King Rail (Rallus Elegans) Caleb G

Total Page:16

File Type:pdf, Size:1020Kb

King Rail (Rallus Elegans) Caleb G King Rail (Rallus elegans) Caleb G. Putnam Status: State Endangered, Casual (MBRC) Bay-Arenac Co. Area, MI. 6/27/2008 © Doug Jackson (Click to view a comparison of Atlas I to II) The largest of North American rails, the King “uncommon.” Today the species is strictly casual in Michigan, with only 12 accepted Rail is one of Michigan’s most enigmatic reports from 1998 to 2008 (MBRC 2009). breeding birds. Its extremely sparse distribution in the Lower Peninsula and the close similarity Detections during MBBA II were forthcoming of its vocalizations to those of the familiar in just eight blocks, with only a single Virginia Rail conspire to make it one of the confirmation of breeding. King Rails were most difficult species to detect in our state. detected at slightly greater levels (13 blocks) Correspondingly, as in the past, it continues to during MBBA I, perhaps indicating a be encountered very infrequently in Michigan continuation of gradual historical declines and surrounding states, and is subsequently during recent decades. Indeed, systematic recognized as state endangered. The King Rail surveying of 82 wetlands within three breeds from the eastern Great Plains to the kilometers of the Great Lakes shore during the Atlantic coast, as far north as North Dakota and mid 2000s, which included the use of Ontario, and south to the Gulf of Mexico. In the prerecorded playback, yielded not a single fall it retreats to a primarily coastal winter observation of this species (M. Sanders, pers. distribution stretching from the mid-Atlantic to comm.). Similar targeted surveying as late as the Gulf of Mexico and Cuba. An additional 1986 had yielded as many as 26 individuals resident population exists in Mexico. Winter (Rabe 1986). The species is clearly down to records from the northern extremity of its range, perilously low levels in Michigan. As in MBBA including Michigan, are very rare. I, the species was detected primarily on or near the Great Lakes shorelines, with inland records Distribution much less frequent. The King Rail has experienced precipitous declines in Michigan and throughout the Like the Virginia Rail, the King Rail is found in northern reaches of its range since the early 20th a variety of emergent wetland habitats including century. Barrows (1912) described the species monotypic cattail, cattail-sedge-shrub, sedge- as “a common nester at St. Clair Flats,” “fairly grass, wet meadow (M. Sanders, pers. comm.), abundant in … Ingham County,” and as “far bulrush, and cattail-Phragmites mix, such as at from rare … from Monroe Co. to Saginaw Pointe Mouillee State Game Area (Evers 1984, Bay,” while Wood (1951) described it as © 2010 Kalamazoo Nature Center King Rail (Rallus elegans) Caleb G. Putnam Status: State Endangered, Casual (MBRC) Rabe 1986, pers. obs.). Water depths of less The continued protection and restoration of than six inches and wetlands larger than 50 wetlands is a prerequisite to this species’ future acres were preferred in Ohio (Trautman 1940). in Michigan. Elucidation of additional causes of Whether a similar area dependency is operative its decline would be helpful, as habitat loss in Michigan has not been quantified, but does alone (such as mentioned by Rabe 2001) may seem likely since most detections are at or near not be the only limiting factor. Potential threats the larger coastal wetlands along Saginaw Bay identified by the Michigan Wildlife Action Plan and western Lake Erie. (Eagle et al. 2005) include pollution and disease. It is unclear whether the apparent Breeding Biology abundance of suitable habitat which goes Because of the paucity of observations, the unused by this species is actually inhospitable to breeding biology of this species is poorly it, though it seems conceivable that an area understood. Rabe (2001) and McPeek (1994) dependency could be responsible. indicate a spring arrival of mid to late April, with active nests being observed from May to July, and downy young as late as August (Chartier 1999). The species typically vacates Michigan by the end of October (MBRC 2009). Abundance and Population Trends Michigan may currently host as few as five to ten pairs of King Rails (McPeek 1991), a conclusion supported by MBBA II data. Available estimates for surrounding states and provinces were slightly higher, with 10-25 pairs suggested for Ohio (Peterjohn and Rice 1991) and 20-52 pairs for Ontario (Woodliffe 2007). Breeding Bird Survey data, notoriously weak for detecting crepuscular, secretive species such as the King Rail, suggested a rangewide annual decline of 7.9% between 1980 and 2002 (Poole et al. 2005). Conservation Needs The King Rail population in Michigan is very low and possibly still declining. There is an urgent need for new information on all aspects of its biology in Michigan. Priorities include clarification of migration phenology, best survey periods, and best surveying methodology. Publication of audio recordings elucidating how to definitively separate this species from the very similar Virginia Rail would be extremely useful. Such information could guide additional targeted surveys. © 2010 Kalamazoo Nature Center King Rail (Rallus elegans) Caleb G. Putnam Status: State Endangered, Casual (MBRC) Rabe, M.L. 1986. King Rail census-1986: Literature Cited population status and habitat utilization. Michigan Department of Natural Resources, Barrows, W.B. 1912. Michigan Bird Life. unpubl. report. Special Bulletin. Michigan Agricultural Rabe, M.L. 2001. Special animal abstract for College. Lansing, MI. Rallus elegans (King Rail). Michigan Chartier, A. 1999. Michigan Bird Survey - Fall Natural Features Inventory. Lansing, 1998 (Aug-Nov). Michigan Birds and Michigan, U.S.A. 4 pp. Natural History 6:89-114. Trautman, M. 1940. The Birds of Buckeye Lake, Eagle, A.C., E.M. Hay-Chmielewski, K.T. Ohio. University of Michigan Museum of Cleveland, A.L. Derosier, M.E. Herbert, and Zoology Miscellaneous Publication No. 44. R.A. Rustem, eds. 2005. Michigan's Wildlife Wood, NA. 1951. The Birds of Michigan. MP Action Plan. Michigan Department of 75. University of Michigan Museum of Natural Resources. Lansing, Michigan, Zoology. Ann Arbor, MI. U.S.A. 1592 pp. <http://www.michigan.gov Woodliffe, P. 2007. King Rail. In Cadman, /dnrwildlifeactionplan> M.D., D.A. Sutherland, G.G. Beck, D. Evers, D.C. 1984. King Rail survey-1984. Lepage, and A.R. Couturier (eds.). Atlas of Michigan Natural Features Inventory, the Breeding Birds of Ontario, 2001-2005. unpubl. report. Bird Studies Canada, Environment Canada, McPeek, G.A. 1991. King Rail in: Brewer, R., Ontario Field Ornithologists, Ontario G.A. McPeek, and R.. Adams Jr. The Atlas Ministry of Natural Resources, and Ontario of Breeding Birds of Michigan. Michigan Nature. Toronto, Ontario, Canada. State University Press. East Lansing, Michigan, U.S.A. Suggested Citation McPeek. G.A. 1994. King Rail in: McPeek, G.A., and R.J. Adams (Eds.). The Birds of Putnam, C.G. 2011. King Rail (Rallus elegans). Michigan. Indiana University Press. In Chartier, A.T., J.J. Baldy, and J.M. Indianapolis, Indiana, U.S.A. Brenneman (eds.). 2010-2011. The Second Michigan Bird Records Committee (MBRC) Michigan Breeding Bird Atlas. Kalamazoo 2009. Michigan Bird Records Committee Nature Center. Kalamazoo, MI. Accessed Website. online at: <www.mibirdatlas.org/Portals <http://www.michiganaudubon.org/research /12/MBA2010/KIRAaccount.pdf >. /recordscommittee/>. Searchable Database updated 8 November 2009. Peterjohn, B.G., and D.L. Rice. 1991. The Ohio Breeding Bird Atlas. Ohio Department of Natural Resources. Columbus, OH. Poole, A.F., L.R. Bevier, C.A. Marantz and B. Meanley. 2005. King Rail (Rallus elegans), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: <http://bna.birds. cornell.edu/bna/species/003doi:10.2173/bna. 3> © 2010 Kalamazoo Nature Center .
Recommended publications
  • Telecrex Restudied: a Small Eocene Guineafowl
    TELECREX RESTUDIED: A SMALL EOCENE GUINEAFOWL STORRS L. OLSON In reviewing a number of the fossil species presently placed in the Rallidae, I have had occasion to examine the unique type-an incomplete femur-of Telecrex grangeri Wetmore (1934)) described from the Upper Eocene (Irdin Manha Formation) at Chimney Butte, Shara Murun region, Inner Mongolia. Although Wetmore assigned this fossil to the Rallidae, he felt that the species was distinct enough to be placed in a separate subfamily (Telecrecinae) ; this he considered to be ancestral to the modern Rallinae. After apparently ex- amining the type, Cracraft (1973b:17) assessed it as “decidedly raillike in the shape of the bone but distinct in the antero-posterior flattening of the head and shaft.” However, he suggested that Wetmores’ conclusions about its relationships to the Rallinae would have to be re-evaluated. Actually, Tele- crex bears very little resemblance to rails, and the distinctive proximal flat- tening of the shaft (but not of the head, contra Cracraft) is a feature peculiar to certain of the Galliformes. Further, my comparisons show Telecrex to be closest to the guineafowls (Numididae), a family hitherto known only from Africa and Europe. DISCUSSION The type specimen of Telecrex grangeri (AMNH 2942) is a right femur, lacking the distal end and part of the trochanter (Fig. 1). Its measurements are: proximal width 11.6 mm, depth of head 4.2, width of shaft at midpoint 4.6, depth of shaft at midpoint 4.1, overall length (as preserved ) 46.1. Telecrex differs from all rails
    [Show full text]
  • South Africa Rallid Quest 15Th to 23Rd February 2019 (9 Days)
    South Africa Rallid Quest 15th to 23rd February 2019 (9 days) Buff-spotted Flufftail by Adam Riley RBT Rallid Quest Itinerary 2 Never before in birding history has a trip been offered as unique and exotic as this Rallid Quest through Southern Africa. This exhilarating birding adventure targets every possible rallid and flufftail in the Southern African region! Included in this spectacular list of Crakes, Rails, Quails and Flufftails are near-mythical species such as Striped Crake, White-winged, Streaky-breasted, Chestnut-headed and Striped Flufftails and Blue Quail, along with a supporting cast of Buff-spotted and Red-chested Flufftails, African, Baillon’s, Spotted and Corn Crakes, African Rail, Allen’s Gallinule, Lesser Moorhen and Black-rumped Buttonquail. As if these once-in-a-lifetime target rallids and rail-like species aren’t enough, we’ll also be on the lookout for a number of the region’s endemics and specialties, especially those species restricted to the miombo woodland, mushitu forest and dambos of Zimbabwe and Zambia such as Chaplin’s and Anchieta’s Barbet, Black-cheeked Lovebird, Bar-winged Weaver, Bocage’s Akalat, Ross’s Turaco and Locust Finch to mention just a few. THE TOUR AT A GLANCE… THE MAIN TOUR ITINERARY Day 1 Arrival in Johannesburg and drive to Dullstroom Day 2 Dullstroom area Day 3 Dullstroom to Pietermaritzburg via Wakkerstroom Day 4 Pietermaritzburg and surrounds Day 5 Pietermaritzburg to Ntsikeni, Drakensberg Foothills Day 6 Ntsikeni, Drakensberg Foothills Day 7 Ntsikeni, Drakensberg Foothills to Johannesburg Day 8 Johannesburg to Zaagkuilsdrift via Marievale and Zonderwater Day 9 Zaagkuilsdrift to Johannesburg and departure RBT Rallid Quest Itinerary 3 TOUR ROUTE MAP… RBT Rallid Quest Itinerary 4 THE TOUR IN DETAIL… Day 1: Arrival in Johannesburg and drive to Dullstroom.
    [Show full text]
  • Houde2009chap64.Pdf
    Cranes, rails, and allies (Gruiformes) Peter Houde of these features are subject to allometric scaling. Cranes Department of Biology, New Mexico State University, Box 30001 are exceptional migrators. While most rails are generally MSC 3AF, Las Cruces, NM 88003-8001, USA ([email protected]) more sedentary, they are nevertheless good dispersers. Many have secondarily evolved P ightlessness aJ er col- onizing remote oceanic islands. Other members of the Abstract Grues are nonmigratory. 7 ey include the A nfoots and The cranes, rails, and allies (Order Gruiformes) form a mor- sungrebe (Heliornithidae), with three species in as many phologically eclectic group of bird families typifi ed by poor genera that are distributed pantropically and disjunctly. species diversity and disjunct distributions. Molecular data Finfoots are foot-propelled swimmers of rivers and lakes. indicate that Gruiformes is not a natural group, but that it 7 eir toes, like those of coots, are lobate rather than pal- includes a evolutionary clade of six “core gruiform” fam- mate. Adzebills (Aptornithidae) include two recently ilies (Suborder Grues) and a separate pair of closely related extinct species of P ightless, turkey-sized, rail-like birds families (Suborder Eurypygae). The basal split of Grues into from New Zealand. Other extant Grues resemble small rail-like and crane-like lineages (Ralloidea and Gruoidea, cranes or are morphologically intermediate between respectively) occurred sometime near the Mesozoic– cranes and rails, and are exclusively neotropical. 7 ey Cenozoic boundary (66 million years ago, Ma), possibly on include three species in one genus of forest-dwelling the southern continents. Interfamilial diversifi cation within trumpeters (Psophiidae) and the monotypic Limpkin each of the ralloids, gruoids, and Eurypygae occurred within (Aramidae) of both forested and open wetlands.
    [Show full text]
  • Conservation Strategy and Action Plan for the Great Bustard (Otis Tarda) in Morocco 2016–2025
    Conservation Strategy and Action Plan for the Great Bustard (Otis tarda) in Morocco 2016–2025 IUCN Bustard Specialist Group About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN’s work focuses on valuing and conserving nature, ensuring effective and equitable governance of its use, and deploying nature- based solutions to global challenges in climate, food and development. IUCN supports scientific research, manages field projects all over the world, and brings governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,200 government and NGO Members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 45 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org About the IUCN Centre for Mediterranean Cooperation The IUCN Centre for Mediterranean Cooperation was opened in October 2001 with the core support of the Spanish Ministry of Environment, the regional Government of Junta de Andalucía and the Spanish Agency for International Cooperation and Development (AECID). The mission of IUCN-Med is to influence, encourage and assist Mediterranean societies to conserve and sustainably use natural resources in the region, working with IUCN members and cooperating with all those sharing the same objectives of IUCN. www.iucn.org/mediterranean About the IUCN Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of 9,000 experts.
    [Show full text]
  • A Classification of the Rallidae
    A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times.
    [Show full text]
  • ACSR – Aluminum Conductor Steel Reinforced
    ACSR – Aluminum Conductor Steel Reinforced APPLICATION: STANDARDS: ACSR – Aluminum Conductor Steel Reinforced is used as bare • B-230 Aluminum wire, 1350-H19 for Electrical Purposes overhead transmission cable and as primary and secondary • B-232 Aluminum Conductors, Concentric-Lay-Stranded, distribution cable. ACSR offers optimal strength for line design. Coated Steel Reinforced (ACSR) BARE ALUMINUM Variable steel core stranding for desired strength to be achieved • B-341 Aluminum-Coated Steel Core Wire for Aluminum without sacrificing ampacity. Conductors, Steel Reinforced (ACSR/AZ) • B-498 Zinc-Coated Steel Core Wire for Aluminum CONDUCTORS: Conductors, Steel Reinforced (ACSR) • B-500 Metallic Coated Stranded Steel Core for Aluminum • Aluminum alloy 1350-H119 wires, concentrically stranded Conductors, Steel Reinforced (ACSR) around a steel core available with Class A, B or C galvanizing; • RUS Accepted aluminum coated (AZ); or aluminum-clad steel core (AL). Additional corrosion protection is available through the application of grease to the core or infusion of the complete cable with grease. Also available with Non Specular surface finish. Resistance** Diameter(inch) Weight (lbs/kft) Content % Size Rated (Ohms/kft) Ampacity* Code (AWG Stranding Breaking Individual Wire Comp. (amps) Word or (AL/STL) Strength DC @ AC @ kcmil) Steel Cable AL STL Total AL STL (lbs.) AL STL 20ºC 75ºC Core OD Turkey 6 6/1 0.0661 0.0661 0.0664 0.198 24.5 11.6 36 67.90 32.10 1,190 0.6410 0.806 105 Swan 4 6/1 0.0834 0.0834 0.0834 0.250 39.0 18.4 57 67.90 32.10
    [Show full text]
  • Avian Premaxilla and Tarsometatarsus from The
    762 ShortCommunications andCommentaries [Auk,Vol. 112 The Auk 112(3):762-767, 1995 Avian Premaxilla and Tarsometatarsusfrom the Uppermost Cretaceous of Montana ANDRZEJ ELZANOWSKIa AND MICHAEL K. BRETT-$URMAN2 •Departmentof VertebrateZoology, National Museum of NaturalHistory, SmithsonianInstitution, Washington, D.C. 20560, USA; and 2Departmentof Geology,George Washington University, Washington, D.C. 20052,USA Despitea variety of fragmentary,apparently neog- is rounded and smooth,and the sidesare very steep. nathousavian fossilsknown from the uppermostCre- The largest among the neurovascularforamina scat- taceousdeposits (Brodkorb 1963, Olson 1985, Olson tered on each side are two elongatedorsal foramina: and Parris 1987),we still lack even an approximate the vessel from the rostral one coursed rostrad, whereas idea of how many neognathouslineages survived be- the vesselfrom the caudalone apparentlybifurcated yond the Cretaceous/Tertiaryboundary. Most of the into a smaller rostral and a larger caudal branch. In Maastrichtian avian bones reveal a charadriiform or addition, a number of smaller openingsperforates transitional charadriiform-gruiform morphology, eachside of the symphysis. which may be plesiomorphicfor most (Olson 1985) The ventral surfaceof the premaxillarysymphysis but probably not all of the neognaths(Elzanowski is strongly concave(Fig. lc, d). There are no distinct 1995). Other than that, there is some fossil evidence neurovascularforamina on the ventral (palatal) sur- for the existence of loons in the Cretaceous(Olson face,with the possibleexception of one small opening 1992)and mostly indirect evidencefor the pre-Ter- on the left side. The palatal shelvesof the premaxilla tiary origins of the relict pelecaniforms(Phaethon- begin from the symphysialtip and graduallybroaden tidae and Fregatidae) and procellariiforms (Elza- caudally where each of them occupiesone-third of nowski and Gaiton 1991).
    [Show full text]
  • ON 23(3) 461-466.Pdf
    SHORT COMMUNICATIONS ORNITOLOGIA NEOTROPICAL 23: 461–466, 2012 © The Neotropical Ornithological Society FIRST DESCRIPTION OF THE NEST AND EGGS OF THE PLAIN-FLANKED RAIL (RALLUS WETMOREI) Adriana Rodríguez-Ferraro1,2, Eugenia Sánchez2, & Miguel Lentino3 1Departamento de Estudios Ambientales, Universidad Simón Bolívar, Apdo. 89.000, Caracas 1080-A, Venezuela. E-mail: [email protected] 2Laboratorio de Ecología Molecular de Vertebrados, Universidad Simón Bolívar, Apdo. 89.000, Caracas 1080-A, Venezuela. 3Fundación William H. Phelps, Apdo. 2009, Caracas 1010-A, Venezuela. Primera descripción del nido y los huevos de la Polla de Wetmore (Rallus wetmorei). Key words: Plain-flanked Rail, Rallus wetmorei, eggs, mangrove, nest, Venezuela. INTRODUCTION conservation priorities in Venezuela (Rodrí- guez et al. 2004). Main threats for this rail The Plain-flanked Rail (Rallus wetmorei) is a are the loss and deterioration of mangrove Venezuelan endemic species deserving urgent habitat as a consequence of expanding attention from a conservation perspective. touristic developments and activities derived This bird was first described in the mid-1940s from petrochemical industries (Rodríguez & (Zimmer & Phelps 1944), and after a few Rojas-Suárez 2008). These problems even other observations during the following 10 exist within the boundaries of the few pro- years, it went unrecorded for almost three tected areas (three national parks and one decades, until rediscovered in 1999 (Hilty wildlife refuge) where the species is known to 2003). It is restricted to a small area along the occur. central coast of Venezuela where it is known Recovery efforts of endangered birds from eight localities (Taylor 1996), but in have been hampered by the lack of basic recent years, it has been found in only five of knowledge on their biology, thus, research these sites (Rodríguez-Ferraro & Lentino in focused on determining biological character- prep.).
    [Show full text]
  • California Clapper Rail (Rallus Longirostris Obsoletus) 5-Year Review
    California clapper rail (Rallus longirostris obsoletus ) 5-Year Review: Summary and Evaluation Photo by Allen Edwards U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office Sacramento, California April 2013 5-YEAR REVIEW California clapper rail (Rallus longirostris obsoletus) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. The California clapper rail was listed as endangered under the Endangered Species Preservation Act in 1970, so was not subject to the current listing processes and, therefore, did not include an analysis of threats to the California clapper rail. In this 5-year review, we will consider listing of this species as endangered or threatened based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of this species. We will consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed.
    [Show full text]
  • Recovery Strategy for the King Rail (Rallus Elegans) in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the King Rail (Rallus elegans) in Canada King Rail 2010 Recommended citation: Environment Canada. 2010. Recovery Strategy for the King Rail (Rallus elegans) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. vi + 21 pp. For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry (www.sararegistry.gc.ca). Cover illustration: U.S. Fish & Wildlife Service Également disponible en français sous le titre « Programme de rétablissement du Râle élégant (Rallus elegans) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of Environment, 2010. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Recovery Strategy for the King Rail 2010 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years. The Minister of the Environment and the Minister responsible for the Parks Canada Agency are the competent ministers for the recovery of the King Rail and have prepared this strategy, as per section 37 of SARA.
    [Show full text]
  • 2020 National Bird List
    2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and
    [Show full text]
  • Part Ii. Zoölogy
    Text extracted from a scan by Google Book Search. satisfactory account of the exact progress of the work, or even to embody the results accomplished when so much FIRST BIENNIAL REPORT remains unfinished. OF THE The subjoined catalogue of the species known to inhabit PROGRESS our State, will, perhaps, best present an outline of the OF THE labor already performed, and at the same time furnish GEOLOGICAL SURVEY desirable information in regard to the geographical range OF MICHIGAN, of species. EMBRACING OBSERVATIONS ON THE In addition to the list here presented there are large GEOLOGY, ZOÖLOGY, AND BOTANY numbers of specimens that remain to be identified and OF THE described, which will materially increase the number of LOWER PENINSULA known species in the State. The fishes, insects, and crustaceans have not been worked up and for that reason have been omitted from MADE TO THE GOVERNOR, DECEMBER 31, 1860. the catalogue. BY AUTHORITY. It may not be out of place in this connection to make a brief statement of the aims to be kept in view, and the LANSING: results which may be expected to follow from the earnest Hosmer & Kerr, Printers to the State. prosecution of the study of the Zoology of our State. 1861. From the intimate and important relations existing Digitized by Google between man and the various branches of the Animal REPORT OF THE STATE GEOLOGIST. kingdom, he is particularly interested in becoming acquainted with the forms, structure, metamorphoses, habits, and dispositions of the animate beings which surround him. He would thus be better fitted to act intelligently in availing himself of the benefits to be PART II.
    [Show full text]