Use and Abuse of Eight Widely-Used Diagnostic Procedures in Clinical Immunology: a WHO Memorandum*

Total Page:16

File Type:pdf, Size:1020Kb

Use and Abuse of Eight Widely-Used Diagnostic Procedures in Clinical Immunology: a WHO Memorandum* Bulletin of the World Health Organization, 59 (5): 717-728 (1981) Use and abuse of eight widely-used diagnostic procedures in clinical immunology: a WHO Memorandum* This Memorandum assesses eight widely-used diagnostic procedures with the aim of establishing their usefulness in patient care. For eachprocedure, the main methods that can be recommended at present are outlined and their pitfalls discussed. For each procedure, recommendations are made as to the clinical conditions for which the test is essentialfor diagnosis, the conditions for which the test will help in assessing and monitoring disease activity, and the conditionsfor which the test is usefulfor research purposes only. The recent expansion of clinical immunology has application of some immunological techniques, with- been accompanied by the introduction of a variety of out detriment to patient care. The present Memor- immunological diagnostic tests in clinical labora- andum is an attempt to define indications for im- tories. Owing to increasing demands from clinicians munological tests. It has been restricted to the analysis for such procedures, their use has often been exag- of eight widely-used diagnostic procedures. gerated and there is a general feeling that a better For each procedure, two aspects have been con- definition of the indications for such tests, made in sidered. First, the main methods currently recom- relation to patients' needs, would be beneficial. mended are outlined and their pitfalls discussed. Obviously, immunological tests, like any other Technical details are not included since they are diagnostic tests, can be graded according to their use- readily available (J).a Second, particular attention has fulness in the care of patients. Some tests are essential been given to definition of the clinical conditions for for diagnosis, prognosis, or monitoring of disease; which the test is essential for diagnosis, those for many tests are useful but optional for routine investi- which the test is helpful in assessing or monitoring the gations; other tests are of interest only for research disease activity, and those conditions for which the purposes. In addition, a number of immunological test should be used only for clinical research purposes. tests are useless in some circumstances. The conclusions of this committee reflect the There is a consensus among immunologists that an present status of the art and do not preclude future effort should be made to reduce their share in the con- improvements. It was the feeling that the primary goal tinually increasing cost of medical laboratory investi- ofclinical immunology should be to help the patient in gations. This requires self-limitation in the routine the most cost-effective manner. QUANTIFICATION OF IMMUNOGLOBULINS The assessment of the three major immunoglobulin immunological methods is important in a limited classes in body fluids involves three laboratory tech- number of clinical conditions. This test is too often niques: serum electrophoresis, quantification of performed without good indication. major immunoglobulin classes, and immunoelectro- phoresis. The measurement of IgE requires more METHODOLOGICAL CONSIDERATIONS sensitive techniques (see pages 720-721). There is no clinical indication for the measurement of serum IgD. Quantification of the immunoglobulin classes by Many methods have been described for the quanti- tative assessment of immunoglobulins. Two of them * This Memorandum was prepared by the participants in a work- are currently of the most value and of comparable ing group organized jointly by the International Union of Immuno- logical Societies and the World Health Organization, in Geneva on accuracy: a) radial immunodiffusion (RID) and b) 18-20 May 1981. The names of the participants are listed on pages nephelometry. 727-728. Reprints should be requested from Chief, Immunology, World Health Organization, 1211 Geneva 27, Switzerland. A French a MACKAY, I.R. & RIrTS, R.E. WHO handbook of immuno- translation of this Memorandum will appear in a later issue of the logical techniques. Unpublished WHO document, WHO/IMM. Bulletin. TECH/79.1 (1979). 4107 717- 718 WHO MEMORANDUM When the patient load is relatively low, RID will Normal values probably remain the method ofchoice. However, with Concentrations of immunoglobulins in sera vary a high patient load and if a nephelometer is already with age, geographical environment, and sex. Each available, nephelometry is useful. laboratory should measure serum immunoglobulin concentrations on a matched control group. Radial immunodiffusion Radial immunodiffusion has a constant coefficient of variation which under optimal conditions may be less than 10%, except at extremely low concentra- CLINICAL INDICATIONS tions. The limit of accurate protein measurements, using low concentrations of antisera, is about 10 mg/l (10 Mg/ml). Techniques using limited diffusion are Serum more accurate than those with timed diffusion. With Quantification of serum immunoglobulins is re- normal sera, results can be obtained after 24 h of dif- garded as essential in suspected primary or secondary fusion, but more time may be required for the assess- immunodeficiency (ID), even when no abnormality is ment of very high or very low levels. seen in electrophoresis. Concentrations of immuno- Pitfalls. RID is sensitive to differences in diffusion globulins cannot be used, however, as the sole constants; special precautions should be taken to criterion for diagnosis of primary ID. Selective IgA ensure that immunoglobulins in the standard and test deficiency may occur without any evidence of associ- sera are not split or aggregated and are in the same ated disease, and IgA is undetectable in approximately form. For instance, reliable measurements of such 0.03-0.2% of the normal population. On the other proteins as IgM of low relative molecular mass and hand, failure to respond to one or more antigens can secretory IgA cannot be made unless a standard prep- sometimes be observed in patients with normal or high aration of these kinds of immunoglobulin is used. levels of all immunoglobulins. Thus, normal immuno- globulin concentrations do not exclude antibody deficiency. Monitoring of serum immunoglobulin Nephelometric techniques levels is essential in patients with severe forms of These techniques are increasingly used for quantify- hypogammaglobulinaemia who receive immuno- ing serum immunoglobulin levels. Both turbidimetric globulin substitution therapy. procedures and the detection of antigen-antibody Quantification of serum immunoglobulins is con- complexes by light scattering can be applied. The sidered helpful in distinguishing "benign" idiopathic advantages are that results can be obtained within a monoclonal gammapathies from paraproteinaemias very short time, they can be fully automated, and there caused by myeloma. In the latter case, the levels of are no problems with polymeric immunoglobulin. normal immunoglobulins are usually decreased, while they usually are unaltered in the "benign" form. In Pitfalls. Expensive instrumentation is required and this context, it should be stressed that monoclonal turbid serum samples may need to be clarified. immunoglobulins tend to give falsely high values in immunodiffusion assays. When large enough amounts of the monoclonal protein are present, it is Standards and antisera more accurate to measure the protein by the area Discrepancies in results have arisen from the use of under the spike on serum protein electrophoresis. different standards by different laboratories. WHO The value of quantifying serum immunoglobulins makes available International Reference Preparations for other clinical purposes has been established in only for the five classes of human serum immunoglobulin a few additional instances, such as the determination and it is recommended that working standards should of IgM levels in the cord blood of infants suspected of be related to these preparations. having congenital infections, and as an aid in the diag- Each antiserum, including those from commercial nosis of trypanosomiasis or tropical splenomegaly. sources, must be shown to be specific in the test in For research purposes, immunoglobulins may be which it is being used. Hybridoma-derived mono- quantified in diffuse hypergammaglobulinaemia and clonal antibodies may be useful in the future; how- in conditions such as some lymphoproliferative ever, many monoclonal antibodies do not precipitate diseases, liver cirrhosis, or systemic lupus erythema- antigen when used alone, and thus mixtures of such tosus. More promising might be immunoglobulin antibodies may be required. With these antibodies, it studies in the families of patients with immunodefi- may become easier to quantify subtypes and sub- ciency or homogeneous immunoglobulins, with the classes of the immunoglobulins. object of clarifying the role of genetic factors. DIAGNOSTIC PROCEDURES IN CLINICAL IMMUNOLOGY 719 Other bodyfluids ted CSF since concentration procedures will lead to the aggregation of immunoglobulins, especially IgG, Urine. Quantification of immunoglobulins in the and a falsely low value by RID. urine is possible but fraught with problems. For Quantification of immunoglobulins in CSF is of instance, immunoglobulin molecules in urine may be interest in diseases such as multiple sclerosis and sub- split or light-chains may exist in urine as monomers, acute sclerosing panencephalitis where the concentra- making standardization difficult. For the demonstra- tion of IgG relative to the
Recommended publications
  • Food Allergy Outline
    Allergy Evaluation-What it all Means & Role of Allergist Sai R. Nimmagadda, M.D.. Associated Allergists and Asthma Specialists Ltd. Clinical Assistant Professor Of Pediatrics Northwestern University Chicago, Illinois Objectives of Presentation • Discuss the different options for allergy evaluation. – Skin tests – Immunocap Testing • Understand the results of Allergy testing in various allergic diseases. • Briefly Understand what an Allergist Does Common Allergic Diseases Seen in the Primary Care Office • Atopic Dermatitis/Eczema • Food Allergy • Allergic Rhinitis • Allergic Asthma • Allergic GI Diseases Factors that Influence Allergies Development and Expression Host Factors Environmental Factors . Genetic Indoor allergens - Atopy Outdoor allergens - Airway hyper Occupational sensitizers responsiveness Tobacco smoke . Gender Air Pollution . Obesity Respiratory Infections Diet © Global Initiative for Asthma Why Perform Allergy Testing? – Confirm Allergens and answer specific questions. • Am I allergic to my dog? • Do I have a milk allergy? • Have I outgrown my allergy? • Do I need medications? • Am I penicillin allergic? • Do I have a bee sting allergy Tests Performed in the Diagnostic Allergy Laboratory • Allergen-specific IgE (over 200 allergen extracts) – Pollen (weeds, grasses, trees), – Epidermal, dust mites, molds, – Foods, – Venoms, – Drugs, – Occupational allergens (e.g., natural rubber latex) • Total Serum IgE (anti-IgE; ABPA) • Multi-allergen screen for IgE antibody Diagnostic Allergy Testing Serological Confirmation of Sensitization History of RAST Testing • RAST (radioallergosorbent test) invented and marketed in 1974 • The suspected allergen is bound to an insoluble material and the patient's serum is added • If the serum contains antibodies to the allergen, those antibodies will bind to the allergen • Radiolabeled anti-human IgE antibody is added where it binds to those IgE antibodies already bound to the insoluble material • The unbound anti-human IgE antibodies are washed away.
    [Show full text]
  • Ige – the Main Player of Food Allergy
    DDMOD-431; No of Pages 8 Vol. xxx, No. xx 2016 Drug Discovery Today: Disease Models Editors-in-Chief Jan Tornell – AstraZeneca, Sweden DRUG DISCOVERY Andrew McCulloch – University of California, SanDiego, USA TODAY DISEASE MODELS IgE – the main player of food allergy 1 2,3 2 Henrike C.H. Broekman , Thomas Eiwegger , Julia Upton , 4, Katrine L. Bøgh * 1 Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands 2 Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Paediatrics, Hospital for Sick Children, Toronto, Canada 3 Research Institute, Physiology and Experimental Medicine, The University of Toronto, Toronto, Canada 4 National Food Institute, Technical University of Denmark, Søborg, Denmark Food allergy is a growing problem worldwide, presently Section editor: affecting 2–4% of adults and 5–8% of young children. IgE Michelle Epstein – Medical University of Vienna, is a key player in food allergy. Consequently huge Department of Dermatology, DIAID, Experimental Allergy, Waehringer Guertel 18-20, Room 4P9.02, A1090, efforts have been made to develop tests to detect Vienna, Austria. either the presence of IgE molecules, their allergen binding sites or their functionality, in order to provide allergen ingestion [1], and involve one or more of the follow- information regarding the patient’s food allergy. The ing systems; the skin (pruritus, urticaria, or angioedema), the ultimate goal is to develop tools that are capable of gastro-intestinal tract (diarrhea, vomiting, contractions, in- creased bowel movement), the respiratory tract (asthma at- discriminating between asymptomatic sensitization tack, hoarseness, stridor/laryngeal angioedema) or the and a clinically relevant food allergy, and between cardiovascular system (dizziness, drop in blood pressure, loss different allergic phenotypes in an accurate and trust- of consciousness) [2,3].
    [Show full text]
  • Laboratory Techniques Used for Immunological Laboratory Methods
    Laboratory techniques used for Immunological laboratory methods Dr. Tatiana Jones, MD, PhD NCC How to Make Serial Dilutions? Interpretation can be made differently depending on the nature of test. For example, if we need to figure out in what sample the concentration of the antibody or antigen is higher, we will go by TITER, which is the lowest serial dilution (let’s say that it is 1:32 in the picture on the left) that gives us positive result. This mean that even diluted 32 times sample is still capable of reacting. The other scenario when we are interpreting quantitative assays, such as ELISA. In this case we need to match results of our samples to known concentrations of STANDARD and MULTIPLY be our dilution factor. What is Antibody Titer? An antibody titer is a measurement of how much antibody an organism has produced that recognizes a particular antigen. Titer is expressed as the inverse of the greatest dilution that still gives a positive result. ELISA is a common means of determining antibody titers. How to Determine Antibody Titer? Where we can use Indirect Coombs test detects the presence of anti-Rh antibodies in blood serum. A patient might be reported to have an "indirect Antibody Titer? Coombs titer" of 16. This means that the patient's serum gives a positive indirect Coombs test at any dilution down to 1/16 (1 part serum to 15 parts diluent). At greater dilutions the indirect Coombs test is negative. If a few weeks later the same patient had an indirect Coombs titer of 32 (1/32 dilution which is 1 part serum to 31 parts diluent), this would mean that more anti-Rh antibody was made, since it took a greater dilution to eradicate the positive test.
    [Show full text]
  • Radial Immunodiffusion Assay Protocol
    Radial Immunodiffusion Aim: To study the immunodiffusion technique by Single Radial Immunodiffusion. Introduction: Single Radial Immunodiffusion, also known as Mancini technique, is a quantitative immunodiffusion technique used to detect the concentration of antigen by measuring the diameter of the precipitin ring formed by the interaction of the antigen and the antibody at optimal concentration. In this method the antibody is incorporated into the agarose gel whereas the antigen diffuses into it in a radial pattern. Thus, the antibody is uniformly distributed throughout the gel. Principle: Single Radial Immunodiffusion is used extensively for the quantitative estimation of antigen. Here the antigen-antibody reaction is made more sensitive by the addition of antiserum into the agarose gel and loading the antigen sample in the well. As the antigen diffuses into the agarose radially in all directions, it’s concentration continuously falls until the equivalence point is reached at which the antigen concentration is in equal proportion to that of the antibody present in the agarose gel. At this point ring of precipitation (‘precipitin ring’) is formed around the well. The diameter of the precipitin ring is proportional to the concentration of antigen. With increasing concentration of antigen, precipitin rings with larger diameter are formed. The size of the precipitin rings depends on: Antigen concentration in the sample well Antibody concentration in the agarose gel Size of the sample well Volume of the sample Thus, by having various concentrations of a standard antigen, standard curve can be obtained from which one can determine the amount of an antigen in an unknown sample. Thus, this is a quantitative test.
    [Show full text]
  • An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1981 An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate Allen H. Smith Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry Commons Recommended Citation Smith, Allen H., "An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate" (1981). All Graduate Theses and Dissertations. 5295. https://digitalcommons.usu.edu/etd/5295 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. AN ENZYME- LINKED ThltviUNOSORBE!'IT ASSAY (ELISA) FOR PANTOTHENATE by Allen H. Smith A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biochemistry UTAH STATE UNIVERSITY Logan, Utah 1981 ii ACKNOWLEDGEMENTS To Dr. R. G. Hansen, to Dr. B. W. Wyse, to Carl Wittwer, to Jack Brown, to Jan Pearson, to Nedra Christensen, to all those who have made this experience one of tremendous growth, I express my thanks. I express appreciation to the United States Department of Agriculture, under Grant #5901-0410-9-0288-0 with Utah State University, for financial support. Finally, I express thanks to my parents, who have come to realize that graduate school is also a part of life. Allen H. Smith "iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii LIST OF TABLES . vi LIST OF FIGURES. vii · ABSTRACT .. ix INTRODUCTION 1 REVIEW OF LITERATURE 4 Pantothenate Assays .
    [Show full text]
  • RAST Type Tests CPT: 86003
    Medicare Local Coverage Determination Policy Allergy Testing RAST Type Tests CPT: 86003 Medically Supportive CMS Policy for Kentucky and Ohio ICD Codes are listed Local policies are determined by the performing test location. This is determined by the state on subsequent page(s) in which your performing laboratory resides and where your testing is commonly performed. of this document. Coverage Indications, Limitations, and/or Medical Necessity Radioallergosorbent test (RAST), fluoroallergosorbent test (FAST), and multiple antigen simultaneous tests are in vitro techniques for Add full policy information determining whether a patient's serum contains IgE antibodies against specific allergens of clinical importance. As with any allergy testing, the need for such tests is based on the findings during a complete history and physical examination of the patient. The multiple antigen simultaneous testing technique is similar to the RAST/FAST techniques in that it depends upon the existence of Template structure: allergic antibodies in the blood of the patient being tested. With the multiple antigen simultaneous test system, several antigens may be used to test for specific IgE simultaneously. First level is for headers such as limitations, ELISA (enzyme-linked immunosorbent assay) is another in vitro method of allergy testing for specific IgE antibodies against allergens. indications and usage guidelines This method is also a variation of RAST. Second level is for main body copy Limitations • Third level is for bullet (if needed) The following tests are considered to be not medically necessary and will be denied. • ELISA/Act qualitative antibody testing. This testing is used to determine in vitro reaction to various foods and relies on lymphocyte blastogenesis in response to certain food antigens.
    [Show full text]
  • Role of Serologic Testing in Rheumatic Diseases
    Role of Serologic Testing in Rheumatic Diseases Debendra Pattanaik MD FACP Associate professor of Medicine UTHSC, Memphis TN Disclosure None Objectives Discuss commonly available serologic testing useful in daily clinical practice Recognize the serologic associations of rheumatic diseases Recognize their diagnostic utilities and limitations Diagnostic Accuracy for Lupus and other autoimmune diseases in the community setting 476 patients were evaluated at Autoimmunity Center of University of Florida, Gainesville for 13 months which were by from primary care physicians SLE was over diagnosed on many patients on the basis of + ANA 39 patients are taking prednisone 60 mg/day who have no autoimmune disease but only have + ANA Inappropriate diagnosis leads to inappropriate therapy, emotional and financial consequences The authors suggested continuing education in screening for autoimmune disease and identify patients who may benefit from early referral. Arch Intern Med. 2004;164:2435-2441 Antinuclear Antibody (ANA) Testing for Connective Tissue Disease British Columbia Population: 4.631 million. More than 94,000 ANA tests were performed in B.C. in fiscal year 2011/12 at a cost of $2.24 million annually. Incidence and Estimated New Cases in B.C. for Selected CTDs Connective Tissue Disease Disease incidence per million population Estimated new BC cases/year * Systemic lupus erythematosus 56 259 Scleroderma 19 88 Dermatomyositis & polymyositis < 10 < 46 Eighteen percent of first-time tested outpatients underwent unnecessary repeat testing in 2010/2011. In 57.2% of the repeat testing, both the initial and the repeat ANA tests were ordered by a GP. In 24.8% the initial test was ordered by a GP and the repeat test was ordered by a specialist, and in 10.2% both the initial and the repeat test were ordered by the same specialist.
    [Show full text]
  • Detection of Virus-Specific Immunoglobulins Using a Doubly Labeled Fluorescein- 125I Antibody A
    JOURNAL OF CLINICAL MICROBIOLOGY, June 1976, p. 637-639 Vol. 3, No. 6 Copyright © 1976 American Society for Microbiology Printed in U.S.A. Detection of Virus-Specific Immunoglobulins Using a Doubly Labeled Fluorescein- 125I Antibody A. J. PARKINSON* AND J. KALMAKOFF Department ofMicrobiology, University of Otago, Dunedin, New Zealand Received for publication 17 February 1976 Commercially prepared fluorescein-labeled antihuman antibodies were la- beled with 125I and used to compare specific herpes simplex virus antibody titers as determined by indirect fluorescent antibody and radioimmunoassay tech- niques. Total virus-specific immunoglobulin and virus-specific immunoglobulin G titers did not vary by more than one twofold dilution when compared by the two methods. Efforts are being made to develop a reliable calf serum, penicillin (100 U/ml) streptomycin radioimmunoassay (RIA) for the detection of (100 ,ug/ml), and 0.1% bicarbonate, were in- virus-specific immunoglobulins, acceptable for fected with the isolated virus. Uninoculated use in diagnostic serology (1, 2, 5-8). The estab- monolayers were maintained as controls. When lishment of a satisfactory RIA depends on the infected monolayers showed 75% cytopathic use of antibody with both a high avidity and effect, both inoculated and uninoculated cells selectivity for the material to be assayed (4). were dispersed, using 0.015% ethylenediamine- Consequently, a major obstacle to using RIA tetraacetic acid. Both cellular suspensions were routinely is the necessity of preparing specific standardized to contain 2.5 x 105 cells/ml in high-titer antibody against human immuno- phosphate-buffered saline. Using 0.025-ml vol- globulins (IgG, IgM, and IgA).
    [Show full text]
  • Importance of Ag-Ab Reactions
    Ag-Ab reactions Tests for Ag-Ab reactions EISA SALEHI PhD. Immunology Dept. TUMS Importance of Ag-Ab Reactions • Understand the mechanisms of defense • Abs as tools in: – Treatment – Diagnosis • As biomarkers • As tools to measure analytes Nature of Ag/Ab Reactions http://www.med.sc.edu:85/chime2/lyso-abfr.htm • Lock and Key Concept • Non-covalent Bonds – Hydrogen bonds – Electrostatic bonds – Van der Waal forces – Hydrophobic bonds • Multiple Bonds • Reversible Source: Li, Y., Li, H., Smith-Gill, S. J., Mariuzza, R. A., Biochemistry 39, 6296, 2000 Affinity • Strength of the reaction between a single antigenic determinant and a single Ab combining site High Affinity Low Affinity Ab Ab Ag Ag Affinity = ( attractive and repulsive forces Calculation of Affinity Ag + Ab ↔ Ag-Ab Applying the Law of Mass Action: [[gAg-Ab] Keq = [Ag] x [Ab] Avidity • The overall strength of binding between an Ag with many determinants and multivalent Abs 4 6 10 Keq = 10 10 10 Affinity Avidity Avidity SifiitSpecificity • The ability of an individual antibody combining site to react with only one antigenic determinant. • The ability of a population of antibody molecules to react with only one antigen. Cross Reactivity • The ability of an individual Ab combining site to react with more than one antigenic determinant. • The ability of a population of Ab molecules to react with more than one Ag Cross reactions Anti-A Anti-A Anti-A Ab Ab Ab Ag A Ag B Ag C Shared epitope Similar epitope Factors Affecting Measurement of A/AbRAg/Ab Reac tions • Affinity • Avidity Ab excess Ag excess • AAbiAg:Ab ratio •Phyygsical form of Ag Equivalence – Lattice formation Do you need to know what happens in Lab.
    [Show full text]
  • Radioallergosorbent Test (RAST)—Reliable Tool Or Poor Substitute?
    Radioallergosorbent test (RAST) VII Ö1 1 reliable tool or poor substitute? Edward W. Hein, M.D. An in vitro method, the radioallergosorbent test (RAST) has been developed for the detection of allergen-specific antibodies of the IgE class. Review of the literature shows that in comparison to skin testing, the RAST has a high degree of correlation (60% to 90% depending on the antigen); however, this method is not as sensitive as other tests (50% false-negative). The RAST is affected by blocking antibodies (IgG), resulting in false-negative values and high levels of IgE that bind on the allergen discs, giving false- positive findings. Because of these problems, RAST is somewhat limited for use in the clinical setting. Index terms: Allergy and immunology • Radioallergosor- bent test (RAST) Cleve Clin Q 50:361-366, Fall 1983 Skin testing has been the traditional method for diagnosis of IgE-mediated allergic disorders. This bioassay is highly sensitive, cost-effective, and safe when used by experienced personnel. In 1967, Wide et al,1 in Sweden, reported a new technique capable of detecting the minute quantities of allergen-specific IgE antibodies that circulate in the serum of allergic patients. This laboratory procedure, called RAST (radioallergosorbent test), utilized a solid- phase radioimmunoassay method. During the last decade this in vitro test has been refined and is now a commercially 1 Departments of Pediatric and Adolescent Medi- available laboratory test for clinical laboratories and, in kit cine, and Allergy and Immunology, The Cleveland form, for physicians' offices. Proponents of this new Clinic Foundation. (E.W.H., Head, Section Pediatric method claim that its results are more objective, safer for Allergy and Clinical Immunology.) Submitted for pub- lication May 1983; accepted June 1983.
    [Show full text]
  • Hypersensitivity Reactions (Types I, II, III, IV)
    Hypersensitivity Reactions (Types I, II, III, IV) April 15, 2009 Inflammatory response - local, eliminates antigen without extensively damaging the host’s tissue. Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906) - Type I Produce effector molecules Capable of ingesting foreign Particles Association with parasite infection Modified from Abbas, Lichtman & Pillai, Table 19-1 Type I hypersensitivity response IgE VH V L Cε1 CL Binds to mast cell Normal serum level = 0.0003 mg/ml Binds Fc region of IgE Link Intracellular signal trans. Initiation of degranulation Larche et al. Nat. Rev. Immunol 6:761-771, 2006 Abbas, Lichtman & Pillai,19-8 Factors in the development of allergic diseases • Geographical distribution • Environmental factors - climate, air pollution, socioeconomic status • Genetic risk factors • “Hygiene hypothesis” – Older siblings, day care – Exposure to certain foods, farm animals – Exposure to antibiotics during infancy • Cytokine milieu Adapted from Bach, JF. N Engl J Med 347:911, 2002. Upham & Holt. Curr Opin Allergy Clin Immunol 5:167, 2005 Also: Papadopoulos and Kalobatsou. Curr Op Allergy Clin Immunol 7:91-95, 2007 IgE-mediated diseases in humans • Systemic (anaphylactic shock) •Asthma – Classification by immunopathological phenotype can be used to determine management strategies • Hay fever (allergic rhinitis) • Allergic conjunctivitis • Skin reactions • Food allergies Diseases in Humans (I) • Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish,
    [Show full text]
  • Principles of Immunochemical Techniques Used in Clinical Laboratories
    Review Received 2.11.06 | Revisions Received 3.1.06 | Accepted 3.2.06 Principles of Immunochemical Techniques Used in Clinical Laboratories Marja E. Koivunen, Richard L. Krogsrud (Antibodies Incorporated, Davis, CA) DOI: 10.1309/MV9RM1FDLWAUWQ3F Abstract binding site. The type of antibody and its diseases. Immunoassays can measure low Immunochemistry offers simple, rapid, robust affinity and avidity for the antigen determines levels of disease biomarkers and therapeutic or yet sensitive, and easily automated methods assay sensitivity and specificity. Depending on illicit drugs in patient’s blood, serum, plasma, for routine analyses in clinical laboratories. the assay format, immunoassays can be urine, or saliva. Immunostaining is an example Immunoassays are based on highly specific qualitative or quantitative. They can be used for of an immunochemical technique, which binding between an antigen and an antibody. the detection of antibodies or antigens specific combined with fluorescent labels allows direct An epitope (immunodeterminant region) on the for bacterial, viral, and parasitic diseases as visualization of target cells and cell structures. antigen surface is recognized by the antibody’s well as for the diagnosis of autoimmune Immunochemistry offers simple, rapid, robust yet sensitive, bind to an antigen. The third domain (complement-binding Fc and in most cases, easily automated methods applicable to routine fragment) forms the base of the Y, and is important in immune analyses in clinical laboratories. Immunochemical methods do not system function and regulation. usually require extensive and destructive sample preparation or The region of an antigen that interacts with an antibody is expensive instrumentation. In fact, most methods are based on called an epitope or an immunodeterminant region.
    [Show full text]