Biogeography of the Antilles Based on a Parsimony Analysis of Orchid Distributions J

Total Page:16

File Type:pdf, Size:1020Kb

Biogeography of the Antilles Based on a Parsimony Analysis of Orchid Distributions J Journal of Biogeography, 28, 775±794 Biogeography of the Antilles based on a parsimony analysis of orchid distributions J. Carlos Trejo-Torres and James D. Ackerman Department of Biology, University of Puerto Rico-Rõo Piedras, PO BOX 23360, San Juan, Puerto Rico 00931-3360 Abstract Aim We obtain biogeographical patterns based on the distributions of shared orchid species of the Caribbean. These patterns are used to de®ne biogeographical zones. We then analyse the concordance between the distributional patterns with ecological and physical features of the islands. Location We use orchid species recorded on 49 islands of the Greater, Lesser, and southern Antilles, and the Bahamas. Three continental areas are included: Florida (North America), the Yucatan (Central America), and the Guianas (South America). Methods We use a parsimonious analysis of species distributions that produces the best arrangements of shared taxa among areas. The analysis uses 356 shared orchid species of the 863 species recorded for studied areas. The methodology has been used to infer historical relationships among areas but we interpret the results as static or ecological patterns of biogeographical af®nities. Results Two kinds of island groupings are revealed. (1) Groups with common geology and geomorphology: the Bahama Archipelago, the Virgin Islands, the Cayman Islands and the southern Dutch Antilles. (2) An aggregation of distant islands with a heterogeneous geology but a common physiography: the Greater Antilles/Trinidad/ Lesser Antilles/Margarita-Tobago. The Guianas are linked with the Greater Antilles, while the Yucatan and Florida are linked to the Bahamas. Main conclusions Groupings of islands are congruent with their gross ecological features either from similar geomorphology or common physiography. The strong af®nity among islands considerably distant among each other is explained by the high vagility of dust-seeded orchids. Then, ¯oristic af®nities seem determined by ecological characteristics of islands rather than by dispersal barriers. We predict that other plant groups with dust-like diaspores and animals with good vagility should show comparable biogeographic patterns. Parsimony analysis of distributions (PAD) is an alternative methodology to multivariate analysis to compare biotas, and a graphic complement to quantitative methods producing numerical values. Keywords Antilles, Caribbean, biogeography, Orchidaceae, parsimony analysis of endemicity, distributions, dispersal, islands. between Asia and Australia. The Antilles are also signi®cant INTRODUCTION because they represent one of the two connections, by way of The Antilles, or West Indies, have been frequently studied by an island chain, between two major biogeographical realms: biogeographers. These islands make up one of the largest the Neartic and the Neotropic. The majority of studies on tropical archipelagos in the world, second only to the islands Antillean biogeography concern the distributional patterns or the cladistic biogeography of animals, especially verte- brates and insects (e.g. Liebherr, 1988; Woods, 1989; Correspondence: J. Carlos Trejo-Torres, Department of Biology, University of Puerto Rico-RõÂo Piedras, PO BOX 23360, San Juan, Puerto Rico 00931-3360. Page & Lydeard, 1994; Hedges, 1996). Surprisingly, there 1 E-mail: [email protected] are only a few publications on the phytogeography of this Ó 2001 Blackwell Science Ltd 776 J. C. Trejo-Torres and J. D. Ackerman region (Howard, 1973; Samek, 1988; Adams, 1989; Lavin, more generic name: parsimony analysis of distributions 1993; Borhidi, 1996), although the ¯oristics of the area have (PAD). The method excludes single-site species (including been actively studied for decades (Zanoni, 1986; Liogier, single-site endemics), and takes into account shared species 1996). whether endemic or not to the Antilles or adjacent areas. The Caribbean region has been divided phytogeographi- We substitute the term distribution for endemicity to avoid cally in three subregions by Samek (1988). These main divi- confusion. sions are: (1) Mexico to Panama, (2) Colombia to Venezuela, Our goal here is to distinguish biogeographical patterns in and (3) an insular subregion including the Antilles proper. the Antilles based on one plant family, Orchidaceae. This The southern Antilles, from Aruba to Tobago are considered group of plants, of which there are approximately 700 part of the Colombian±Venezuelan subregion. Borhidi species in the Antilles, is relatively well known taxonomi- (1996) joins both continental subregions, from Mexico to cally and geographically because there are relatively recent Venezuela, into a single one. While these authors consider orchid treatments for the Cayman Islands (Proctor, 1984, south Florida as part of the Antillean subregion, Gentry 1996), Puerto Rico (Ackerman, 1995) and the Bahamas (1982) included only the Florida Keys in the Antillean region. (Sauleda & Adams, 1982; Sauleda, 1992). Furthermore, a Distinguishing biotic regions, or de®ning biological treatment for the Greater Antilles is underway (Ackerman, boundaries, has been among the major concerns of bioge- 1997; in press). The homogeneous wind-dispersal mechan- ographers. Traditionally, this has been performed with ism (except in bird-dispersed Vanilla) of the dust-seeds subjective methods (e.g. Gentry, 1982; Samek, 1988; among the species of this family, makes orchids a good focal Borhidi, 1996). However, more objective or analytical group for the study of distribution. Assuming that most approaches have been developed for the analysis of distri- orchids have the same dispersal capacity, their distributional butional data of organisms (e.g. Gauch, 1982; McCoy et al., patterns may be explained in terms of other ecological, 1986; Patterson & Atmar, 1986; Rosen & Smith, 1988; geographical and historical factors. Rosen, 1988; Vargas, 1991; Real et al., 1992; Scheiner, The questions we address are: (1) what are the phyto- 1992; Worthen, 1996; Puente et al., 1998). Here, we use an geographical relationships among the Antillean islands alternative method based on a parsimonious analysis of taxa based on shared orchid species? (2) are these relationships distributions (Rosen & Smith, 1988). This method repre- affected when neighbouring continental regions are consid- sents a direct way to search for the biogeographical af®nities ered? (3) what is the phytogeographical regionalization of among areas (Connor, 1988; Vargas, 1991), for the detec- the Antilles based on orchids, and (4) how do the distribu- tion of areas of endemism (Morrone, 1994a; Cardoso da tional patterns of orchids match with geography, geology, 2Silva & Oren, 1996; Bates et al., 1998), and for the physiography and ecology of the region? Apart from the delimitation of biological boundaries (Posadas, 1996; biogeographical analysis per se, we discuss the use of Posadas et al., 1997; Morrone, 1998). The parsimony parsimony analysis of naturally de®ned areas (i.e. islands) analysis presented here is a tool for searching the most with extremely dissimilar number of species, and the use of parsimonious arrangement of shared species among areas, as single-site species to look at ®ner degrees of biogeographical a means of revealing the biogeographical af®nities in a differentiation. hierarchical pattern (Rosen & Smith, 1988; Brady, 1994). The analysis presented here was originally called parsi- METHODS mony analysis of endemicity (PAE), and was suggested by 3Rosen (1985, cited in Rosen & Smith, 1988) and developed A total of ®fty-two areas (Table 1) were included in the by Rosen & Smith (1988). It was also independently study. Data on the distribution of species were taken from suggested by Legendre (1986) and Connor (1988). Since literature and from unpublished sources (Table 2). Synony- then it has been employed in the study of extant taxa of mies and valid species names were standardized mainly New Zealand (Craw, 1988), Australia (Cracraft, 1991), according to J.D. Ackerman (unpublished data). Southeast Africa (Morrone, 1994a), the Patagonia A presence/absence matrix of the 863 orchid species (Posadas, 1996), the Andes (Morrone, 1994b; Posadas reported for the studied areas was constructed in MacClade et al., 1997), the Amazonia (Cardoso da Silva & Oren, 3.01 (Maddison & Maddison, 1992). Using this program, 1996; Bates et al., 1998), the Austral region (Craw, 1989; areas were entered in the place of taxa, while taxa were Morrone, 1998; Glasby & Alvarez, 1999), Mexico (Luna entered in the place of characters. In the matrix, presence et al., 1999), and the entire world (Conran, 1995). The was indicated with a `1' and absence with a `0'. Once we units of comparison that have been used are sites, quad- constructed the matrix, we ran analyses of parsimony using rants or sections of regions, biogeographical areas, or PAUP 4 (Swofford, 2000). A hypothetical outgroup area natural geographical areas (e.g. islands, continents, ocean with all 0s (no species) were used in the analyses to root the basins). We use entire islands or groups of them, as the trees. General heuristic searches were carried out to look for units of study. While the method has been mainly used for the most parsimonious trees, which indicate the ¯oristic discovering the historical relationships among areas, we af®nities among studied areas. We obtained consensus trees give a static or non-historical interpretation to the patterns (Strict, Majority Rule and Adams) when more than one obtained (Rosen, 1992; Posadas, 1996; Posadas
Recommended publications
  • The Genus Brassavola, (L.) R.Br
    The Genus Brassavola, (L.) R.Br. in W.T.Aiton, Hortus Kew. 5: 216 (1813) Type: Brassavola [B.] cucullata [bra-SAH-vo-la kyoo-kyoo-LAH-ta] There are 28 species (OrchidWiz [update Dec 2017]) that are epiphytes and sometimes lithophytes at elevations of from sea level to 3300 ft (1000 m) from Mexico, southern Caribbean islands to northern Argentina in moist or wet montane forests, mangroves, rocky crevices and cliff faces. They are most fragrant at night and many with a citrus smell. The genus is characterized by very small pencil-like pseudobulbs, often forming large clumps; a single, fleshy, apical, sub-terete leaf and the inflorescence produced form the apex of the pseudobulb. The inflorescence carries from a single to a few large flowers. The floral characteristics are elongate narrow similar sepals and petals, the base of the lip usually tightly rolled around at least a portion of the column which carries 12, sometimes eight unequal pollina with prominent opaque caudicles. The flowers usually occur, as a rule, in spring, summer and fall. The flowers are generally yellow to greenish white with a mostly white lip. It is not unusual for dark spots, usually purple, to be in the region where the sepals, petals, and lip join the stem (claw). This spotting is a dominant generic trait in Brassavola nodose. They are easily cultivated under intermediate conditions. Although this is a relatively small genus (28 species), the species show an unusually close relationship with one another in their floral patterns, coloration, and column structure making identification difficult, key to know where the plants were collected.
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
    LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans.
    [Show full text]
  • New Taxa and New Combinations in Mesoamerican Spiranthinae (Orchidaceae, Spirantheae)
    Ann. Bot. Fennici 41: 471–477 ISSN 0003-3847 Helsinki 21 December 2004 © Finnish Zoological and Botanical Publishing Board 2004 New taxa and new combinations in Mesoamerican Spiranthinae (Orchidaceae, Spirantheae) Piotr Rutkowski, Joanna Mytnik & Dariusz L. Szlachetko Department of Plant Taxonomy and Nature Conservation, Gdansk University, Al. Legionów 9, PL- 80-441 Gdansk, Poland (e-mails: [email protected], [email protected], [email protected]) Received 15 Dec. 2003, revised version received 10 Apr. 2004, accepted 15 June 2004 Rutkowski, P., Mytnik, J. & Szlachetko, D. L. 2004: New taxa and new combinations in Meso- american Spiranthinae (Orchidaceae, Spirantheae). — Ann. Bot. Fennici 41: 471–477. The following new species of the subtribe Spiranthinae (Orchidaceae, Spirantheae) are described and illustrated: Brachystele tamayoana Szlach., Rutk. & Mytnik and Kionophyton pollardiana Szlach., Rutk. & Mytnik. Keys for determination of the Mesoamerican species of Brachystele, Kionophyton and Galeottiella are provided. The following new combinations are proposed in Spiranthinae: Deiregyne Schltr. subgenus Aulosepalum (Garay) Szlach., Rutk. & Mytnik stat. & comb. nova, Microthelys hin- toniorum (Todzia) Szlach., Rutk. & Mytnik, comb. nova and Galeottiella orchioides (Lindl.) R.Gonzalez T. Key words: nomenclature, Orchidaceae, Spirantheae, Spiranthinae, taxonomy The large subtribe Spiranthinae (Orchidaceae, (1982), were published almost at the same time. Spirantheae) embraces about 30 genera (Szla- They presented fundamentally different taxo- chetko 1995a). This group can be distinguished nomic notions. In the 1990s the problem of by the viscidium, which is produced on the classification of Spiranthinae was taken up by adaxial layer of rostellum, and by the rostel- D. Szlachetko. After detailed studies by him lum remnant being deeply notched or fove- the undoubtedly heterogenous genus Spiranthes olate.
    [Show full text]
  • Systematics and Evolution of the Genus Pleurothallis R. Br
    Systematics and evolution of the genus Pleurothallis R. Br. (Orchidaceae) in the Greater Antilles DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Hagen Stenzel geb. 05.10.1967 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. J. Mlynek Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. M. Linscheid Gutachter/in: 1. Prof. Dr. E. Köhler 2. HD Dr. H. Dietrich 3. Prof. Dr. J. Ackerman Tag der mündlichen Prüfung: 06.02.2004 Pleurothallis obliquipetala Acuña & Schweinf. Für Jakob und Julius, die nichts unversucht ließen, um das Zustandekommen dieser Arbeit zu verhindern. Zusammenfassung Die antillanische Flora ist eine der artenreichsten der Erde. Trotz jahrhundertelanger floristischer Forschung zeigen jüngere Studien, daß der Archipel noch immer weiße Flecken beherbergt. Das trifft besonders auf die Familie der Orchideen zu, deren letzte Bearbeitung für Cuba z.B. mehr als ein halbes Jahrhundert zurückliegt. Die vorliegende Arbeit basiert auf der lang ausstehenden Revision der Orchideengattung Pleurothallis R. Br. für die Flora de Cuba. Mittels weiterer morphologischer, palynologischer, molekulargenetischer, phytogeographischer und ökologischer Untersuchungen auch eines Florenteils der anderen Großen Antillen wird die Genese der antillanischen Pleurothallis-Flora rekonstruiert. Der Archipel umfaßt mehr als 70 Arten dieser Gattung, wobei die Zahlen auf den einzelnen Inseln sehr verschieden sind: Cuba besitzt 39, Jamaica 23, Hispaniola 40 und Puerto Rico 11 Spezies. Das Zentrum der Diversität liegt im montanen Dreieck Ost-Cuba – Jamaica – Hispaniola, einer Region, die 95 % der antillanischen Arten beherbergt, wovon 75% endemisch auf einer der Inseln sind.
    [Show full text]
  • Partial Endoreplication Stimulates Diversification in the Species-Richest Lineage Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091074; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Partial endoreplication stimulates diversification in the species-richest lineage of 2 orchids 1,2,6 1,3,6 1,4,5,6 1,6 3 Zuzana Chumová , Eliška Záveská , Jan Ponert , Philipp-André Schmidt , Pavel *,1,6 4 Trávníček 5 6 1Czech Academy of Sciences, Institute of Botany, Zámek 1, Průhonice CZ-25243, Czech Republic 7 2Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague CZ-12801, Czech Republic 8 3Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria 9 4Prague Botanical Garden, Trojská 800/196, Prague CZ-17100, Czech Republic 10 5Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague CZ- 11 12844, Czech Republic 12 13 6equal contributions 14 *corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091074; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Abstract 16 Some of the most burning questions in biology in recent years concern differential 17 diversification along the tree of life and its causes.
    [Show full text]
  • International Agenda for Botanic Gardens in Conservation
    Journal of Botanic Gardens Conservation International BGjournalVolume 3 • Number 1 • January 2006 The International Agenda – five years on Forthcoming APPLIED PLANT CONSERVATION Meetings March 20 – 31, 2006 CURITIBA, BRAZIL 8th Ordinary Meeting of the Conference of the Parties to the Convention on Biological Diversity Issues for in-depth consideration are island biodiversity, biological diversity of dry and sub- 2nd ANNUAL humid lands, the Global Taxonomy Initiative, access and benefit-sharing and communication, TRAINING PROGRAM AND INTERNSHIP education and public awareness. For more information, visit the http://www.biodiv.org/doc/ meeting.aspx?mtg=COP-08 PRESENTED BY: DENVER BOTANIC GARDENS, CENTER FOR PLANT CONSERVATION June 19 - 25, 2006 SANTO DOMINGO, DOMINICAN REPUBLIC and UNITED STATES BOTANIC GARDEN IX Congress of the Latin American Botanical Society (IX Congreso Latinoamericano de Botánica) Contribuyendo al conocimiento global de la flora nativa latinoamericana (Contributing to the global knowledge of the native flora of Latin America) The objectives of this Congress are to spread JUNE 6-10, 2006: JUNE 12-16, 2006: JUNE 6 – AUGUST 5, 2006: information about the flora of Latin America and bring CPC APPLIED PLANT PLANT CONSERVATION IN NINE-WEEK PAID together the botanical community to develop plans for the conservation and sustainable use of its flora. CONSERVATION TRAINING BOTANIC GARDENS SUMMER INTERNSHIP Seminar registration is due Application deadline is For further information, please contact Sonia April 21, 2006. March 1, 2006. Lagos-Witte, President Asociación Latinoamericano Admission is competitive. de Botánica - ALB and Coordinator, IX Congreso Latinoamericano de Botánica, Jardín Botánico Nacional, Apartado Postal 21-9, Santo Domingo, Dominican Republic.
    [Show full text]
  • An Asian Orchid, Eulophia Graminea (Orchidaceae: Cymbidieae), Naturalizes in Florida
    LANKESTERIANA 8(1): 5-14. 2008. AN ASIAN ORCHID, EULOPHIA GRAMINEA (ORCHIDACEAE: CYMBIDIEAE), NATURALIZES IN FLORIDA ROBE R T W. PEMBE R TON 1,3, TIMOTHY M. COLLINS 2 & SUZANNE KO P TU R 2 1Fairchild Tropical Botanic Garden, 2121 SW 28th Terrace Ft. Lauderdale, Florida 33312 2Department of Biological Sciences, Florida International University, Miami, FL 33199 3Author for correspondence: [email protected] ABST R A C T . Eulophia graminea, a terrestrial orchid native to Asia, has naturalized in southern Florida. Orchids naturalize less often than other flowering plants or ferns, butE. graminea has also recently become naturalized in Australia. Plants were found growing in five neighborhoods in Miami-Dade County, spanning 35 km from the most northern to the most southern site, and growing only in woodchip mulch at four of the sites. Plants at four sites bore flowers, and fruit were observed at two sites. Hand pollination treatments determined that the flowers are self compatible but fewer fruit were set in selfed flowers (4/10) than in out-crossed flowers (10/10). No fruit set occurred in plants isolated from pollinators, indicating that E. graminea is not autogamous. Pollinia removal was not detected at one site, but was 24.3 % at the other site evaluated for reproductive success. A total of 26 and 92 fruit were found at these two sites, where an average of 6.5 and 3.4 fruit were produced per plant. These fruits ripened and dehisced rapidly; some dehiscing while their inflorescences still bore open flowers. Fruit set averaged 9.2 and 4.5 % at the two sites.
    [Show full text]
  • Historical Biogeography of Endemic Seed Plant Genera in the Caribbean: Did Gaarlandia Play a Role?
    Received: 18 May 2017 | Revised: 11 September 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3521 ORIGINAL RESEARCH Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? María Esther Nieto-Blázquez1 | Alexandre Antonelli2,3,4 | Julissa Roncal1 1Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada Abstract 2Department of Biological and Environmental The Caribbean archipelago is a region with an extremely complex geological history Sciences, University of Göteborg, Göteborg, and an outstanding plant diversity with high levels of endemism. The aim of this study Sweden was to better understand the historical assembly and evolution of endemic seed plant 3Gothenburg Botanical Garden, Göteborg, Sweden genera in the Caribbean, by first determining divergence times of endemic genera to 4Gothenburg Global Biodiversity Centre, test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land Göteborg, Sweden bridge played a role in the archipelago colonization and second by testing South Correspondence America as the main colonization source as expected by the position of landmasses María Esther Nieto-Blázquez, Biology Department, Memorial University of and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated Newfoundland, St. John’s, NL, Canada. molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic gen- Emails: [email protected]; menietoblazquez@ gmail.com era using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and Funding information NSERC-Discovery grant, Grant/Award two complex biogeographic models that included timeframes based on geological Number: RGPIN-2014-03976; MUN’s information, dispersal probabilities, and directionality among regions.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Broughtonia Lindenii A´
    Plant Biology ISSN 1435-8603 RESEARCH PAPER Breeding system and factors limiting fruit production in the nectarless orchid Broughtonia lindenii A´ . Vale1, D. Rojas1,J.C.A´ lvarez2 & L. Navarro1 1 Departamento de Biologı´a Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Espan˜ a 2 Facultad de Biologı´a, Universidad de La Habana, La Habana, Cuba Keywords ABSTRACT Cuba; inbreeding depression; Laeliinae; Melissodes; pollen limitation; post-removal Low fruit set values in most orchids (especially epiphytic and tropical species) are senescence; self-compatibility; subequal normally thought to be the consequence of pollination constraints and limited pollinia. resources. In particular, pollination constraints are modulated by pollinator visita- tion rates, pollinator visitation behaviour (promoting crossing or selfing), the type Correspondence and number of pollinia deposited on stigmas (in the case of orchids with subequal L. Navarro, Departamento de Biologı´a pollinia) and the amount of pollen loaded per inflorescence. In order to assess to Vegetal y Ciencias del Suelo, Universidad de what extent these factors can affect fruit set in specific orchid–pollinator systems, Vigo, Campus As Lagoas-Marcosende 36310, the repercussions of some of these aspects on reproduction of Broughtonia lindenii Vigo, Espan˜ a. were examined in a coastal population in western Cuba. The study focused on plant E-mail: [email protected] breeding system, importance of pollen load and type of pollinia on subsequent fruit and seed, limiting factors of seed production and interaction with pollinators. This Editor species presents long-lasting flowers that senesce after all forms of effective visit. J. Arroyo Pollinator dependence for fruit production was demonstrated, while hand-pollina- tion experiments revealed self-compatibility and inbreeding depression at seed level.
    [Show full text]