Aquaculture in Western Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ž Culture Potential of the Pearl Oyster Pinctada / Imbricata from The
Aquaculture 189Ž. 2000 375±388 www.elsevier.nlrlocateraqua-online Culture potential of the pearl oyster žPinctada imbricata/ from the Caribbean. II. Spat collection, and growth and mortality in culture systems H.-JorgÈ Urban) Facultad de Ciencias, Departamento de Biologõa, Seccion de Biologõa  Marina, UniÕersidad del Valle, A.A. 25360, Cali, Colombia Received 26 August 1999; received in revised form 23 February 2000; accepted 4 April 2000 Abstract Temporal variation in abundance of larvae and spat of the pearl oyster Pinctada imbricata was studied at several locations on the Colombian coast from May 1997 to June 1998. Larvae were sampled with bongo nets and spat were harvested from collectors at monthly intervals. Abun- dances of predators Ž.Cymatium gastropods, and portunid, xanthid and majiid crabs were also recorded. A relationship between salinity, particulate organic matter and larvae abundance was observed, leading to peaks in abundance of spat on collectors some weeks later. Average catch rates of 10 spat collectory1 monthy1, using collectors made of cheap easily accessible materials, indicate that availability of P. imbricata is sufficient to initiate and support aquaculture of this species. Growth and mortality rates of juveniles in three different culture systems at two densities Ž.20% and 30%, i.e. percentage of available area covered by juveniles showed that density within the same culture system had no effect on growth, but that growth differed significantly among the three culture systems. Growth in ``bag'' systems was lower than in boxes whereas growth in ``suspended'' and ``bottom'' boxes was similar and comparable to the growth of a natural population. -
NATURE TERRITORY April 2019 Newsletter of the Northern Territory Field Naturalists' Club Inc
NATURE TERRITORY April 2019 Newsletter of the Northern Territory Field Naturalists' Club Inc. In This Issue April Meeting p. 2 April Field Trip p. 3 Upcoming Activities p. 3 Death Adders pp. 4-5 Publications p. 5 Podcasts pp. 6-7 Chitter Chatter pp. 8-9 Club notices p. 10 Club web-site: http://ntfieldnaturalists.org.au/ Black-ringed Mangrove Snake (Hydrelaps darwiniensis) swimming around mangroves in Darwin Harbour. Photo: Nick Volpe FOR THE DIARY April Meeting: Wednesday 10 - Oysters going troppo ? research behind the recent success presented by Samantha Nowlands April Field Trip: Sunday 14 - Butterflies at East Point with Tissa Ratnayeke See pages 2 - 3 for m ore det ails Disclaimer: The views expressed in Nature Territory are not necessarily those of the NT Field Naturalists' Club Inc. or members of its Committee. April Meeting Oysters going troppo ? research behind the recent success presented by Samantha Nowland Wednesday 10, 7.45 pm, CDU Casuarina, Room BLUE 2.2.24 Sum m ary: Darwin Aquaculture Centre's (DAC) Black-lip Oyster hatchery research program and work with Aboriginal communities in South Goulburn Island has received a lot of media coverage in recent years, and it isn't stopping any time soon. DAC's collaboration with Traditional Owners in the Warruwi community on South Goulburn Island was showcased nationally this weekend on ABC's Landline program (https://www.abc.net.au/news/2019-03-30/native-oysters:-the-beginning-of-a-new-industry-in/10956306). The DAC team has worked extremely hard to get this program to where it is today. -
Aquaculture Research to Foster Investor Attraction and Establishment of Commercial Aquaculture Parks Aligned to Major Saline
Aquaculture Research to foster investor attraction and establishment of commercial Aquaculture Parks aligned to major saline groundwater interception schemes in South Australia SARDI Publication Number: F2008/001027-1 SARDI Research Report Series No: 317 Wayne Hutchinson and Tim Flowers SARDI Aquatics Sciences, PO Box 120, Henley Beach, SA 5022 December 2008 This publication may be cited as: Hutchinson, W.G. and Flowers, T. (2008) Research to foster investor attraction and establishment of commercial Aquaculture Parks aligned to major saline groundwater interception schemes in South Australia. Centre for Natural Resource Management (CNRM), Project 043713. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2008/001027- 1, SARDI Research Report Series No. 317, 378 pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Ave, West Beach, SA, 5024 Phone: 08 8207 5400 Facsimile: 08 8207 5481 Website: http://www.sardi.sa.gov.au © This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The author does not warrant that the information in this book is free from errors or omissions. The author does not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this book or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this book may not relate to, or be relevant to, a reader's particular circumstances. -
Inland Saline Aquaculture: Overcoming Biological and Technical Constraints Towards the Development of an Industry
Inland Saline Aquaculture: Overcoming Biological and Technical Constraints Towards the Development of an Industry. By Gavin J. Partridge BSc (Hons) A Thesis presented for the Award of Doctor of Philosophy to the School of Veterinary and Biomedical Sciences at Murdoch University, Western Australia Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Signed…………………………….. Acknowledgements When I started on this journey I wasn’t even married. I now have a wife and two kids; who said it wouldn’t take long! Firstly to all of my family, Joanne, Will and Caitlin, Mum and Dad, Mark, Karen and Sarah a sincere thanks for all of your support and encouragement over the last six years and beyond. Another big thanks to my supervisor Alan Lymbery and to all of my work colleagues, particularly to Greg Jenkins for his support, willingness to allow me to study part-time and encouragement to get it finished. Gavin Sarre for all of his assistance in the field and everyone else who provided technical assistance along the way including Gavin Kay, Damon Bourke and Rob Michael. Another big thanks to Ian McRobert and Bruce Ginbey, co-inventors of the Semi Intensive Floating Tank System (SIFTS) technology. I would also like to thank Challenger TAFE for providing me with financial support and the opportunity to combine full-time work and part-time study. The project was also supported by Murdoch University, the Australian Department of Fisheries, Forestry and Agriculture, the Department of Conservation and Land Management, the Western Australian Department of Education and Training’s Science and Innovation Strategy, the Australian Government’s National Aquaculture Council and the Fisheries Research and Development Corporation. -
Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119
Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119 Literature Review Editors: Jennifer Cobcroft and Dean Jerry Acknowledgments This research is funded by the CRC for Developing Northern Australia (CRCNA) is supported by the Cooperative Research Centres Program, an Australian Government initiative. The CRCNA also acknowledges the support of its investment partners: the Western Australian, Northern Territory and Queensland Governments. Disclaimer Any opinions expressed in this document are those of the authors. They do not purport to reflect the opinions or views of the CRCNA or its partners, agents or employees. The CRCNA gives no warranty or assurance and makes no representation as to the accuracy or reliability of any information or advice contained in this document, or that it is suitable for any intended use. The CRCNA, its partners, agents and employees, disclaim any and all liability for any errors or omissions or in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document. Peer Review Statement The CRCNA recognises the value of knowledge exchange and the importance of objective peer review. It is committed to encouraging and supporting its research teams in this regard. The author(s) confirm(s) that this document has been reviewed and approved by the project’s steering committee and by its program leader. These reviewers evaluated its: • originality • methodology • rigour • compliance with ethical guidelines • conclusions against results • conformity with the principles of the Australian Code for the Responsible Conduct of Research (NHMRC 2018), and provided constructive feedback which was considered and addressed by the author(s). -
Appendix L . Toxicity Assessment of Barossa
Appendix L . Toxicity Assessment of Barossa Condensate (Jacobs 2017) un-weathered Barossa Environmental Studies ConocoPhillips Toxicity Assessment of Barossa-3 Condensate IW021200-NMS-RP-0028 | Rev 1 30 May 2017 Toxicity Assessment of Barossa- 3 Condensate ConocoPhillips Toxicity Assessment of Barossa-3 Condensate Barossa Environmental Studies Project no: IW021200 Document title: Toxicity Assessment of Barossa-3 Condensate Document No.: IW021200-NMS-RP-0028 Revision: Rev 1 Date: 30 May 2017 Client name: ConocoPhillips Project manager: Chris Teasdale Author: Celeste Wilson File name: T:\Transfer\May2017\WVES\TMiley\Barossa Toxicity Report _ Rev 1.docx Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 11th Floor, Durack Centre 263 Adelaide Terrace PO Box H615 Perth WA 6001 Australia T +61 8 9469 4400 F +61 8 9469 4488 www.jacobs.com © Copyright 2017 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright. Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs’ Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party. Document history and status Revision Date Description By Review Approved A 14/12/2015 Technical Review C Wilson M Huber C Teasdale 0 4/01/2016 Final report C Wilson C Teasdale C Teasdale 1 30/05/2017 Update report for inclusion in technical appendices of the C Wilson T Miley T Miley Barossa OPP IW021200-NMS-RP-0028 i Toxicity Assessment of Barossa-3 Condensate Contents Abbreviations and Glossary ................................................................................................................................ -
Feasibility of Shellfish Reef Restoration in a South-Western Australian Estuary
Feasibility of shellfish reef restoration in a south-western Australian estuary This thesis is presented for the degree of Bachelor of Science Honours, College of Science, Health, Engineering and Education, of Murdoch University, 2019 Lauren Peck (BSc) Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Lauren Peck Abstract With 85% of oyster reefs lost around the world within the last 130 years, these reefs are now one of the most threatened marine habitats in the world and in Australia less than 10% of naturally occurring oyster reefs remain. Shellfish reefs provide a range of services that promote healthy ecosystems, including water filtration, fish production and shoreline erosion. In estuaries, these services are extremely important as human activities are increasing degrading these environments. Thus, shellfish reefs can aid in restoring ecosystem functioning of an estuary while providing additional ecosystem services. The aim of this study was to determine the feasibility of a number of shellfish reef options for the Peel-Harvey Estuary in south-western Australia. This first involved exploring the historical and current distributions of shellfish to elucidate whether shellfish reefs existed in the Peel-Harvey Estuary and to identify a suite of candidate species. A bioclimatic modelling approach was then used to elucidate the suitability of five native Australian oyster species to the environmental conditions that occur in the Peel-Harvey Estuary, the largest estuary in south-western Australia. Laboratory tank trials were then used to validate the results of that model, in which the two most suitable species, i.e. -
Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004
Molluscan Fisheries and Aquaculture World Congress of Malacology Perth 2004 Dr F. Wells Dr L. Joll Dr G. Maguire Project No. 2003/300 ISBN 1 920843 30 2 Copyright Fisheries Research and Development Corporation and Western Australian Museum 2006. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. 2 TABLE OF CONTENTS Page No. NONTECHNICAL SUMMARY ................................................................................... 4 ACKNOWLEDGEMENTS ......................................................................................... 5 BACKGROUND ........................................................................................................ 5 NEED ........................................................................................................ 5 OBJECTIVES ........................................................................................................ 5 METHODS ....................................................................................................... -
Seafood Industry Report
EverBlu Capital | Research 9 February 2018 Russell Wright | T:+61 2 8249 0008 | E:[email protected] Seafood Industry Report Australian seafood is set to grow due to This report analyses the seafood industry in Australia and Asian premium quality and growing domestic markets. and global demand Companies’ Data Background on Seafood Industry 12-month Company Ticker Market Cap (M) change (%) 1. Australia’s seafood industry is still regarded to be in its infancy stage Angel Seafood Holdings Ltd. AS1 28.6 N/A with production predominately made up of privately-owned, family- Clean Seas Seafood Ltd. CSS 100.0 71.4 run farms. The 2.4% global growth in demand for seafood is likely to Huon Aquaculture Group Ltd. HUO 413.1 6.3 continue driven by population growth of 8.5 billion by 2030, and by Murray Cod Australia Ltd. MCA 24.3 14.8 the rising spending power of the global middle class, which is New Zealand King Salmon Co. Ltd. NZK 281.1 56.2 forecast to increase from 1.8 billion in 2009 to 4.9 billion by 2030. Ocean Grown Abalone Ltd. OGA 39.4 -5.0 Wild catch is at risk of declining due to overfishing and aquaculture Seafarms Group Ltd. SFG 91.4 -31.6 will have to make up the gap in demand and supply. Tassal Group Ltd. TGR 613.4 -19.52. Source: FactSet 3. Australia has a global reputation for sustained high quality product, which allows for producers to sell at a premium in international Ticker Company Target Sectors markets. -
Final Report
FRDC Project 2006/064 FINAL REPORT Aquatic Animal Health Subprogram: Development of diagnostic tests to assess the impact of haplosporidian infections in pearl oysters. D. Bearham, S.R Raidal, John Creeper, Frances Stephens, Brian Jones, Brett McCallum, P.K. Nicholls. November 2009 FRDC Project 2006/064 1 FRDC Project 2006/064 Authors: D. Bearham, P.K. Nicholls, S.R Raidal, John Creeper, Frances Stephens, Brian Jones, Brett McCallum. Title: Aquatic Animal Health Subprogram: Development of diagnostic tests to assess the impact of haplosporidian infections in pearl oysters ISBN: 978-0-86905-989-0 © Copyright, Fisheries Research and Development Corporation, Murdoch University, The Western Australian Department of Fisheries, Pearl Producers Association and Douglas Bearham, 2009. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a federal statutory authority jointly funded by the Australian Government and the fishing industry. The authors do not warrant that the information in this book is free from errors or omissions. The authors do not accept any form of liability, be it contractural, tortious or otherwise, for the contents of this book or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this book may not relate to, or be relevant to, reader’s particular circumstances. -
Aquaculture in Australia
AQUACULTURE IN AUSTRALIA Aquaculture is the fastest growing primary industry in Australia; in fact it is the fastest growing food production sector in the world. With limited room for expansion in wild catch fisheries together with an ever-increasing world population, there is a heavy reliance on aquaculture as the means for fish production to meet world demand. The Australian aquaculture industry in 2007-2008 was valued at $868 million, and accounted for approximately a third of the total gross value production of the seafood industry. Most of the aquaculture species in Australia are high value species aiming for export markets. Australian aquaculture producers comply with a range of federal, state and local government environmental laws and codes of practice that ensure the long-term sustainability of the industry and the environment. According to FAO (2011) the total Australian aquaculture production has evolved: 1986: 9,083 t - when production was mostly Oysters, and Atlantic Salmon farming was embryonic (10 t); 1999: 29,303 t; 2009: 64,535 t - by which time Atlantic Salmon production had reached nearly 30,000 t and the production of farmed Tuna, marine Shrimp and marine fish were significant sectors of Australian aquaculture. Aquaculture Species There are over forty species being commercially produced in Australian aquaculture, most of the production comes from high value species. The top five species are Tuna; Pearl Oysters; Atlantic Salmon; Edible Oysters and Prawns. The aquaculture industry is largely based in regional Australia and makes a significant and positive contribution to regional development. State industry profiles (see separate sheet on Victoria): South Australia South Australia is a State of opportunity, and few sectors demonstrate this more clearly than the aquaculture industry hence World Aquaculture 2014 will take place in Adelaide 7-11 June 2014. -
(Saccostrea Echinata) Reveals Population Subdivision and Informs Sustainable Aquaculture Development Samantha J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University Nowland et al. BMC Genomics (2019) 20:711 https://doi.org/10.1186/s12864-019-6052-z RESEARCH ARTICLE Open Access Mitochondrial and nuclear genetic analyses of the tropical black-lip rock oyster (Saccostrea echinata) reveals population subdivision and informs sustainable aquaculture development Samantha J. Nowland1,2,4* , Catarina N. S. Silva3, Paul C. Southgate4 and Jan M. Strugnell3 Abstract Background: The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Previous attempts to farm S. echinata failed due to an insufficient supply of wild spat; however, the prospect of hatchery-based aquaculture has stimulated renewed interest, and small-scale farming is underway across northern Australia and in New Caledonia. The absence of knowledge surrounding the population genetic structure of this species has raised concerns about the genetic impacts of this emerging aquaculture industry. This study is the first to examine population genetics of S. echinata and employs both mitochondrial cytochrome c oxidase subunit I gene (COI) and single nucleotide polymorphism (SNP) markers. Results: The mitochondrial COI data set included 273 sequences of 594 base pair length, which comprised 74 haplotypes. The SNP data set included 27,887 filtered SNPs for 272 oysters and of these 31 SNPs were identified as candidate adaptive loci. Data from the mitochondrial COI analyses, supports a broad tropical Indo-Pacific distribution of S. echinata, and showed high haplotype and nucleotide diversities (0.887–1.000 and 0.005–0.008, respectively).