Systematic Genome-Scale Identification of Host Factors for SARS-Cov-2 Infection Across Models Yields a Core Single Gene Dependency; ACE2

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Genome-Scale Identification of Host Factors for SARS-Cov-2 Infection Across Models Yields a Core Single Gene Dependency; ACE2 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450244; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TITLE Systematic genome-scale identification of host factors for SARS-CoV-2 infection across models yields a core single gene dependency; ACE2. AUTHORS Katherine Chan1, Adrian Granda Farias1,2,*, Hunsang Lee1,*, Furkan Guvenc2,*, Patricia Mero1, Kamaldeep Aulakh1, Kevin R. Brown1, Shahan Haider1, Edyta Marcon1, Ulrich Braunschweig1, Amy Hin Yan Tong1, Shuye Pu1, Andrea Habsid1, Natasha Christie-Holmes4, Patrick Budylowski2, Audrey Astori5, Ayoob Ghalami6, Samira Mubareka7,8, Arinjay Banerjee9,10, Karen L. Mossman11, Jack Greenblatt1,2, Scott D. Gray-Owen2, Brian Raught5, Benjamin J. Blencowe1,2, Mikko Taipale1,2, Jason Moffat1,2,3 1Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1 2Department of Molecular Genetics, 1 King’s College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8 3Institute for Biomedical Engineering, Rosebrugh Building, 164 College Street, Room 407, University of Toronto, Toronto, Ontario, Canada, M5S3G9 4Combined Containment Level 3 Unit, Temerty Faculty of Medicine, University of Toronto Toronto, Ontario, Canada, M5S3E1 5Princess Margaret Cancer Center, Toronto, Ontario, Canada 6Office of Environmental Health & Safety, University of Toronto, Toronto, Ontario, Canada 7Sunnybrook Research Institute, Toronto, Ontario, Canada, M5S3E1 8Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada 9Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 10Department of Biology, University of Waterloo, Waterloo, Ontario, Canada 11Department of Medicine, McMaster University, Hamilton, Ontario, Canada * de-notes equal contributions Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450244; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. IN BRIEF SARS-CoV-2, depends on host cell components for infection and replication. Genome-wide CRISPR screens were performed in multiple human cell lines to elucidate common host dependencies required for SARS-CoV-2 infection. Only ACE2, the cognate SARS-CoV-2 entry receptor, was common amongst cell lines, while all other host genes identified were cell line specific, several of which converged on pathways involved in cell signalling, lipid metabolism, immune pathways, and chromatin modulation. Overall, a network of host factors was identified that will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate productive targeting of host genes and pathways. HIGHLIGHTS - Genome-wide CRISPR screens for SARS-CoV-2 in multiple human cell lines - Identification of wide-ranging cell-type dependent genetic dependencies for SARS-CoV-2 infection - ACE2 is the only common host factor identified across different cell types 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450244; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY SARS-CoV-2, depends on host cell components for replication, therefore the identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection. Such host factors may be necessary for infection and replication of SARS-CoV-2 and, if druggable, presents an attractive strategy for anti-viral therapy. We performed genome wide CRISPR knockout screens in Vero E6 cells and 4 human cell lines including Calu-3, Caco-2, Hek293 and Huh7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while all other host genes identified were cell line specific including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, lipid metabolism, immune pathways and chromatin modulation. Notably, chromatin modulator genes KMT2C and KDM6A in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed. Overall, the network of host factors that have been identified will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate the development of host-directed therapies. 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450244; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. INTRODUCTION Since its identification in late 2019, the highly infectious severe acute respiratory syndrome coronavirus (SARS-CoV-2) has rapidly spread across the world, resulting in over 160 million infections and greater than 3.7 million deaths as of June 9, 2021 (https://www.worldometers.info/coronavirus/). SARS-CoV-2 is closely related to SARS-CoV-1, which caused the 2002-2004 SARS epidemic, as well as MERS-CoV, the virus responsible for respiratory disease outbreaks in 27 countries since 2012 (da Costa et al., 2020). Infections can range from asymptomatic or mild cases to severe respiratory disease, that can lead to acute respiratory distress syndrome, septic shock and multi-organ failure (Vos et al., 2021). SARS-CoV- 2, after SARS-CoV and MERS-CoV, is the third zoonotic coronavirus in the last two decades to rise to epidemic, and now, pandemic proportions. Each of these viral outbreaks can be traced to animal hosts, with zoonosis accounting for human CoV infections. Increasingly close contact with diverse animal species will continue to drive zoonotic transmission of potentially deadly coronaviruses, which underscores the importance of clearly delineating the molecular mechanisms of human CoV viral infection (Banerjee et al., 2021a; Banerjee et al., 2021c). Like all viruses, SARS-CoV-2 is an obligate intracellular pathogen that depends on host cell components for replication. The viral envelope is studded with several proteins, including the Spike (S) glycoprotein that mediates direct virus-host cell interactions (Hartenian et al., 2020; V'Kovski et al., 2021). The SARS-CoV-2 S-protein is a heavily glycosylated homotrimer composed of two subunits, S1 (receptor binding domain - RBD) and S2 (helical domain that mediates membrane fusion), which act in a coordinate manner to attach to the host cell surface and initiate viral entry (Letko et al., 2020). S-protein RBD binds to the host receptor angiotensin-converting enzyme 2 (ACE2), which also serves as the entry receptor for SARS-CoV (Hoffmann et al., 2020). High variability in the RBD was the major determinant of cross species transmission and evolution of SARS-CoV-2 (Starr et al., 2020). Furthermore, mutations in RBD have appeared among pandemic variants, increasing virus transmissibility and potentially compromising efficacy of treatments and vaccines in development (Linsky et al., 2020). ACE2 is highly expressed in the lung, heart, arteries, kidney and intestines, an expression pattern that may in part explain the constellation of symptoms associated with SARS infection (Crackower et al., 2002; Danilczyk et al., 2006; Hashimoto et al., 2012; Imai et al., 2005; Zhang et al., 2020). In addition to ACE2, transmembrane protease serine 2 (TMPRSS2) has been identified as a cofactor that aids viral entry by priming S-protein through cleavage of the S1/S2 and S2’ cleavage sites (Zhu et al., 2021). Similarly, cathepsin L (CTSL) has also been shown to mediate S priming and facilitate intracellular viral release (Zhao et al., 2021). Recent studies show that SARS-CoV-2 has an insertion of a polybasic (RXYR) furin cleavage site at the S1/S2 boundary that is absent from SARS-CoV and other 2b betaCoVs. This could be an additional factor contributing to the increased virulence of SARS-CoV-2, as furin proteases are ubiquitously expressed in humans, providing expanded tissue tropism and pathogenesis (Wang et al., 2020). The SARS-CoV-2 life cycle appears to require a mixed array of host factors. A deeper understanding of the host-pathogen interactions of SARS-CoV-2 across a range of permissive models will help shed light on viral pathogenesis and host defense mechanisms. In fact, 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450244; this version posted June 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. therapeutic strategies targeting host factors are still important to consider as virus-targeted therapies will likely drive viral escape mechanisms and the emergence
Recommended publications
  • Widespread Signals of Convergent Adaptation to High Altitude in Asia and America
    bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Widespread signals of convergent adaptation to high altitude in Asia and America Matthieu Foll 1,2,3,*, Oscar E. Gaggiotti 4,5, Josephine T. Daub 1,2, Alexandra Vatsiou 5 and Laurent Excoffier 1,2 1 CMPG, Institute oF Ecology and Evolution, University oF Berne, Berne, 3012, Switzerland 2 Swiss Institute oF BioinFormatics, Lausanne, 1015, Switzerland 3 Present address: School oF LiFe Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland 4 School oF Biology, Scottish Oceans Institute, University oF St Andrews, St Andrews, FiFe, KY16 8LB, UK 5 Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, Grenoble, France * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Living at high-altitude is one oF the most diFFicult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some oF the genetic bases oF adaptations in Tibetan, Andean and Ethiopian populations, relatively little evidence oF convergent evolution to altitude in diFFerent continents has accumulated.
    [Show full text]
  • A Temporally Controlled Sequence of X-Chromosome Inactivation and Reactivation Defines Female Mouse in Vitro Germ Cells with Meiotic Potential
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455976; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A temporally controlled sequence of X-chromosome inactivation and reactivation defines female mouse in vitro germ cells with meiotic potential Jacqueline Severino1†, Moritz Bauer1,9†, Tom Mattimoe1, Niccolò Arecco1, Luca Cozzuto1, Patricia Lorden2, Norio Hamada3, Yoshiaki Nosaka4,5,6, So Nagaoka4,5,6, Holger Heyn2, Katsuhiko Hayashi7, Mitinori Saitou4,5,6 and Bernhard Payer1,8* Abstract The early mammalian germ cell lineage is characterized by extensive epigenetic reprogramming, which is required for the maturation into functional eggs and sperm. In particular, the epigenome needs to be reset before parental marks can be established and then transmitted to the next generation. In the female germ line, reactivation of the inactive X- chromosome is one of the most prominent epigenetic reprogramming events, and despite its scale involving an entire chromosome affecting hundreds of genes, very little is known about its kinetics and biological function. Here we investigate X-chromosome inactivation and reactivation dynamics by employing a tailor-made in vitro system to visualize the X-status during differentiation of primordial germ cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and characterized by a large number of genes escaping full inactivation.
    [Show full text]
  • Mouse Plac1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Plac1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Plac1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Plac1 gene (NCBI Reference Sequence: NM_019538 ; Ensembl: ENSMUSG00000061082 ) is located on Mouse chromosome X. 3 exons are identified, with the ATG start codon in exon 3 and the TAA stop codon in exon 3 (Transcript: ENSMUST00000114843). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Plac1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-412J16 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Female and male mice null for this gene display postnatal lethality with placental abnormalities. Female mice heterozygous for this allele display an enlarged placenta with expansion of the junctional zone. Exon 3 covers 100.0% of the coding region. Start codon is in exon 3, and stop codon is in exon 3. The size of effective cKO region: ~1643 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Plac1 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • PDF Output of CLIC (Clustering by Inferred Co-Expression)
    PDF Output of CLIC (clustering by inferred co-expression) Dataset: Num of genes in input gene set: 7 Total number of genes: 16493 CLIC PDF output has three sections: 1) Overview of Co-Expression Modules (CEMs) Heatmap shows pairwise correlations between all genes in the input query gene set. Red lines shows the partition of input genes into CEMs, ordered by CEM strength. Each row shows one gene, and the brightness of squares indicates its correlations with other genes. Gene symbols are shown at left side and on the top of the heatmap. 2) Details of each CEM and its expansion CEM+ Top panel shows the posterior selection probability (dataset weights) for top GEO series datasets. Bottom panel shows the CEM genes (blue rows) as well as expanded CEM+ genes (green rows). Each column is one GEO series dataset, sorted by their posterior probability of being selected. The brightness of squares indicates the gene's correlations with CEM genes in the corresponding dataset. CEM+ includes genes that co-express with CEM genes in high-weight datasets, measured by LLR score. 3) Details of each GEO series dataset and its expression profile: Top panel shows the detailed information (e.g. title, summary) for the GEO series dataset. Bottom panel shows the background distribution and the expression profile for CEM genes in this dataset. Overview of Co-Expression Modules (CEMs) with Dataset Weighting Scale of average Pearson correlations Num of Genes in Query Geneset: 7. Num of CEMs: 1. 0.0 0.2 0.4 0.6 0.8 1.0 Med14 Med21 Med6 Cdk8 Ccnc Med10 Med23 Med14 Med21
    [Show full text]
  • SUPPORTING INFORMATION for Regulation of Gene Expression By
    SUPPORTING INFORMATION for Regulation of gene expression by the BLM helicase correlates with the presence of G4 motifs Giang Huong Nguyen1,2, Weiliang Tang3, Ana I. Robles1, Richard P. Beyer4, Lucas T. Gray5, Judith A. Welsh1, Aaron J. Schetter1, Kensuke Kumamoto1,6, Xin Wei Wang1, Ian D. Hickson2,7, Nancy Maizels5, 3,8 1 Raymond J. Monnat, Jr. and Curtis C. Harris 1Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, U.S.A; 2Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, U.K.; 3Department of Pathology, University of Washington, Seattle, WA U.S.A.; 4 Center for Ecogenetics and Environmental Health, University of Washington, Seattle, WA U.S.A.; 5Department of Immunology and Department of Biochemistry, University of Washington, Seattle, WA U.S.A.; 6Department of Organ Regulatory Surgery, Fukushima Medical University, Fukushima, Japan; 7Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, Denmark; 8Department of Genome Sciences, University of WA, Seattle, WA U.S.A. SI Index: Supporting Information for this manuscript includes the following 19 items. A more detailed Materials and Methods section is followed by 18 Tables and Figures in order of their appearance in the manuscript text: 1) SI Materials and Methods 2) Figure S1. Study design and experimental workflow. 3) Figure S2. Immunoblot verification of BLM depletion from human fibroblasts. 4) Figure S3. PCA of mRNA and miRNA expression in BLM-depleted human fibroblasts. 5) Figure S4. qPCR confirmation of mRNA array data. 6) Table S1. BS patient and control detail.
    [Show full text]
  • Deep RNA Sequencing Analysis of Readthrough Gene Fusions in Human
    Nacu et al. BMC Medical Genomics 2011, 4:11 http://www.biomedcentral.com/1755-8794/4/11 RESEARCHARTICLE Open Access Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples Serban Nacu, Wenlin Yuan, Zhengyan Kan, Deepali Bhatt, Celina Sanchez Rivers, Jeremy Stinson, Brock A Peters, Zora Modrusan, Kenneth Jung, Somasekar Seshagiri*, Thomas D Wu* Abstract Background: Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods: We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results: Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations.
    [Show full text]
  • X‑Linked Congenital Ptosis and Associated Intellectual Disability
    Hum Genet (2014) 133:625–638 DOI 10.1007/s00439-013-1403-3 ORIGINAL INVESTIGATION X‑linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome R. S. Møller · L. R. Jensen · S. M. Maas · J. Filmus · M. Capurro · C. Hansen · C. L. M. Marcelis · K. Ravn · J. Andrieux · M. Mathieu · M. Kirchhoff · O. K. Rødningen · N. de Leeuw · H. G. Yntema · G. Froyen · J. Vandewalle · K. Ballon · E. Klopocki · S. Joss · J. Tolmie · A. C. Knegt · A. M. Lund · H. Hjalgrim · A. W. Kuss · N. Tommerup · R. Ullmann · A. P. M. de Brouwer · P. Strømme · S. Kjaergaard · Z. Tümer · T. Kleefstra Received: 8 August 2013 / Accepted: 21 November 2013 / Published online: 11 December 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Submicroscopic duplications along the long submicroscopic X-chromosome duplications, whereas arm of the X-chromosome with known phenotypic con- duplications in Xq25 and Xq26 have been reported in only sequences are relatively rare events. The clinical features a few cases. Using genome-wide array platforms we iden- resulting from such duplications are various, though they tified overlapping interstitial Xq25q26 duplications rang- often include intellectual disability, microcephaly, short ing from 0.2 to 4.76 Mb in eight unrelated families with stature, hypotonia, hypogonadism and feeding difficulties. in total five affected males and seven affected females.A ll Female carriers are often phenotypically normal or show a affected males shared a common phenotype with intrauter- similar but milder phenotype, as in most cases the X-chro- ine- and postnatal growth retardation and feeding difficul- mosome harbouring the duplication is subject to inactiva- ties in childhood.
    [Show full text]
  • Escape from X-Chromosome Inactivation: an Evolutionary Perspective
    fcell-07-00241 October 19, 2019 Time: 16:26 # 1 REVIEW published: 22 October 2019 doi: 10.3389/fcell.2019.00241 Escape From X-Chromosome Inactivation: An Evolutionary Perspective Bronwyn J. Posynick and Carolyn J. Brown* Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, Edited by: Celine Morey, or female advantage to escape. The conservation of some escape genes across UMR 7216 Epigénétique et Destin multiple species and the ability of the mouse inactive X to recapitulate human escape Cellulaire, France status both suggest that escape from XCI is controlled by conserved processes. Reviewed by: Evolutionary pressures to minimize dosage imbalances have led to the accumulation Laura Carrel, Penn State Health Milton S. Hershey of genetic elements that favor either silencing or escape; lack of dosage sensitivity Medical Center, United States might also allow for the escape of flanking genes near another escapee, if a boundary Gabriel Marais, Université Claude Bernard Lyon 1, element is not present between them.
    [Show full text]
  • Phenotypic Annotation of the Mouse X Chromosome Brian J. Cox , Marion
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Phenotypic annotation of the mouse X chromosome Brian J. Cox1,#, Marion Vollmer2,#, Owen Tamplin1,3,#, Mei Lu1, Steffen Biechele1,3, Marina Gertsenstein4,5, Claude van Campenhout2, Thomas Floss6, Ralf Kühn6, Wolfgang Wurst6,7,8,9,10, Heiko Lickert2*, Janet Rossant1,3,11* 1Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada 2Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany 3Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada 4Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada 5Toronto Centre for Phenogenomics, Transgenic Core, 25 Orde Street, Toronto, Canada 6 Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg, Germany 7MPI für Psychiatrie, Kraepelinstr. 2-10, München 8Helmholtz Zentrum München, German Research Center for Environmental Health Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg, Germany 9Technical University Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, Germany 10Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München Schillerstrasse 44, München, Germany 11Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada #Authors contributed equally *Corresponding authors Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Mutational screens are an effective means in the functional annotation of the genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies.
    [Show full text]
  • Die Nichtkodierende RNA Stair18 Und Ihre Pathophysiologische Funktion Im Glioblastom
    Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im Glioblastom Von der Fakultät für Lebenswissenschaften der Universität Leipzig genehmigte D I S S E R T A T I O N zur Erlangung des akademischen Grades Doktor rerum naturalium Dr. rer. nat. vorgelegt von M. Sc. Biol. Ivonne Zipfel geboren am 24.01.1989 in Leipzig Dekan: Prof. Dr. Marc Schönwiesner Gutachter: Prof. Dr. Thomas Magin Prof. Dr. Stefan Hüttelmaier Prof. Dr. Friedemann Horn Tag der Verteidigung: 15.11.2019 BIBLIOGRAPHISCHE DARSTELLUNG Ivonne Zipfel Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im Glioblastom Fakultät für Lebenswissenschaften Universität Leipzig Dissertation 219 Seiten, 270 Literaturangaben, 53 Abbildungen, 14 Tabellen Fehlregulationen von nichtkodierenden RNAs können Einfluss auf die Tumorgenese, Proliferation und Invasion verschiedenster Tumortypen, unter anderen auch auf das Glioblastom, nehmen. Das Glioblastom stellt nicht nur den häufigsten, sondern mit einer mittleren Überlebensrate von lediglich 14 Monaten auch den tödlichsten Hirntumor dar. Ein tieferes Verständnis der molekularen Grundlagen, die hinter dem hochinvasiven Verhalten dieses aggressiven Tumors liegen, ist folglich von großer Bedeutung, um neue gezielte Therapieansätze entwickeln zu können. In der vorliegenden Arbeit wurde die lange nichtkodierende RNA STAiR18 als möglicher Regulator der zellulären Funktionen von Glioblastomzellen strukturell und funktionell charakterisiert. STAiR18 zeigt eine ubiquitäre Expression in allen untersuchten humanen
    [Show full text]
  • Use of Network Pharmacology to Investigate the Mechanism of the Compound Xuanju Capsule in the Treatment of Rheumatoid Arthritis
    Hindawi BioMed Research International Volume 2021, Article ID 5568791, 14 pages https://doi.org/10.1155/2021/5568791 Research Article Use of Network Pharmacology to Investigate the Mechanism of the Compound Xuanju Capsule in the Treatment of Rheumatoid Arthritis Wenyang Wei, Wanpeng Lu, Xiaolong Chen, Yunfeng Yang, and Mengkai Zheng Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China Correspondence should be addressed to Mengkai Zheng; [email protected] Received 24 February 2021; Accepted 24 July 2021; Published 10 August 2021 Academic Editor: Nadeem Sheikh Copyright © 2021 Wenyang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To clarify the therapeutic mechanisms of compound Xuanju capsule-treated rheumatoid arthritis (RA) based on network pharmacology tactics. Method. The TCMSP, TCMID and STITCH databases were used to screen the active ingredients and targets in the compound Xuanju capsule; the OMIM, TTD, PharmGKB and GeneCards databases were applied to screen the RA-related disease targets. Then, the obtained targets were imported into Cytoscape 3.7.1 software to construct the active ingredient-target network and the RA-related disease-target network. The active ingredient-target PPI network, the RA-related disease-target PPI network and the common target PPI network were built by using the STRING platform and Cytoscape 3.7.1 software. The GO and KEGG analyses of the common targets were analyzed by using the Metascape and Bioinformatics online tools.
    [Show full text]
  • Chromosome-Wide Profiling of X-Chromosome Inactivation and Epigenetic States in Fetal Brain and Placenta of the Opossum, Monodelphis Domestica
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica Xu Wang,1,2,* Kory C. Douglas,3,* John L. VandeBerg4, Andrew G. Clark,1,2 and Paul B. Samollow3,† 1Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA. 2The Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY 14853, USA. 3Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA. 4Department of Genetics, Texas Biomedical Research Institute, and Southwest National Primate Research Center, San Antonio, TX 78245, USA. *These authors contributed equally to this work. †Correspondence: Paul B. Samollow, Ph.D., Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458 Telephone: 979-845-7095. FAX: 979-845-9972. Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Running title: X-inactivation and epigenetic profiles in opossum Keywords: imprinted X-chromosome inactivation, escape from X inactivation, marsupial, ChIP-seq, RNA-Seq. 2 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky, inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica).
    [Show full text]