLES & FIGURES Table 1. Sample locations..........................................................................................................................8 Figure 1. Location map. ..............................................................................................................................9 Table 2. Prevalence of parasites and lesions from histopathological examination of 474 O. angasi from all sites in southern NSW..................................................................................................12 Table 3. Mean intensity of parasites and lesions from histopathological examination of 474 O. angasi from all sites in southern NSW. .....................................................................................13 Figure 2. A network displaying the relationship between haplotypes. Lines represent single base pair differences and the size of the circles represents the relative abundance of each haplotype in the sample ..............................................................................................................................16 Figure 3. Neighbouring joining tree showing relationship among O. angasi COI data from this study and other congenerics.. ..............................................................................................................17 Figure 4. Neighbouring joining tree showing relationship among O. angasi 16s data and other congenerics.. ..............................................................................................................................18 Heasman et al. Flat Oyster Final Report ii List of Plates LIST OF PLATES Plate 1. A focal area of haemocytosis in the gills of an oyster from Merimbula infected with Bonamia-like microcells. H&E, 100x magnification. ............................................................... 29 Plate 2. Numerous Bonamia-like microcells (arrows) within a focal area of haemocytosis in the gills of an oyster from Merimbula. H&E, 1000x magnification. .............................................. 29 Plate 3. A single Bonamia- like microcell (arrow) in the vesicular connective tissue of a lightly infected oyster from Merimbula. H&E, 1000x magnification................................................... 30 Plate 4. Gills of an oyster from Narooma with 4 Bonamia- like microcells (arrows) evident adjacent to a focal area of haemocytosis. H&E. 1000x magnification. ................................................... 30 Plate 5. Two nurse cells (arrows) in the digestive gland epithelium of an oyster from Narooma. The cells contain two and three daughter cells of an unidentified Marteilia sp. H&E 1000x magnification............................................................................................................................. 31 Plate 6. Three adjacent nurse cells (arrows) containing up to 5 Marteilia sp. daughter cells. H&E, 1000x magnification.................................................................................................................. 31 Plate 7. A sporangiosaurus-like structure in the digestive gland epithelium containing at least 5 spore-like bodies (arrows). Adjacent cells are also infected. H&E, 1000x magnification........ 32 Plate 8. Zeihl Neelsen stain of a sporangiosaurus-like structure showing the spore-like bodies to be acid fast (arrows). ZN stain, 1250x magnification. ................................................................... 32 Plate 9. Basophilic chlamydiales-like inclusions (arrows) in the digestive gland epithelium of an oyster from Pambula. The lines through the inclusions are probably due to bacteriophage infection. H&E, 200x magnification. ........................................................................................ 33 Plate 10. Focal lysis and necrosis (arrows) of the epithelium of a digestive gland tubule in an oyster from Pambula. H&E, 200x magnification................................................................................
Recommended publications
  • National Review of Ostrea Angasi Aquaculture: Historical Culture, Current Methods and Future Priorities
    National review of Ostrea angasi aquaculture: historical culture, current methods and future priorities Christine Crawford Institute of Marine and Antarctic Studies ! [email protected] " secure.utas.edu.au/profles/staff/imas/Christine-Crawford Executive summary Currently in Australia Ostrea angasi oysters (angasi) are being cultured on a small scale, with several farmers growing relatively small numbers of angasis on their predominately Sydney rock or Pacifc oyster farms. Very few farmers are culturing commercially viable quantities of angasi oysters. There are several reasons for this. Although angasi oysters occur in the intertidal zone, they are naturally most abundant in the subtidal and are less tolerant of fuctuating environmental conditions, especially temperature and salinity, than other oyster species. They also have a much shorter shelf life and start to gape after one to two days. Additionally, angasi oysters are susceptible to Bonamiosis, a parasitic disease which has caused major mortalities in several areas. Stress caused by extremes or a combination of factors such as high stocking densities, rough handling, poor food, high temperatures and low salinities have all been observed to increase the prevalence of Bonamiosis. Growth rates of angasi oysters have also been variable, ranging from two to four years to reach market size. From discussions with oyster famers, managers and researchers and from a review of the literature I suggest that the survival and growth of cultured angasi oysters could be signifcantly improved by altering some farm management practices. Firstly, growout techniques need to be specifcally developed for angasi oysters which maintain a low stress environment (not modifcations from other oysters).
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Ripiro Beach
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The modification of toheroa habitat by streams on Ripiro Beach A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Research) in Environmental Science at The University of Waikato by JANE COPE 2018 ―We leave something of ourselves behind when we leave a place, we stay there, even though we go away. And there are things in us that we can find again only by going back there‖ – Pascal Mercier, Night train to London i Abstract Habitat modification and loss are key factors driving the global extinction and displacement of species. The scale and consequences of habitat loss are relatively well understood in terrestrial environments, but in marine ecosystems, and particularly soft sediment ecosystems, this is not the case. The characteristics which determine the suitability of soft sediment habitats are often subtle, due to the apparent homogeneity of sandy environments.
    [Show full text]
  • Shellfish Reefs at Risk
    SHELLFISH REEFS AT RISK A Global Analysis of Problems and Solutions Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, Matthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang CONTENTS Acknowledgments ........................................................................................................................ 1 Executive Summary .................................................................................................................... 2 Introduction .................................................................................................................................. 6 Methods .................................................................................................................................... 10 Results ........................................................................................................................................ 14 Condition of Oyster Reefs Globally Across Bays and Ecoregions ............ 14 Regional Summaries of the Condition of Shellfish Reefs ............................ 15 Overview of Threats and Causes of Decline ................................................................ 28 Recommendations for Conservation, Restoration and Management ................ 30 Conclusions ............................................................................................................................ 36 References .............................................................................................................................
    [Show full text]
  • Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi Alvar Carranza, Loren D
    Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, M atthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang Results. Condition of Oyster Reefs Globally Across Bays and Ecoregions. Regional Summaries of the Condition of Shellfish Reefs Overview of Threats and Causes of Decline. Recommendations for Conservation, Restoration and Management Conclusions References Appendix 1 Michael W. Beck“, Robert D. Brumbaughb, Laura AiroldL, Alvar Carranzad, Loren D. Coen*, Christine Crawfordi Omar Defeod, Graham J. Edgarf, Boze Hancock®, Matthew Kayh, Hunter Lenihan11, Mark W. Luckenbach', Caitlyn L. Toropova“, Guofan Zhang “ The Nature Conservancy, Institute of Marine Sciences, University of California, Santa Cruz, CA, 95060 b b The Nature Conservancy; PO Box 420237, Summerland Key, FL 33042 * Dipartimento di Biología Evoluziomstica Sperimentale, Université di Bologna, Via S. Alberto 163,1-48100 Ravenna, Italy d d Marine Science Unit, Ecology Department, Faculty of Sciences, Montevideo, Uruguay * Sanibel-Captiva Conservation Foundation, 9 0 0 A Tarpon Bay Road, Sanibel, FL 33957 f Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Hobart, Tasmania, Australia ® The Nature Conservancy; University of Rhode Island, Narragansett, Rl 028882 h Bren School, University of California, Santa Barbara, CA 93106-5131 ' Virginia Institute of Marine Science, College of William and Mary, Wachapreague, VA 23480 i Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China Cover photo: Oyster reets at Virginia Coastal Reserve. © Barry T ru itt/T N C © Barry T ru itt/T N C Many colleagues contributed to this assessment by The authors in particular thank Christine Shepard, Zach providing access to data sets ranging from local to global Ferdaña, Jeff Vincent, Antonella Fatone, Ximing Guo, and scales, helping to find important and often obscure Bill Arnold for help with the data, figures and maps.
    [Show full text]
  • Phylogeographic Study of the Dwarf Oyster, Ostreola Stentina
    Marine Biology Archimer, archive institutionnelle de l’Ifremer Volume 150, Number 1, October 2006 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s00227-006-0333-1 ©2006 Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris Sylvie Lapègue1, Inès Ben Salah2, Frederico M. Batista3, 4, Serge Heurtebise1, Lassad Neifar2 and Pierre Boudry1 (1) Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France blisher-authenticated version is av (2) Faculté des Sciences de Sfax, Laboratoire d’écobiologie Animale, BP 802, 3038 Sfax, Tunisia (3) Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSul, Av. 5 de Outubro, 8700-305 Olhao, Portugal (4) Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal Corresponding author : [email protected] Abstract: Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I).
    [Show full text]
  • Australian Flat Oyster (Ostrea Angasi) with Bonamia Parasites
    NAAHTWG Slide of the Quarter (January – March 2006) - Australian flat oyster (Ostrea angasi) with Bonamia parasites Cases submitted by Stephen Pyecroft and Judith Handlinger The Fish Health Unit, Mt Pleasant Laboratories, DPIWE, Tasmania Case 1 - 03/0658- 45: Cross section of an Australian flat oyster, Ostrea angasi. Case History The oyster from natural beds at St Helens, was collected during April for routine monitoring. This was part of a series of examinations, at approximately two-year intervals, of a population diagnosed with Bonamia infection approximately one decade previously. Over this period, the beds appeared to remain in good overall health, although some evidence of mortality was seen on several occasions and the extent of the beds was not fully assessed. This oyster was typical of three of 72 oysters examined, the others showing minimal pathology. Histopathology The overall condition is good, with plump Liedig cells indicating abundant glycogen stores, and a high columnar epithelium of most digestive gland tubules, indicating adequate recent feeding. Extensive multi-focal epithelial and sub-epithelial haemocyte infiltrates are present on the palps, main gut (especially stomach) and occasionally digestive gland tubules. Both granulocytes and more hyaline cells are present in the subepithelial reactions, though granulocytes are rarely discernible within the epithelia. In general, no pathogens can be seen in association with these lesions. Epithelial erosion is present in the stomach lesion (plus artefactual loss in some sections). Haemocytes and sloughed epithelial cells are present in the lumen of tubule with focal lesions, as well as in the surrounding interstitium, with necrotic tissue around some affected tubules.
    [Show full text]
  • A Regional Shellfish Hatchery for the Wider Caribbean Assessing Its Feasibility and Sustainability
    FAO ISSN 2070-6103 19 FISHERIES AND AQUACULTURE PROCEEDINGS FAO FISHERIES AND AQUACULTURE PROCEEDINGS 19 19 A regional shellfish hatchery for the Wider Caribbean Assessing its feasibility and sustainability A regional shellfish hatchery for the Wider Caribbean – Assessing its feasibility and sustainability A regional FAO Regional Technical Workshop A regional shellfish hatchery for 18–21 October 2010 Kingston, Jamaica the Wider Caribbean It is widely recognized that the development of aquaculture in Assessing its feasibility and sustainability the Wider Caribbean Region is inhibited, in part, by the lack of technical expertise, infrastructure, capital investment and human resources. Furthermore, seed supply for native species FAO Regional Technical Workshop relies, for the most part, on natural collection, subject to 18–21 October 2010 natural population abundance with wide yearly variations. This Kingston, Jamaica situation has led to the current trend of culturing more readily available exotic species, but with a potentially undesirable impact on the natural environment. The centralizing of resources available in the region into a shared facility has been recommended by several expert meetings over the past 20 years. The establishment of a regional hatchery facility, supporting sustainable aquaculture through the seed production of native molluscan species was discussed at the FAO workshop “Regional shellfish hatchery: A feasibility study” held in Kingston, Jamaica, in October 2010, by representatives of Caribbean Governments and experts in the field. Molluscan species are particularly targeted due to their culture potential in terms of known techniques, simple grow-out technology and low impact on surrounding environment. It is proposed that a regional molluscan hatchery would produce seed for sale and distribution to grow-out operations in the region as well as provide technical support for the research on new species.
    [Show full text]
  • Panopea Abrupta ) Ecology and Aquaculture Production
    COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ...................................................
    [Show full text]
  • Can Early Exposure to Stress Enhance Resilience to Ocean Warming
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913715; this version posted January 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Can early exposure to stress enhance resilience to ocean warming 2 in two oyster species? 3 Roberta R. C. Pereira1, Elliot Scanes1, Mitchell Gibbs1, Maria Byrne1,2, Pauline M. Ross1,* 4 1School of Life and Environmental Science, The University of Sydney, Camperdown, NSW, Australia, 2School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia *Corresponding author: [email protected] Running page head: Early exposure to stress and resilience of oysters 5 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.913715; this version posted January 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 6 ABSTRACT 7 Securing economically and ecologically significant molluscs, as our oceans warm and acidify 8 due to climate change, is a global priority. South eastern Australia receives warm water in a 9 strengthening East Australia Current and so resident species are vulnerable to elevated 10 temperature and marine heat waves. This study tested whether oysters pre exposed to 11 elevated temperature or heat stress enhances resilience to ocean warming later in life.
    [Show full text]
  • SHARE OYSTER SHOT Hot Natural OYSTER
    18 Our fishmongers source whole, fresh, 1 local fish from the wholesale markets Atlantic Salmon Sardines Salmo salar Monday to Saturday. We shuck 2 Sardinops neopilchardus SHARE 24. Huonville, TAS 17. Fremantle, WA live oysters and fillet all of our own Bread Sashimi product on premises seven days a garlic bread (v) chef’s choice, pickled ginger, wasabi, 3 week. If you’ve got a craving for it, let or soy, seaweed salad 24 Snapper us know and we will source it! bread board, olive oil, dip 7 Pargus auratus 10. Mornington Peninsula, Salt & Pepper Calamari Port Phillip, VIC 4 wombok salad, crispy shallots, Enjoy some of the finest local Saganaki 27. Leigh, NZ blistered tomatoes, basil 16 house sauce 24 produce Australia has to offer, 17 5 knowing you can indulge in some of 15 Octopus Bass Strait Scallops the most sustainable seafood on the grilled w confit witlof, tomato essence, soy, ginger, mirin, soba noodles or 16 14 boudin noir crumble & sea herbs 24 garlic butter, kataifi 24 Boarfish 6 Barramundi planet right here with us! Paristiopterus labiosus 13 Lates calcarifer 29. New Zealand 18. Northern Australia Pacific Oysters 7 Crassostrea gigas 12 8 Richmond Oysters epitomises Tempura Prawns Mussel Pot 14. Coffin Bay, SA 11 9 soy mirin & ginger, japanese slaw 16 tomato, garlic, onion, white wine or Red Emperor 15. Ceduna, the concept of ocean to plate like Lutjanus sebae Smoky Bay, SA chilli, garlic 19. St Helens, TAS 10 Patagonian Toothfish 1. Port Douglas, QLD nowhere else. Start your journey by or Dissostichus eleginoides 20.
    [Show full text]
  • Review of the Literature on Bivalve Cytogenetics in the Last Ten Years
    Cah. Biol. Mar. (2002) 43 : 17-26 Review of the literature on bivalve cytogenetics in the last ten years Catherine THIRIOT-QUIEVREUX Observatoire Océanologique, Université P. et M. Curie – CNRS - INSU, BP 28, 06230 Villefranche-sur-Mer, France Fax: (33) 4 93 76 38 48; E-mail: [email protected] Abstract: This paper provides a review of the studies on bivalve chromosomes since 1992, in order to gather available data and to highlight the recent progress in different fields of cytogenetics: karyotype and chromosome markers, genome size, aneuploidy, natural and induced polyploidy, and hybridization. Résumé: Revue des travaux des dix dernières années sur l’étude cytogénétique des bivalves. Cet article présente une revue sur l’étude des chromosomes des bivalves depuis 1992 afin de rassembler les données disponibles et de souligner les pro- grès récents dans les différents domaines de la cytogénétique : caryotype et marqueurs chromosomiques, taille du génome, aneuploïdie, polyploïdie naturelle et induite, et hydridisation. Keywords: Bivalvia, Chromosomes, Cytogenetics Introduction review, 1985). Later, the development of banding techniques which allowed chromosome identification in Cytogenetic studies encompass different levels of biological karyotypes began to be applied in bivalves (see Thiriot- organization ranging from the morphological to the Quiévreux review, 1994). Since these reviews, the study of molecular, depending on the applicable technology. bivalve chromosomes has greatly progressed in Chromosomes can be studied as a morphological karyological as well as molecular information, as a result of manifestation of the genome in terms of their routine application of several banding techniques and the microscopically visible size, shape, number and behaviour development of techniques for in situ hybridization.
    [Show full text]