Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica Xu Wang,1,2,* Kory C. Douglas,3,* John L. VandeBerg4, Andrew G. Clark,1,2 and Paul B. Samollow3,† 1Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA. 2The Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY 14853, USA. 3Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA. 4Department of Genetics, Texas Biomedical Research Institute, and Southwest National Primate Research Center, San Antonio, TX 78245, USA. *These authors contributed equally to this work. †Correspondence: Paul B. Samollow, Ph.D., Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458 Telephone: 979-845-7095. FAX: 979-845-9972. Email:
[email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Running title: X-inactivation and epigenetic profiles in opossum Keywords: imprinted X-chromosome inactivation, escape from X inactivation, marsupial, ChIP-seq, RNA-Seq. 2 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky, inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica).