Cenliau Thesis Final.Pdf (14.34Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Cenliau Thesis Final.Pdf (14.34Mb) Application of second and third generation sequencing in pharmacogenetics A thesis submitted for the degree of Doctor of Philosophy in Pathology and Biomedical Science Yusmiati Liau University of Otago, Christchurch, New Zealand May 2020 Attribution of collaborative contributions to work in this thesis Chapter 3 The candidate carried out all laboratory work and bioinformatic analysis for nanopore sequencing with guidance from Dr Simone Cree (this laboratory). Dr Patrick A. Gladding (Theranostics Laboratory, Auckland, NZ) provided clinical samples with CYP2C19*2, CYP2C19*3, and CYP2C19*17 genotype information derived from Nanosphere Verigene® or Sequenom MassARRAY platform. Wubin Qu (iGeneTech Bioscience, Beijing, China) assisted with the primer design for multiplex assay using MFEprimer. Chapter 4 Dr Simran Maggo (this laboratory) consented all participants of the ADR biobanks. Dr Simran Maggo and Allison Miller (this laboratory) extracted the DNA samples. The candidate carried out all laboratory work and bioinformatic analysis on nanopore sequencing and some of the Sanger sequencing. Dr Simran Maggo performed some of the Sanger sequencing. Will Taylor (Department of Surgery, University of Otago, Christchurch) and Assoc. Prof John Pearson (Department of Pathology, University of Otago, Christchurch) helped with installation of several bioinformatic tools. Assoc. Prof John Pearson also helped with the statistics for detecting duplicated alleles. Chapter 5 Participants of the UDRUGS and GAARD biobank were consented by clinicians and nurses within the Clinical Pharmacology Department, University of Otago, Christchurch. Dr Simran Maggo and Allison Miller extracted the DNA samples. Dr Klaus Lehnert (School of Biological Sciences, The University of Auckland, NZ) processed the raw data and generated the final VCF files for WGS. The candidate performed all subsequent analyses using this dataset. With assistance from the candidate, Dr Kit Doudney (formerly: Canterbury Health Laboratories, Christchurch) performed array-based comparative genomic i hybridisation (aCGH). The candidate, with guidance from Dr Kit Doudney, performed the CNV data analysis for aCGH. The candidate performed all other laboratory work and data analysis. Chapter 6 Assoc. Prof Greg Jones (Department of Surgery, University of Otago, Dunedin, NZ) provided methylation and clinical data for the clinical cohort and guided the candidate in performing the data analysis for this dataset using the Qlucore software. John Wallace (Canterbury Health Laboratories) performed the ACE activity assay. The candidate prepared the DNA library for the first BSAS run, which was performed together with the library prepared by Alex Noble, an opportunity generously offered by Dr Amy Osborne from the University of Canterbury. The candidate prepared the initial library for the second BSAS run, and Dr Meik Dilcher (Canterbury Health Laboratories) performed the final step of BSAS and loading into MiSeq with the assistance from the candidate. The candidate performed data analysis for BSAS. Dr Aaron Stevens guided the candidate to analyse the methylation array data The candidate performed cell culture work and overall data analysis. ii Abstract The next generation sequencing technologies have advanced pharmacogenetics by enabling rapid assessment of the entire exome or even whole genome for associations between variants or gene regions with drug response. Third generation sequencing such as nanopore sequencing overcomes the limitations of short read sequencing by offering low capital cost and advantages in deciphering complex genes, detecting structural variants, and providing accurate haplotypes. The first aim of this thesis was to explore nanopore sequencing for pharmacogenetic implementation. The second part of this thesis applied genomic technologies to investigate genetic and epigenetic contributors to a rare but serious adverse drug reaction. At the outset of this thesis, a multiplex assay comprising common and rare genetic variants attributed to response variability to clopidogrel and warfarin was developed and validated on the nanopore sequencing technology. A one-tube multiplex PCR was employed to amplify 15 regions containing 27 variants in seven genes. Use of sample barcodes enabled inclusion of 84 samples in one sequencing run to provide a cost- effective assay. With the relatively error-prone state of the nanopore sequencing device and chemistry at the time of study, accuracy of variant genotyping relied heavily on the choice of bioinformatic tools and was sequence-dependent. Using Albacore v2 as the basecalling tool and nanopolish or Clairvoyante as variant calling tools, accuracy of ≥90% was achieved for all variants except one. Nanopolish resulted in <90% accuracy only for VKORC1 rs9923231 and Clairvoyante resulted in <90% only for CYP2C19*2 rs4244285. Accuracy did not improve by increasing read depth. This illustrated that it was possible to develop multiplexed, targeted genotyping assays on the nanopore platform, although further improvements in the platform may be required to obtain optimal accuracy. Nanopore sequencing offers great potential for genotyping complex genes such as CYP2D6, which is hindered by the very polymorphic nature of the gene, high homology with its pseudogene CYP2D7, and the occurrence of structural variants. Therefore, a second goal of this PhD was to establish and apply an effective nanopore sequencing method for CYP2D6. DNA amplicons encompassing the CYP2D6 gene from seven reference samples of known genotype (Coriell Institute, Camden, NJ, iii USA), and 25 clinical samples from adverse drug reaction cohorts were sequenced and analysed over two sequencing runs on the nanopore sequencer. All alleles were genotyped and all duplicated alleles were determined accurately. In addition, five novel variants, one novel allele, CYP2D6*127, and seven novel subvariants were identified in this study. Although the method proved efficient and generally effective, it was noteworthy that the presence of a hybrid allele CYP2D6*68 in two of the reference samples was undetected by this method. Although pharmacogenetic studies have been fruitful in elucidating the response variability of a large number of drugs, variation in response to many other drugs remains unresolved. An example is angioedema induced by angiotensin converting enzyme inhibitor (ACEi-A). This potentially fatal reaction occurs in approximately three of 1000 individuals taking the drugs. Genome-wide analysis by whole exome sequencing was performed for five DNA samples from participants having this ADR and whole genome sequencing was performed on another 15 samples. Initial analysis on 15 previously reported variants potentially associated with the ADR did not show any significant enrichment in the ACEi-A group compared to population allele frequency. Analysis on the whole exome and whole genome datasets only resulted in one rare coding variant found to be consistently enriched in both datasets, rs4365 in ACE, with allele frequency of 40% in the ACEi-A cohort compared to 3% in the population. This synonymous variant is predicted to be benign, and the possible significance of this variant to ACEi-A is yet to be elucidated. A number of moderately enriched variants were identified, however, no single rare variant with minor allele frequency of <1% was found in more than seven of the 15 whole genome sequencing datasets. Limited CNV analysis on subsets of samples did not find any variant affecting candidate genes. Further understanding of the genetic make-up of this rare ADR will likely benefit from collection of more cases and application of different approaches including analysis of combined effect of multiple variants, analysis of the ADR as complex trait, or more comprehensive analysis of structural variants. As attempts to find the genetic variants responsible for ACEi-A did not implicate any strong candidates; the potential of epigenetic regulation involvement in this ADR was explored by investigating the effect of ACEi on DNA methylation in clinical samples and cell culture model. Analysis of existing methylation array data from patient iv samples with and without ACEi consumption showed a putative differentially methylated CpG site on chromosome 10. However, this was not validated in the in vitro experiment. Methylation array data from the cell culture experiment resulted in several potential CpG sites showing differential methylation, however none of these was validated using bisulfite amplicon sequencing. Overall, this work showed little evidence of effect of ACEi on DNA methylation, and it seems unlikely that DNA methylation change by ACEi is involved in the association of angioedema with the drug. The work in this thesis applied various approaches and technologies to advance knowledge in pharmacogenetics. Nanopore sequencing was shown to be beneficial for pharmacogenetic applications and with the continual improvement in accuracy, this technology will continue to be a valuable tool, especially in elucidating complex structural variants and providing accurate haplotype information. Short read sequencing technologies for whole exome or whole genome sequencing are useful for interrogation of rare variants; however other approaches might be needed to elucidate the basis of potentially complex phenotypes such as ADR. Lastly, studies of epigenetic regulation in pharmacogenetics are still limited, and the potential role of epigenetics in ADR merits further exploration. v Acknowledgment “But the dream
Recommended publications
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis Et Al
    US 201500 72349A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis et al. (43) Pub. Date: Mar. 12, 2015 (54) CANCER BOMARKERS AND METHODS OF (52) U.S. Cl. USE CPC. G0IN33/57484 (2013.01); G0IN 2333/705 (2013.01) (71) Applicant: University Health Network, Toronto USPC ......................................... 435/6.12: 435/7.94 (CA) (57) ABSTRACT A method of evaluating a probability a Subject has a cancer, (72) Inventors: Eleftherios P. Diamandis, Toronto diagnosing a cancer and/or monitoring cancer progression (CA); Ioannis Prassas, Toronto (CA); comprising: a. measuring an amount of a biomarker selected Shalini Makawita, Toronto (CA); from the group consisting of CUZD1 and/or LAMC2 and/or Caitlin Chrystoja, Toronto (CA); Hari the group CUZD1, LAMC2, AQP8, CELA2B, CELA3B, M. Kosanam, Maple (CA) CTRB1, CTRB2, GCG, IAPP, INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, KLK3, NPY, (21) Appl. No.: 14/385,449 PSCA, RLN1, SLC45A3, DSP GP73, DSG2, CEACAM7, CLCA1, GPA33, LEFTY1, ZG16, IRX5, LAMP3, MFAP4, (22) PCT Fled: Mar. 15, 2013 SCGB1A1, SFTPC, TMEM100, NPY, PSCA RLN1 and/or SLC45A3 in a test sample from a subject with cancer; (86) PCT NO.: PCT/CA2O13/OOO248 wherein the cancer is pancreas cancer if CUZD1, LAMC2, S371 (c)(1), AQP8, CELA2B, CELA3B, CTRB1, CTRB2, GCG, LAPP (2) Date: Sep. 23, 2014 INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, DSP GP73 and/or DSG2 is selected; the cancer is colon cancer if CEACAM7, CLCA1, GPA33, LEFTY 1 and/ Related U.S. Application Data or ZG16 is selected, the cancer is lung cancer if IRX5, (60) Provisional application No.
    [Show full text]
  • A Case of Congenital Central Hypothyroidism Caused by a Novel Variant (Gln1255ter) in IGSF1 Gene
    Türkkahraman D et al. A Novel Variant in IGSF1 Gene CASE REPORT DO I: 10.4274/jcrpe.galenos.2020.2020.0149 J Clin Res Pediatr Endocrinol 2021;13(3):353-357 A Case of Congenital Central Hypothyroidism Caused by a Novel Variant (Gln1255Ter) in IGSF1 Gene Doğa Türkkahraman1, Nimet Karataş Torun2, Nadide Cemre Randa3 1University of Health Sciences Turkey, Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology, Antalya, Turkey 2University of Healty Sciences Turkey, Antalya Training and Research Hospital, Clinic of Pediatrics, Antalya, Turkey 3University of Healty Sciences Turkey, Antalya Training and Research Hospital, Clinic of Medical Genetics, Antalya, Turkey What is already known on this topic? Mutations in the immunoglobulin superfamily, member 1 (IGSF1) gene that mainly regulates pituitary thyrotrope function lead to X-linked hypothyroidism characterized by congenital hypothyroidism of central origin and testicular enlargement. The clinical features associated with IGSF1 mutations are variable, but prolactin and/or growth hormone deficiency, and discordance between timing of testicular growth and rise of serum testosterone levels could be seen. What this study adds? Genetic analysis revealed a novel c.3763C>T variant in the IGSF1 gene. To our knowledge, this is the first reported case of IGSF1 deficiency from Turkey. Additionally, as in our case, early testicular enlargement but delayed testosterone rise should be evaluated in all boys with central hypothyroidism, as macro-orchidism is usually seen in adulthood. Abstract Loss-of-function mutations in the immunoglobulin superfamily, member 1 (IGSF1) gene cause X-linked central hypothyroidism, and therefore its mutation affects mainly males. Central hypothyroidism in males is the hallmark of the disorder, however some patients additionally present with hypoprolactinemia, transient and partial growth hormone deficiency, early/normal timing of testicular enlargement but delayed testosterone rise in puberty, and adult macro-orchidism.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • AN SSX4 KNOCK-IN CELL LINE MODEL and in Silico ANALYSIS of GENE EXPRESSION DATA AS TWO APPROACHES for INVESTIGATING MECHANISMS of CANCER/TESTIS GENE EXPRESSION
    AN SSX4 KNOCK-IN CELL LINE MODEL AND in silico ANALYSIS OF GENE EXPRESSION DATA AS TWO APPROACHES FOR INVESTIGATING MECHANISMS OF CANCER/TESTIS GENE EXPRESSION A THESIS SUBMITTED TO THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS AND THE INSTITUTE OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE BY DUYGU AKBAŞ AVCI AUGUST 2009 Sevgili eşim Ender’e ve aileme… ii I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assist. Prof. Dr. Ali Güre I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assoc. Prof. Dr. Hilal Özdağ I certify that I have read this thesis and that in my opinion it is fully adequate, in scope, and in quality, as a thesis for the degree of Master of Science. ____________________ Assist.Prof. Dr.Özlen Konu Approved for the Institute of Engineering and Science ____________________ Prof. Dr. Mehmet Baray Director of the Institute of Engineering and Science iii ABSTRACT AN SSX4 KNOCK-IN CELL LINE MODEL AND in silico ANALYSIS OF GENE EXPRESSION DATA AS TWO APPROACHES FOR INVESTIGATING MECHANISMS OF CANCER/TESTIS GENE EXPRESSION Duygu Akbaş Avcı M.Sc. in Molecular Biology and Genetics Supervisor: Assist. Prof. Ali O. Güre August 2009, 104 pages Cancer/testis (CT) genes mapping to the X chromosome (CT-X) are normally expressed in male germ cells but not in adult somatic tissues, with rare exception of oogonia and trophoblast cells; whereas they are aberrantly expressed in various types of cancer.
    [Show full text]
  • X-Linked Diseases: Susceptible Females
    REVIEW ARTICLE X-linked diseases: susceptible females Barbara R. Migeon, MD 1 The role of X-inactivation is often ignored as a prime cause of sex data include reasons why women are often protected from the differences in disease. Yet, the way males and females express their deleterious variants carried on their X chromosome, and the factors X-linked genes has a major role in the dissimilar phenotypes that that render women susceptible in some instances. underlie many rare and common disorders, such as intellectual deficiency, epilepsy, congenital abnormalities, and diseases of the Genetics in Medicine (2020) 22:1156–1174; https://doi.org/10.1038/s41436- heart, blood, skin, muscle, and bones. Summarized here are many 020-0779-4 examples of the different presentations in males and females. Other INTRODUCTION SEX DIFFERENCES ARE DUE TO X-INACTIVATION Sex differences in human disease are usually attributed to The sex differences in the effect of X-linked pathologic variants sex specific life experiences, and sex hormones that is due to our method of X chromosome dosage compensation, influence the function of susceptible genes throughout the called X-inactivation;9 humans and most placental mammals – genome.1 5 Such factors do account for some dissimilarities. compensate for the sex difference in number of X chromosomes However, a major cause of sex-determined expression of (that is, XX females versus XY males) by transcribing only one disease has to do with differences in how males and females of the two female X chromosomes. X-inactivation silences all X transcribe their gene-rich human X chromosomes, which is chromosomes but one; therefore, both males and females have a often underappreciated as a cause of sex differences in single active X.10,11 disease.6 Males are the usual ones affected by X-linked For 46 XY males, that X is the only one they have; it always pathogenic variants.6 Females are biologically superior; a comes from their mother, as fathers contribute their Y female usually has no disease, or much less severe disease chromosome.
    [Show full text]
  • Effects on Production Traits of Haplotypes Among Casein Genes in Norwegian Goats and Evidence for a Site of Preferential Recombination
    Copyright Ó 2006 by the Genetics Society of America DOI: 10.1534/genetics.106.058966 Effects on Production Traits of Haplotypes Among Casein Genes in Norwegian Goats and Evidence for a Site of Preferential Recombination Ben Hayes,1,2 Nina Hagesæther,1 Tormod A˚ dnøy, Grunde Pellerud, Paul R. Berg and Sigbjørn Lien Centre for Integrative Genetics and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432 A˚ s, Norway Manuscript received April 5, 2006 Accepted for publication July 2, 2006 ABSTRACT In goat milk the most abundant proteins are the casein genes, CSN1S1, CSN2, CSN1S2, and CSN3. Mutations have been identified within these genes affecting the level of gene expression, and effects on milk production traits have been reported. The aim of this study was to detect polymorphisms (SNPs) in the casein genes of Norwegian goats, resolve haplotype structures within the loci, and assess the effect of these haplotypes on milk production traits. Four hundred thirty-six Norwegian bucks were genotyped for 39 polymorphic sites across the four loci. The numbers of unique haplotypes present in each locus were 10, 6, 4, and 8 for CSN1S1, CSN2, CSN1S2, and CSN3, respectively. The effects of the CSN1S1 haplotypes on protein percentage and fat kilograms were significant, as were the effects of CSN3 haplotypes on fat percentage and protein percentage. A deletion in exon 12 of CSN1S1, unique to the Norwegian goat popu- lation, explained the effects of CSN1S1 haplotypes on fat kilograms, but not protein percentage. Inves- tigation of linkage disequilibrium between all possible pairs of SNPs revealed higher levels of linkage disequilbrium for SNP pairs within casein loci than for SNP pairs between casein loci, likely reflecting low levels of intragenic recombination.
    [Show full text]
  • Specificity of a Polyclonal Fecal Elastase ELISA for CELA3
    RESEARCH ARTICLE Specificity of a Polyclonal Fecal Elastase ELISA for CELA3 Frank Ulrich Weiss, Christoph Budde, Markus M. Lerch* University Medicine Greifswald, Department of Medicine A, Ferdinand Sauerbruch-Str., D-17475 Greifswald, Germany * [email protected] a11111 Abstract Introduction Elastase is a proteolytic pancreatic enzyme that passes through the gastrointestinal tract undergoing only limited degradation. ELISA tests to determine stool elastase concentra- tions have therefore been developed for the diagnosis of exocrine pancreatic insufficiency. OPEN ACCESS Five different isoforms of pancreatic elastase (CELA1, CELA2A, CELA2B, CELA3A, Citation: Weiss FU, Budde C, Lerch MM (2016) CELA3B) are encoded in the human genome. We have investigated three different poly- Specificity of a Polyclonal Fecal Elastase ELISA for CELA3. PLoS ONE 11(7): e0159363. doi:10.1371/ clonal antisera that are used in a commercial fecal elastase ELISA to determine their speci- journal.pone.0159363 ficity for different pancreatic elastase isoforms. Editor: Keping Xie, The University of Texas MD Anderson Cancer Center, UNITED STATES Material and Methods Received: October 9, 2015 Different polyclonal rabbit antisera against human elastase peptides (BIOSERV Diagnos- Accepted: July 2, 2016 tics GmbH, Germany) were tested by Western blot analysis of human pancreatic juice, in HEK-293 cells expressing Elastase constructs, and in the protein content of porcine pancre- Published: July 26, 2016 atin, used for treatment of exocrine pancreatic insufficiency. Copyright: © 2016 Weiss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits Results unrestricted use, distribution, and reproduction in any In human pancreatic juice the polyclonal antisera detected proteins at the corresponding medium, provided the original author and source are size of human pancreatic elastase isoforms (~29kDa).
    [Show full text]
  • Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation
    bioRxiv preprint doi: https://doi.org/10.1101/790618; this version posted October 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation 1,2 3 4 5,6,7 Natasha H. J. Ng *, Sara M. Willems *, Juan Fernandez , Rebecca S. Fine , Eleanor Wheeler8,3, Jennifer Wessel9,10, Hidetoshi Kitajima4, Gaelle Marenne8, Jana K. Rundle1, Xueling Sim11,12, Hanieh Yeghootkar13, Nicola L. Beer1, Anne Raimondo1, Andrei I. Tarasov1, Soren K. Thomsen1,14, Martijn van de Bunt4,1, Shuai Wang15, Sai Chen12, Yuning Chen15, Yii-Der Ida Chen16, Hugoline G. de Haan17, Niels Grarup18, Ruifang Li-Gao17, Tibor V. Varga19, Jennifer L Asimit8,20, Shuang Feng21, Rona J. Strawbridge22,23, Erica L. Kleinbrink24, Tarunveer S. Ahluwalia25,26, Ping An27, Emil V. Appel18, Dan E Arking28, Juha Auvinen29,30, Lawrence F. Bielak31, Nathan A. Bihlmeyer28, Jette Bork-Jensen18, Jennifer A. Brody32,33, Archie Campbell34, Audrey Y Chu35, Gail Davies36,37, Ayse Demirkan38, James S. Floyd32,33, Franco Giulianini35, Xiuqing Guo16, Stefan Gustafsson39, Benoit Hastoy1, Anne U. Jackson12, Johanna Jakobsdottir40, Marjo-Riitta Jarvelin41,29,42, Richard A. Jensen32,33, Stavroula Kanoni43, Sirkka Keinanen- Kiukaanniemi44,45, Jin Li46, Man Li47,48, Kurt Lohman49, Yingchang Lu50,51, Jian'an Luan3, Alisa K. Manning52,53, Jonathan Marten54, Carola Marzi55,56, Karina Meidtner57,56, Dennis O. Mook- Kanamori17,58, Taulant Muka59,38, Giorgio Pistis60,61, Bram Prins8, Kenneth M.
    [Show full text]
  • Mclean, Chelsea.Pdf
    COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes.
    [Show full text]
  • Widespread Signals of Convergent Adaptation to High Altitude in Asia and America
    bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Widespread signals of convergent adaptation to high altitude in Asia and America Matthieu Foll 1,2,3,*, Oscar E. Gaggiotti 4,5, Josephine T. Daub 1,2, Alexandra Vatsiou 5 and Laurent Excoffier 1,2 1 CMPG, Institute oF Ecology and Evolution, University oF Berne, Berne, 3012, Switzerland 2 Swiss Institute oF BioinFormatics, Lausanne, 1015, Switzerland 3 Present address: School oF LiFe Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland 4 School oF Biology, Scottish Oceans Institute, University oF St Andrews, St Andrews, FiFe, KY16 8LB, UK 5 Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, Grenoble, France * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Living at high-altitude is one oF the most diFFicult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some oF the genetic bases oF adaptations in Tibetan, Andean and Ethiopian populations, relatively little evidence oF convergent evolution to altitude in diFFerent continents has accumulated.
    [Show full text]
  • X-Linked Infantile Nystagmus
    X-linked infantile nystagmus Description X-linked infantile nystagmus is a condition characterized by abnormal eye movements. Nystagmus is a term that refers to involuntary side-to-side movements of the eyes. In people with this condition, nystagmus is present at birth or develops within the first six months of life. The abnormal eye movements may worsen when an affected person is feeling anxious or tries to stare directly at an object. The severity of nystagmus varies, even among affected individuals within the same family. Sometimes, affected individuals will turn or tilt their head to compensate for the irregular eye movements. Frequency The incidence of all forms of infantile nystagmus is estimated to be 1 in 5,000 newborns; however, the precise incidence of X-linked infantile nystagmus is unknown. Causes Mutations in the FRMD7 gene cause X-linked infantile nystagmus. The FRMD7 gene provides instructions for making a protein whose exact function is unknown. This protein is found mostly in areas of the brain that control eye movement and in the light-sensitive tissue at the back of the eye (retina). Research suggests that FRMD7 gene mutations cause nystagmus by disrupting the development of certain nerve cells in the brain and retina. In some people with X-linked infantile nystagmus, no mutation in the FRMD7 gene has been found. The genetic cause of the disorder is unknown in these individuals. Researchers believe that mutations in at least one other gene, which has not been identified, can cause this disorder. Learn more about the gene associated with X-linked infantile nystagmus • FRMD7 Inheritance This condition is inherited in an X-linked pattern.
    [Show full text]