Detection of Virus-Specific Immunoglobulins Using a Doubly Labeled Fluorescein- 125I Antibody A

Total Page:16

File Type:pdf, Size:1020Kb

Detection of Virus-Specific Immunoglobulins Using a Doubly Labeled Fluorescein- 125I Antibody A JOURNAL OF CLINICAL MICROBIOLOGY, June 1976, p. 637-639 Vol. 3, No. 6 Copyright © 1976 American Society for Microbiology Printed in U.S.A. Detection of Virus-Specific Immunoglobulins Using a Doubly Labeled Fluorescein- 125I Antibody A. J. PARKINSON* AND J. KALMAKOFF Department ofMicrobiology, University of Otago, Dunedin, New Zealand Received for publication 17 February 1976 Commercially prepared fluorescein-labeled antihuman antibodies were la- beled with 125I and used to compare specific herpes simplex virus antibody titers as determined by indirect fluorescent antibody and radioimmunoassay tech- niques. Total virus-specific immunoglobulin and virus-specific immunoglobulin G titers did not vary by more than one twofold dilution when compared by the two methods. Efforts are being made to develop a reliable calf serum, penicillin (100 U/ml) streptomycin radioimmunoassay (RIA) for the detection of (100 ,ug/ml), and 0.1% bicarbonate, were in- virus-specific immunoglobulins, acceptable for fected with the isolated virus. Uninoculated use in diagnostic serology (1, 2, 5-8). The estab- monolayers were maintained as controls. When lishment of a satisfactory RIA depends on the infected monolayers showed 75% cytopathic use of antibody with both a high avidity and effect, both inoculated and uninoculated cells selectivity for the material to be assayed (4). were dispersed, using 0.015% ethylenediamine- Consequently, a major obstacle to using RIA tetraacetic acid. Both cellular suspensions were routinely is the necessity of preparing specific standardized to contain 2.5 x 105 cells/ml in high-titer antibody against human immuno- phosphate-buffered saline. Using 0.025-ml vol- globulins (IgG, IgM, and IgA). This usually umes, infected and uninfected cells were ap- requires animal-holding facilities, use of time- plied to an acetone-resistant, transparent, flex- consuming animal immunization schedules, ible plastic (Melonex 0; Imperial Chemical In- and expensive antibody purification and evalu- dustries Ltd.). The drops, each covering a uni- ation procedures. form area of 5 mm in diameter, were rapidly Although commercial antihuman immuno- dried and fixed with acetone for 10 min at room globulins are available, these sera are primar- temperature. ily prepared for immunodiffusion or immunoe- Fluorescein-labeled antihuman immunoglob- lectrophoretic techniques. Since the indirect ulin and antihuman IgG (sheep; Wellcome fluorescent antibody method (IFA) closely par- Foundation Ltd.) were labeled with 1251 (Amer- allels many RIA procedures (5-7), we investi- sham Radiochemical Centre) using the chlora- gated the use of commercially available fluo- mine T method of Hunter and Greenwood (3). rescein-labeled antihuman immunoglobulin for Free '25I was separated from the conjugated labeling with 125I. These antibodies are specifi- protein by gel filtration, using a Sephadex G-50 cally prepared for fluorescent antibody staining column (1.5 by 30 cm). The Fl-25I doubly la- from high-titer antisera demonstrating maxi- beled immunoglobulins were recovered by the mum reactivity against the appropriate class of addition of 0.235 g of solid (NH4)2SO4 per ml to immunoglobulin. Using double-labeled fluores- the protein fractions. Specific activities of 105 to cein-'251 (Fl-'251) antibodies, we were able to 2.0 x 105 counts/min per Ag ofprotein were rou- detect virus-specific immunoglobulins and di- tinely obtained. The Fl-125I-labeled antihuman rectly compare the IFA and equivalent RIA immunoglobulin and antihuman IgG were used systems. at a concentration of 196 ,ug of protein per ml We used herpes simplex type 1 virus as a for both IFA and RIA determinations. This con- model system. The virus was isolated from a centration of Fl-'25I-labeled antibody produced patient who had suffered an acute upper respi- maximum fluorescence and radioactivity in in- ratory illness. Serial serum samples were taken fected cells, with negligible background reac- from 4 days after the onset of symptoms to 90 tivity in uninfected controls. Both the specific days post-illness. fluorescence and radioactivity could be reduced Monolayers of monkey embryo kidney cells to background proportions by blocking the reac- were propagated in complete Eagle basal me- tion with either specific herpes simplex virus dium (GIBCO), supplemented with 10% fetal antisera (rabbit; Center for Disease Control) or 637 638 NOTES J. CLIN. MICROBIOL. noniodinated fluorescein-labeled antibody. By radioactive counting, the virus-specific Virus-specific antibody in each serum sample antibody titers were determined in a strictly was determined, first, by using noniodinated quantitative manner. The radioactivity bound fluorescein-labeled immunoglobulins and, sec- to infected fixed cells at each serum dilution ond, by IFA and RIA using the Fl-'25I-labeled was statistically compared to the radioactivity antihuman immunoglobulin preparations. Two- bound to the uninfected cell controls (Fig. 1). fold dilutions of human serum were made in The titers of both virus-specific immunoglobu- 0.1% fetal bovine gamma globulin in phos- lin and virus-specific IgG obtained by RIA phate-buffered saline, and 0.025 ml ofeach dilu- match closely those of the IFA method. This is tion was applied to infected and uninfected cells consistent with results obtained by other work- fixed to Melonex 0 strips. After incubation for ers (6). 15 min at room temperature, the strips were In Table 1 we demonstrate the differentiation washed free of unbound antibody with phos- of virus-specific IgG from total virus-specific phate-buffered saline and dried. Fluorescein- or antibody. Using iodinated preparations ofother Fl-'251-labeled antihuman antibody (0.025 ml) class-specific, fluorescein-labeled, antihuman was then added to each fixed-cell area, and the immunoglobulins (antihuman IgM and antihu- strips were incubated for 30 min. Unreacted la- man IgA) and appropriate optimization proce- beled antibody was removed by washing in phosphate-buffered saline. Each strip was mounted on a glass slide, fixed-cell area upper- TABLE 1. Reciprocal antibody titer to herpes simplex most, and covered with a cover slip, using phos- virus as determined by IFA staining and RIA phate-buffered glycerol (pH 8.0) as a mounting Days Virus-specific immuno- Virus-specific IgG after globulin medium. Both infected and uninfected cells infec- were examined for fluorescence using dark- tion Fla Fl-'25I RIAb Fl Fl-"251 RIA ground microscopy with an ultraviolet lighting 4 16 32 128 8 8 32 system. The IFA titration end point was taken 10 512 256 512 256 128 256 as the highest serum dilution showing specific 20 512 256 1,024 128 128 512 fluorescence in infected cells. After fluorescence 30 256 256 512 128 128 256 microscopy, the Melonex strips were washed 90 N1TJ 256 512 NT 32 64 free of glycerol, and each cell area was cut out in vials for the detec- a Fl, Noniodinated antihuman antibody. and placed scintillation Results from Fig. 1. tion ofradioactivity. An arbitrary virus-specific c NT, Not tested. antibody titer was determined as that dilution of serum at which the radioactivity bound to in- fected cells exceeded the two-standard devia- tion level of the radioactivity of the negative controls. The use of 0.1% bovine gamma globulin as a diluent for serum and labeled antibody was found to be effective in reducing the amount of background radioactivity and in markedly re- ducing nonspecific fluorescence. Acetone fixa- cpm tion of infected and uninfected cells to Melonex x-lo- O permitted both fluorescence microscopy and radioactive counting to be carried out on the same fixed-cell area. Titration end points ob- tained by IFA or RIA could then be directly compared. The antibody reactivity of Fl-'251-labeled an- tihuman immunoglobulin was compared with 8 16 32 64 128 256 512 1024 2048496 noniodinated fluorescein-labeled antihuman reciprocal of serum dilution immunoglobulin by the IFA method (Table 1). Titers of virus-specific total immunoglobulin FIG. 1. Detection of herpes simplex virus-specific and did not more antibody by RIA. The virus-specific immunoglobulin virus-specific IgG vary by titer in the patient's serum was determined by indi- than one twofold dilution, demonstrating that rect RIA using fluorescein-'25I doubly labeled anti- iodination of fluorescein-labeled antibodies to human immunoglobulin. The radioactivity bound to high specific radioactivities (105 to 2.0 x 105 uninfected cells at any serum dilution was deter- counts/min per ug) does not alter their immu- mined, and the mean and 2 standard deviations nological reactivity. were calculated. VOL. 3, 1976 NOTES 639 dures, it should be possible to measure virus- plex viral antibodies in human sera. J. Clin. Micro- biol. 2:410-418. specific IgM and IgA. 2. Green, R. L., R. W. Scales, and S. J. Kraus. 1974. In this study the use of relatively large Radioimmunoassay on polycarbonate membranes: a amounts of Fl-'25I-labeled antibody (196 ,g/ml) sensitive and simplified method for the detection and was necessary to ensure optimum fluorescence quantitation of antibody. Appl. Microbiol. 27:475- and to enable a direct comparison to be made 479. 3. Hunter, W. M., and F. C. Greenwood. 1962. Prepara- between the IFA and RIA methods. However, tion of 131I labeled human growth hormone of high subsequent experiments indicate virus-specific specific activity. Nature (London) 194:495-496. antibody may be determined by the RIA proce- 4. Hum, B. A. L., and J. Landon. 1971. Antisera for anti- radioimmunoassay, p. 121. In K. E. Kirkham and W. dure alone, using much less Fl-'25I-labeled M. Hunter (ed.), Radioimmunoassay methods. Liv- body (40 ug/ml; unpublished data). Fl-'251-la- ingstone, Edinburgh. beled antibody may provide an economical 5. Hutchinson, H. D., and D. W. Ziegler. 1972. Simplified source of class-specific antihuman immuno- radioimmunoassay for diagnostic serology. Appl. Mi- globulin for the routine detection of virus-spe- crobiol. 24:742-749. 6. Hutchinson, H. D., D. W. Ziegler, and P. M. Georino. cific antibody.
Recommended publications
  • An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1981 An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate Allen H. Smith Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry Commons Recommended Citation Smith, Allen H., "An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate" (1981). All Graduate Theses and Dissertations. 5295. https://digitalcommons.usu.edu/etd/5295 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. AN ENZYME- LINKED ThltviUNOSORBE!'IT ASSAY (ELISA) FOR PANTOTHENATE by Allen H. Smith A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biochemistry UTAH STATE UNIVERSITY Logan, Utah 1981 ii ACKNOWLEDGEMENTS To Dr. R. G. Hansen, to Dr. B. W. Wyse, to Carl Wittwer, to Jack Brown, to Jan Pearson, to Nedra Christensen, to all those who have made this experience one of tremendous growth, I express my thanks. I express appreciation to the United States Department of Agriculture, under Grant #5901-0410-9-0288-0 with Utah State University, for financial support. Finally, I express thanks to my parents, who have come to realize that graduate school is also a part of life. Allen H. Smith "iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii LIST OF TABLES . vi LIST OF FIGURES. vii · ABSTRACT .. ix INTRODUCTION 1 REVIEW OF LITERATURE 4 Pantothenate Assays .
    [Show full text]
  • Making Antibodies Work
    MILESTONES conjugated to the enzyme alkaline MILESTONE 4 phosphatase. They named their assay the ‘enzyme-linked immuno­sorbent assay’, which resulted in the catchy Making antibodies acronym ‘ELISA’. In addition to its application in the detection and work quantification of serum components, ELISAs are routinely used to detect viral infections, such as infection with human immunodeficiency virus, and the technique remains a mainstay of laboratories around the world. In addition to detecting the tagging of antibodies to molecules or cells of interest, it was clearly desira- ble to be able to separate the tagged components. This was achieved in Crossed immunoelectropho- 1979 by David Parks, Virginia Bryan, resis—just one analytical application of antibodies— Vernon Oi and Leonard Herzenberg, can simultaneously identify who used the newly invented dozens of serum proteins. Courtesy T.C.Bøg-Hansen. fluorescence-­activated cell sorter. The light-scattering and fluorescent prop- erties of the cells enabled cells bound with antigen-coupled microspheres to be distinguished and directed Because antibodies are able to between the binding of antibodies into alternative collection pots, thus specifically bind target molecules, to endogenous insulin versus their facilitating phenotypic separation, the possibility of their having an binding to radioactive insulin. This monoclonal description and categorization. analytical application was recognized radioimmunoassay was used to antibodies… Since the pioneering work of early on. Robin Coombs, Arthur measure insulin present in the blood César Milstein and Georges J. F. Mourant and Robert Race, working and provided greater sensitivity than have had Köhler (MILESTONE 9) there have for the UK’s Medical Research that of previous approaches.
    [Show full text]
  • Plasma and Cellular Retinoid-Binding Proteins and Transthyretin
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 2488-2492, April 1985 Medical Sciences Plasma and cellular retinoid-binding proteins and transthyretin (prealbumin) are all localized in the islets of Langerhans in the rat (retlnoids/vitamin A/immunohistochemistry/radioimmunoassay) MICHIMASA KATO*t, KUNIYO KATO*t, WILLIAM S. BLANER*, BRUCE S. CHERTOWt, AND DEWITT S. GOODMAN*§ *Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032; and tDepartment of Medicine, Marshall University School of Medicine and Veterans Administration Medical Center, Huntington, WV 25701 Communicated by Seymour Lieperman, December 6, 1984 ABSTRACT The immunohistochemical localization of roles that CRBP and CRABP play within cells have not been plasmia retinol-binding protein' (RBP), cellular retinol-binding established, it has been suggested that these binding proteins protein (CRBP), and transtiyretin (TTR) was studied in rat may be involved in the biological expression of retinoid pancreas. The studies employed antibodies purified by im- activity within cells (see ref. 6 for a recent review). munosorbent affinity chromatography, permitting the specific We have' recently reported studies on the immunohis- staining and localization of each antigen by the, unlabeled tochemical localization of RBP, TTR, and CRBP in rat liver peroxidase-antiperoxidase method. Specific immunostaining and kidney (7). Each' of these proteins was found to be for each of these three proteins was found localized to the islets localized in specific cells within each organ. Highly specific ofLangerhans. Both RBPand CRBP were localized in cells that localization of CRBP has also been observed in the testis and were, peripherally distributed within the islets,'with an ana- epididymis (8, 9).
    [Show full text]
  • Radioimmunoassay for Human Alphar-Fetoprotein (Cancer/Diagnosis/Hepatoma/Hepatitis/Embryonie) HULBERT K
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 526-530, February 1973 Radioimmunoassay for Human Alphar-Fetoprotein (cancer/diagnosis/hepatoma/hepatitis/embryonie) HULBERT K. B. SILVER, PHIL GOLD, STEPHEN FEDER, SAMUEL 0. FREEDMAN, AND JOSEPH SHUSTER The Division of Clinical Immunology and Allergy and the McGill University Medical Clinic of the Montreal General Hospital, Montreal, 109, Quebec, Canada Communicated by Wilder Penfield, November 21, 1972 ABSTRACT A method of radioimmunoassay has been tion of goats with human fetal serum emulsified in Freund's developed for the quantitation of alpha,-fetoprotein in complete adjuvant. In order to render the antiserum mono- human serum. The assay requires 20 ;d of serum, can be completed in 8 hr, and can reproducibly detect concen- specific for AFP, it was absorbed with serum, from a normal trations of 20 ng of alpha1-fetoprotein per ml of serum. adult male, that had been lyophilized and dialyzed against Hence, the method is about 500-fold more sensitive for water, at a concentration of 200 mg of lyophilized serum the detection of alpha1-fetoprotein than the Ouchterlony per ml of antiserum. After absorption, the antiserum was technique currently in general use. The procedure is of potential clinical value as an aid in the diagnosis of can- centrifuged at 40,000 X g for 20 min. This preparation was cer and a number of noncancerous hepatic diseases. denoted as anti-AFP antiserum. In 1963, Abelev reported that some chemically-induced mouse Purification of Human AFP was accomplished by the tech- hepatomfts synthesized an alphal-globulin that was absent nique of Nishi (10), as modified by Silver et al.
    [Show full text]
  • Immunological Techniques Radioimmunoassay (RIA)
    Regular Office Hours: Tuesdays 11-12 Extra office hours: Wed, Feb 7 12-1pm Thurs, Feb 8 11am-12 Midterm Fri, Feb 9 2-4pm I WILL NOT BE HOLDING OFFICE HOURS ON TUESDAY Feb 13!! Extra Office Hours Dina, Tim, and I encourage all confused students to come to our office hours and discussion sections so we can try to help un-confuse you. Take No class on Tuesday Feb 13. First midterm: Thurs Feb 15 at 6pm in 155 Dwinelle (not 2050 VLSB as listed in the original schedule). Midterm will focus on material covered in lectures and will be designed to be taken in 90 min. (We have the room till 8pm.) The GSIs will conduct a review session in our regular class period on Thursday Feb 15. The extraordinary specificity of Immunological Techniques antibodies for their antigens, and the ability to generate polyclonal and monoclonal antibodies to virtually anything, makes them fantastically Monoclonal Antibodies useful reagents for detecting and quantitating substances. Radioimmune Assay (RIA) A large number of different assays have been developed to detect antigens based Enyzme Linked Immune Sorbant Assay (ELISA) on antibody binding that can be used in in fluids, tissues, or cells. Western blot Immunoprecipitation Immunofluorescence Flow cytometry Expression cloning Radioimmunoassay (RIA) •1960 Yalow and Berson (Nobel Prize) •Very sensitive: can detect material present at concentrations of <0.001 micrograms/ml. •Takes advantage of protein binding to Cpm plastic of tissue culture dish. •Generate standard curve with known RIA to detect amounts of unlabeled antigen •Measure unknown using standard curve. hepatitis Labeled antigen detects hepatitis virus in 1 microliter Amount unlabeled Antigen Unlabeled of blood.
    [Show full text]
  • Radioimmunoassay in Developing Countries: General Principles
    XA9847613 Chapter 16 RADIOIMMUNOASSAY IN DEVELOPING COUNTRIES (General principles) R.D. Piyasena Radioimmunoassay (RIA) is probably the most commonly performed nuclear medicine technique. It is an in vitro procedure, where no radioactivity is administered to the patient. But this alone is not the reason for its widespread use. It provides the basis for extremely sensitive and specific diagnostic tests, and its use in present day medicine has brought a virtual information explosion in terms of understanding the pathophysiology of many diseases. The fact that the technology involved is within the technical and economic capabilities of the developing world is evident from the increasing demand for its introduction or expansion of existing services. RIA facilities need not be restricted to urban hospitals, as in the case of in vivo nuclear medicine techniques, but may be extended to smaller district hospitals and other laboratories in peripheral areas. It is also possible to send blood samples to a central laboratory so that a single centre can serve a wide geographical area. There are many laboratories in the industrialized world that receive a major proportion of samples for assay by mail. In recent years, substantial RIA services have been established in many of the developing countries in Asia and Latin America. The International Atomic Energy Agency (IAEA) and World Health Organisations (WHO) have made vital contributions to these activities and have played a catalytic role in assisting member states to achieve realistic goals. In the past five years, more than 250 individual RIA laboratories in developing member states have been beneficiaries of IAEA projects.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • Immunological Relationships Among Hexosaminidases of Different Species
    Immunochemistry, 1976, Vol. 13, pp. 485490. Pergamon Press. Printed in Great Britam IMMUNOLOGICAL RELATIONSHIPS AMONG HEXOSAMINIDASES OF DIFFERENT SPECIES BENJAMIN GEIGER, YOAV BEN-YOSEPH and RUTH ARNON Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel (First received 10 November 1975; in reaised.form 8 December 1975) Abstract-The immunological inter-relationships between hexosaminidases* of several mammals were established. Qualitative immunochemical analysis indicated similarity between the enzymes derived from man, Rhesus monkey, Iris maccaque, bovine, pig, goat and guinea-pig. Quantitation of the extent of antigenic similarity among the various species, using antigen binding assay and radioimmunoassay, correlated well with the phylogenetic relationships between the species investigated. The evolutionary distance between the species used as sources of enzyme and the immunized animal affects the capacity to distinguish between closely related enzymes. Thus, the use of closer animals for immunization enables the detection of subtle differences between the tested enzymes, whereas a phylogenetically remote animal recognizes better their similarity. INTRODUCTION cleaves the terminal P-linked N-acetyl glucosamine or In the course of evolutionary process, many changes N-acetyl galactosamine. Purification and characteri- and variations occur in the primary sequence of both zation of hexosaminidases from different animals, in- structural and biologically active proteins, which are cluding rat (Sellinger et aI., 1973; Robinson et nl., manifested in variations among isofunctional homolo- 1967) bovine (Robinson et a1.,1972; Frohwein & Gatt, gous proteins. Several approaches have been pro- 1967; Hayase et al., 1973), sheep (Winchester, 1971), posed for the investigation of such phylogenetic inter- pig (Findlay & Levvy, 1960), mouse (Hunter & Mil- relationships, including the application of immuno- son, 1966) and man (Robinson & Stirling, 1968; Sand- chemical methods.
    [Show full text]
  • Comparison of Immunofluorescence and Radioimmunoassay for Detecting Igm Antibody in Infants with the Congenital Rubella Syndrome
    J. Hyg., Camb. (1979), 83, 413 413 Printed in Great Britain Comparison of immunofluorescence and radioimmunoassay for detecting IgM antibody in infants with the congenital rubella syndrome BY J. E. CRADOCK-WATSON, MARGARET K. S. RIDEHALGH Public Health Laboratory, Withington Hospital, Manchester M20 SLR J. R. PATTISON, MARY J. ANDERSON Department of Medical Microbiology, King's College Hospital Medical School, London SE5 8RX AND H. O. KANGRO Department of Virology, The London Hospital Medical College, Turner Street, London El 2AD {Received 5 April 1979) SUMMARY Immunofluorescence (IF) and radioimmunoassay (RIA) have been compared as methods for detecting IgM antibody in 124 infants with confirmed or suspected congenital rubella. IF was used to test sucrose density gradient fractions and RIA to test fractions and whole serum. When fractions were tested IF and RIA were equally specific and distinguished clearly between IgM and IgG, but RIA was the more sensitive method. The RIA titre in whole serum was always greater than in the peak IgM fraction and there was no evidence that testing the serum, rather than the fraction, could result in failure to detect IgM. With some sera RIA gave low titres which became negative after absorption with IgG-coated latex beads. The mechanism of this 'false positive' effect, which may have been due to IgM with anti-IgG activity, was not investigated, but if it can be removed by absorption it need not reduce the specificity of the test. During the first 6 months of life IgM antibody was detected by RIA in 30 out of 32 unfractionated sera and by IF in fractions from 28 of these.
    [Show full text]
  • Radioimmunoassay Quality Control and Troubleshooting
    Radioimmunoassay Quality Control and Troubleshooting Helen H. Drew 111e Johns Hopkins Hospital, Baltimore, Maryland This is the third continuing education article in a four-part series tal errors define the overall random error associated with a on radioimmunoassay. After reading and studying this article, the single measurement. Precision studies assess random errors reader should be able to: I) describe the procedures used for immu­ and tell us how closely the same measurement can be repeated noassay quality control; 2) state acceptable limits of results; and within the same assay (intra-assay precision) or between assays 3) discuss troubleshooting approaches. at different times (interassay precision). Therefore, the goal of a quality control program defines acceptable error limits Quality control (QC) is a vital function of every laboratory without compromising the medical significance ofthe results. performing immunoassays and, when applied in a knowledge­ able and sensible fashion, it can be a laboratory's most valuable QUALITY CONTROL STATISTICS tool. A properly designed QC program ensures that results are within acceptable limits of accuracy and precision. In A QC program uses the fact that repeated measurements simpler terms, a quality control program helps you answer of a single sample fluctuate over time because of random er­ the following important questions about your assay: Are to­ rors or imprecision. It must be determined whether these day's results reliable? May the same assay be performed tomor­ fluctuations are within acceptable limits or reflect an analytical row using the same reagents with the same reliable results? error requiring troubleshooting action. The distribution of In addition to answering these simple questions, quality con­ these errors is assumed to be Gaussian, a curve of normal trol will help you unravel the mystery of why when your assay distribution.
    [Show full text]
  • Immunosorbent Assay, Solid-Phase Radioimmunoassay, and Indirect Immunofluorescence for Detection of Human Rotavirus Antigen in Faeces
    J Clin Pathol: first published as 10.1136/jcp.32.7.700 on 1 July 1979. Downloaded from Journal of Clinical Pathology, 1979, 32, 700-705 Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces CHRISTOPHER J. BIRCH, NOREEN I. LEHMANN, ALISON J. HAWKER, JOHN A. MARSHALL, AND IAN D. GUST From the Virology Department, Fairfield Hospital for Communicable Diseases, Yarra Bend Road, Fairfield 3078, Victoria, Australia SUMMARY Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus, and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy. Rotaviruses are recognised as important causative and Johnsson, 1976; Birch et al., 1977), indirect http://jcp.bmj.com/ agents of acute gastroenteritis in children and the immunofluorescence (11F) (Bryden et al., 1976), free young of various other species (Flewett and Woode, viral immunofluorescence (Yolken et al., 1977b), a 1978), and there is a special need for a sensitive and viral RNA detection technique (Espejo et al., 1977), rapid method for their identification in faeces.
    [Show full text]
  • Measurement of the Staphylococcal Epidermolytic Toxin: a Comparison
    THE JOURNAL OF I NVESTIGAT IV E D ERMATOLOGY. 67:526-53 1. 1976 Vol. 67. :-':0.4 Copyri ght © 1976 by T he Wi ll iams & Wi lkins Co. Prin ted in U.S.A. MEASUREMENT OF THE STAPHYLOCOCCAL EPIDERMOL YTIC TOXIN: A COMPARISON OF BIOASSAY, RADIAL IMMUNODIFFUSION, AND RADIOIMMUNOASSAY KIRK D. WUEPPER, M.D., DIA NE HAAS BAKER, M.D., AND ROBERT L. DIMO ND , t:A .D. Department of Dermatology, School of M edicine, University of Oregon Health Sciences Center, Portland, Oregon, U.S.A. T hree methods of m easuring t he epidermolytic toxin of Staphy lococcus aureus-bioassay in newborn m ice, radial immunodiffusion , a nd ra dioimmunoassay-were compa red for reproducibility, specificity, and sensit ivity. The bioassay is highly specifi c a nd remains the only functional assay. It is reproducible only if newb orn mice of t he same age a re used . The time required fo r epidermolysis fo llows a dose- response relationship only if concent rations of toxin large enough to cause peeling in 90 min or less are used . This limits the sensit ivity of t he bioassay to a bout 5 J.L g per m\. S ingle radial immunodiffusion in agar is a specific and reproducible assay method , but its sensit ivity is also about 5 J.L g per m\. A radioimmunoassay was established by t he F arr technique using purified epidermolysin radiolabeled wi t h '25 iodine. This assay was highly reproducible a nd specific. The staphylo­ coccal products, a-toxin and enterotoxins A and B , did not cross-react with ant i-epider­ m olysin ant ibodies.
    [Show full text]