GOES-P Press Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GAO-10-799 Geostationary Operational Environmental Satellites
United States Government Accountability Office Report to Congressional Committees GAO September 2010 GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES Improvements Needed in Continuity Planning and Involvement of Key Users GAO-10-799 September 2010 Accountability Integrity Reliability GEOSTATIONARY OPERATIONAL Highlights ENVIRONMENTAL SATELLITES Highlights of GAO-10-799, a report to Improvements Needed in Continuity Planning and congressional committees Involvement of Key Users Why GAO Did This Study What GAO Found The Department of Commerce’s NOAA has made progress on the GOES-R acquisition, but key instruments National Oceanic and Atmospheric have experienced challenges and important milestones have been delayed. Administration (NOAA), with the The GOES-R program awarded key contracts for its flight and ground aid of the National Aeronautics and projects, and these are in development. However, two instruments have Space Administration (NASA), is to experienced technical issues that led to contract cost increases, and procure the next generation of significant work remains on other development efforts. In addition, since geostationary operational environmental satellites, called 2006, the launch dates of the first two satellites in the series have been Geostationary Operational delayed by about 3 years. As a result, NOAA may not be able to meet its policy Environmental Satellite-R (GOES- of having a backup satellite in orbit at all times, which could lead to a gap in R) series. The GOES-R series is to coverage if GOES-14 or GOES-15 fails prematurely (see graphic). replace the current series of satellites, which will likely begin to Potential Gap in GOES Coverage reach the end of their useful lives in approximately 2015. -
Report of the Second United Nations Conference on the Exploration and Peaceful Uses of Outer Space
A/CONF.101/10 REPORT OF THE SECOND UNITED NATIONS CONFERENCE ON THE EXPLORATION AND PEACEFUL USES OF OUTER SPACE Vienna, 9-21 August 1982 UNITED NATIONS [Original: English] [31 August 1982] CONTENTS Paragraphs Page ACRONYMS AND ABBREVIATIONS • viii PART ONE: DECISIONS AND RECOMMENDATIONS OF THE CONFERENCE ..... 1 7 438 1 INTRODUCTION 1 f 15 1 I. STATE OF SPACE SCIENCE AND TECHNOLOGY 16 ~ 144 6 A. Space science 20-47 6 B. Experiments in space environment . 48-61 12 C. Telecommunications 62 - 77 15 D. Meteorology 78 - 90 20 E. Remote sensing 91 ~ i07 23 F. Navigation, global positioning and geodesy 108 * 126 27 G. Space transportation and space platform technologies . 127 - 144 30 II. APPLICATIONS OF SPACE SCIENCE AND TECHNOLOGY 145 - 312 35 A. Current and potential applications of space technology 145 - 189 35 1. Telecommunications 146 - 153 35 2. Mobile communications 154 37 3. Land-mobile communications 155 - 156 37 4. Maritime communication 157 - 158 38 5. Aeronautical communication 159 39 6. Satellite-to-satellite links 160 39 7. Future communications applications 162 39 8. Satellite broadcasting 162 - 164 39 9. Remote sensing 165 - 174 40 10. Meteorology 175 -r 182 43 11. Navigation, global positioning and geodesy 183 - 188 45 12. Future applications 189 47 B. Choices and difficulties in the use of space technology 190 - 206 47 1. Choices 190 - 194 47 -iii- CONTENTS (continued) 2. Difficulties 195 - 206 48 C. Possibilities and mechanisms for enabling all States to benefit from1space technology 207 - 233 52 D. Facilitating access, use and development of space technology 234 - 246 59 E. -
I Technical Memorandum 80704
NASA-TM-80704 19800019413 N/ A i TechnicalMemorandum 80704 Meteorological Satellites- LIBRAR, YcOPY- ._, : 3'JMm ..... HAMPVATON, L. J. Allison (Editor), A. Schnapf, B. C. Diesen, III, P. S. Martin, A. Schwalb, and W. R. Bandeen JUNE 1980 NationalAeronauticsand S0aceAdministration GoddardSpace FlightCenter Greenbelt.Maryland20771 METEOROLOGICALSATELLITES LewisJ. Allison (Editor) Goddard Space Flight Center Greenbelt, Maryland Contributing Authors: Abraham Schnapf, Bernard C. Diesen, III, Philip S. Martin, Arthur Schwalb, and WilliamR. Bandeen ABSTRACT This paper presents an overviewof the meteorologicalsatellite programs that havebeen evolvingfrom 1958 to the present and reviews plans for the future meteorological and environmental satellite systems that are scheduled to be placed into servicein the early 1980's. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA,and the present TIROS-N (the third-generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational polar- orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSPpayloadscurrently under developmentto assurea continued and orderly growth of these systemsinto the 1980's. iii CONTENTS ABSTRACT ............................................... iii EVOLUTION OF THE U.S. METEOROLOGICAL SATELLITE PROGRAMS ....... 1 TIROS ............................................... 1 ESSA ............................................... -
Early Contributions to Today's JPSS Initiatives As Seen from the First
TIROS-1 Established the Foundation for Today’s Remarkable JPSS and GOES-R Satellite Systems Gerald J. Dittberner* CIRA, Colorado State University, Fort Collins, CO and Thomas H. Vonder Haar Colorado State University, Fort Collins, CO *[email protected] Presented at the 16th Annual Symposium on New Generation Operational Environmental Satellite Systems, 100th American Meteorological Society Annual Meeting, Boston, MA, January 13, 2020 1 Outline JPSS TIROS ✦ The Path to Polar and Geostationary Systems th ✦ Celebrate the 60 anniversary of TIROS-1 ✦ The first operational weather satellite (1 Apr 1960) ✦ Satellites and Instruments ✦ Milestones ✦ Meteorology: Early initiatives for Operational Applications Dittberner and Vonder Haar, CIRA, Colorado State University 2 First Color Image from Space - JPSS TIROS Aerobee Rocket (1954) Source: Hubert and Berg, 1944 Dittberner and Vonder Haar, CIRA, Colorado State University 3 Diverse Collaborators Initiated Weather Satellites JPSS TIROS IGY Satellites TIROS Satellites 1955 - 1958 1958+ National Academies NASA* Designated to Coordinate Planning: Sponsor & Coordinate Execution - Army Signal Corps Rsrch Lab (Payload) - US Weather Bureau (Data Handling) - Naval Rsrch Lab (Vanguard Team) - Army Signal Corps Rsrch Lab (Payload) - Army Corps of Engineers - Naval Rsrch Lab (Vanguard Team) - Army Ballistic Missile Agency (Explorer) - Industries (esp. RCA) - Industries (esp. RCA) - Universities (Univ Iowa esp) - Universities (esp. Univ Iowa) - WWW (International Cooperation) - ARPA* Office of Naval Research* National Science Foundation* *sponsor transferring from ONR and NSF during IGY Source: A. Callahan, 2013 Dittberner and Vonder Haar, CIRA, Colorado State University 4 TIROS-1 JPSS TIROS Equipped with two TV cameras and two video recorders, the spacecraft orbited 450 miles above Earth, relaying nearly 20,000 images of clouds and storm systems moving across our planet. -
Gao-13-597, Geostationary Weather Satellites
United States Government Accountability Office Report to the Committee on Science, Space, and Technology, House of Representatives September 2013 GEOSTATIONARY WEATHER SATELLITES Progress Made, but Weaknesses in Scheduling, Contingency Planning, and Communicating with Users Need to Be Addressed GAO-13-597 September 2013 GEOSTATIONARY WEATHER SATELLITES Progress Made, but Weaknesses in Scheduling, Contingency Planning, and Communicating with Users Need to Be Addressed Highlights of GAO-13-597, a report to the Committee on Science, Space, and Technology, House of Representatives Why GAO Did This Study What GAO Found NOAA, with the aid of the National The National Oceanic and Atmospheric Administration (NOAA) has completed Aeronautics and Space Administration the design of its Geostationary Operational Environmental Satellite-R (GOES-R) (NASA), is procuring the next series and made progress in building flight and ground components. While the generation of geostationary weather program reports that it is on track to stay within its $10.9 billion life cycle cost satellites. The GOES-R series is to estimate, it has not reported key information on reserve funds to senior replace the current series of satellites management. Also, the program has delayed interim milestones, is experiencing (called GOES-13, -14, and -15), which technical issues, and continues to demonstrate weaknesses in the development will likely begin to reach the end of of component schedules. These factors have the potential to affect the expected their useful lives in 2015. This new October 2015 launch date of the first GOES-R satellite, and program officials series is considered critical to the now acknowledge that the launch date may be delayed by 6 months. -
Aerospace Facts and Figures 1979/80 Lunar Landing 1969-1979
Aerospace Facts and Figures 1979/80 Lunar Landing 1969-1979 This 27th annual edition of Aero space Facts and Figures commem orates the 1Oth anniversary of man's initial landing on the moon, which occurred on July 20, 1969 during the Apollo 11 mission. Neil Armstrong and Edwin E. Aldrin were the first moonwalkers and their Apollo 11 teammate was Com mand Module Pilot Michael Collins. Shown above is NASA's 1Oth anni versary commemorative logo; created by artist Paull Calle, it de picts astronaut Armstrong pre paring to don his helmet prior to the historic Apollo 11 launch. On the Cover: James J. Fi sher's cover art symboli zes th e Earth/ moon relationship and man's efforts to expl ore Earth 's ancien t sa tellite. Aerospace Facts and Figures m;ji8Q Aerospace Facts and Figures 1979/80 AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC. 1725 DeSales Street, N.W., Washington, D.C. 20036 Published by Aviation Week & Space Technology A MCGRAW-HILL PUBLICATION 1221 Avenue of the Americas New York, N.Y. 10020 (212) 997-3289 $6.95 Per Copy Copyright, July 1979 by Aerospace Industries Association of America, Inc. Library of Congress Catalog No. 46-25007 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1725 De Sales Street, N. W., Washington, D.C. 20036 (202) 347-2315 Director Allen H. Skaggs Chief Statistician Sally H. Bath Acknowledgments Air Transport Association Civil Aeronautics Board Export-Import Bank of the United States Federal Trade Commission General Aviation Manufacturers Association International Air Transport Association International Civil Aviation Organization National Aeronautics and Space Administration National Science Foundation U. -
NOAA NESDIS Independent Review Team Final Report 2017 Preface
NOAA NESDIS Independent Review Team Final Report 2017 Preface “Progress in understanding and predicting weather is one of the great success stories of twentieth century science. Advances in basic understanding of weather dynamics and physics, the establishment of a global observing system, and the advent of numerical weather prediction put weather forecasting on a solid scientific foundation, and the deployment of weather radar and satellites together with emergency preparedness programs led to dramatic declines in deaths from severe weather phenomena such as hurricanes and tornadoes.“ “The Atmospheric Sciences Entering the Twenty-First Century”, National Academy of Sciences, 1998. 2 Acknowledgements ▪ The following organizations provided numerous briefings, detailed discussions and extensive background material to this Independent Review Team (IRT): – National Oceanic and Atmospheric Administration (NOAA) – National Aeronautics and Space Administration (NASA) – Geostationary Operational Environmental Satellite R-Series (GOES-R) Program Office – Joint Polar Satellite System (JPSS) Program Office – NOAA/National Environmental Satellite, Data, and information Service (NESDIS) IRT Liaison Support Staff • Kelly Turner Government IRT Liaison • Charles Powell Government IRT Liaison • Michelle Winstead NOAA Support • Kevin Belanga NESDIS Support • Brian Mischel NESDIS Support ▪ This IRT is grateful for their quality support and commitment to NESDIS’ mission necessary for this assessment. 3 Overview ▪ Objective ▪ NESDIS IRT History ▪ Methodology -
China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1 -
Index of Astronomia Nova
Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K. -
Updated Expressions for Determining Temperatures and Emission Measures from GOES Soft X–Ray Measurements
Updated Expressions for Determining Temperatures and Emission Measures from GOES Soft X{ray Measurements Stephen M. White Dept. of Astronomy, University of Maryland, College Park, MD 20742 USA Roger J. Thomas and Richard A. Schwartz Code 682, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 USA February 9, 2005 Abstract. We investigate the conversion of the 0.5{4 and 1{8 A˚ soft X{ray flux measurements made by detectors on the Geostationary Operational Environmental Satellites (GOES) into temperature and emission measures of coronal plasma using modern spectral models and modern understanding of coronal abundances. In particular, the original analysis by Thomas, Starr & Crannell (1985) is updated to take into account the realization that coronal abundances may be quite different from photospheric abundances. An important result of this analysis is that the derived temperatures and emission measures depend strongly on the assumed abundances even at high temperatures where continuum rather than spectral lines dominates the Sun's X{ray spectrum. This occurs because the higher coronal abundances mean that most of the continuum is due to free{bound emission processes, not free{free emission, and thus is abundance{dependent. We find significant differences between modern calculations of the temperature response of the flux measurements and the versions currently in use: for a typical flare, emission measures may be up to a factor of 4 smaller than the current software suggests. Derived temperatures are similar for both photospheric and coronal abundances for cool flares (e.g., 15 MK), but for hot flares (e.g., 35 MK) coronal abundances can lead to significantly (∼ 25%) lower temperatures being derived. -
Table of Artificial Satellites Launched in 1978
This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧﻘﻼ ً◌ 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union Table of artificial satellites launched in 1978 COSMOS-1 012 1978 54A C0SM0S-1064 1978 119A MOLNYA-1 (40 ) 1978 55A A C0SM0S-1013 1978 56A C0SM0S-1065 1978 120A MOLNYA-1 (41) 1978 72 A COSMOS-1066 1 21A MOLNYA-1 (42) 1978 80A AMSAT-OSCAR-8 1978 26B C0SM0S-1014 1978 56B 1978 MOLNYA-3 (9) 1 978 9A ANIK-B1 1978 116A C0SM0S-1015 1978 56 C COSMOS-1067 1978 122A C0SM0S-1016 1978 56D COSMOS-1 068 1978 -
Nos. 13-1231 & 13-1232 Washington, D.C. 20530
USCA Case #13-1231 Document #1472126 Filed: 12/23/2013 Page 1 of 98 ORAL ARGUMENT NOT YET SCHEDULED BRIEF FOR RESPONDENTS IN THE UNITED STATES COURT OF APPEALS FOR THE DISTRICT OF COLUMBIA CIRCUIT NOS. 13-1231 & 13-1232 SPECTRUM FIVE LLC, APPELLANT, V. FEDERAL COMMUNICATIONS COMMISSION, APPELLEE. SPECTRUM FIVE LLC, PETITIONER, V. FEDERAL COMMUNICATIONS COMMISSION AND UNITED STATES OF AMERICA, RESPONDENTS. ON APPEAL FROM AND PETITION FOR REVIEW OF AN ORDER OF THE FEDERAL COMMUNICATIONS COMMISSION WILLIAM J. BAER JONATHAN B. SALLET ASSISTANT ATTORNEY GENERAL ACTING GENERAL COUNSEL ROBERT B. NICHOLSON JACOB M. LEWIS ROBERT J. WIGGERS ASSOCIATE GENERAL COUNSEL ATTORNEYS MATTHEW J. DUNNE UNITED STATES COUNSEL DEPARTMENT OF JUSTICE WASHINGTON, D.C. 20530 FEDERAL COMMUNICATIONS COMMISSION WASHINGTON, D.C. 20554 (202) 418-1740 USCA Case #13-1231 Document #1472126 Filed: 12/23/2013 Page 2 of 98 CERTIFICATE AS TO PARTIES, RULINGS, AND RELATED CASES Pursuant to D.C. Circuit Rule 28(a)(1), Appellee/Respondent the Federal Communications Commission (“FCC”) and Respondent the United States certify as follows: 1. Parties. The parties appearing before the FCC were DIRECTV Enterprises, LLC; EchoStar Satellite Operating Corporation; the Government of Bermuda; Radiocommunications Agency Netherlands; SES S.A.; and Spectrum Five LLC. The parties appearing before this Court are Appellant/Petitioner Spectrum Five LLC; Appelle/Respondent the FCC; Respondent the United States in No. 13-1232 only; and Intervenor EchoStar Satellite Operating Corporation. 2. Ruling under review. The ruling under review is Memorandum Opinion and Order, EchoStar Satellite Operating Company; Application for Special Temporary Authority Relating to Moving the EchoStar 6 Satellite from the 77° W.L.