Structural Organisation in Animals

Total Page:16

File Type:pdf, Size:1020Kb

Structural Organisation in Animals CHAPTER 1 STRUCTURAL ORGANISATION IN ANIMALS INTRODUCTION A. Epithelium Tissue Tissue : A group of cells in which cells are similar in I. Characteristics of epithelial tissue structure , function and origin is called tissue. 1. During embryonic development epithelium orginates first. Group of similar cells along with intercellular 2. Power of regeneration is present in this tissue while substance perform a specific function such power of regeneration is absent or least power is organisation is called tissue. But in a tissue, cells found in nervous tissue . may be dissimilar in structure and function but they are always similar in origin. 3. This tissue faces either a body fluid or outside environment and thus provide a covering or a lining. Organ : Tissues are organised in specific proportion and pattern to form organ. 4. Word epithelium is composed of two words. Organ system: When two or more organ perform A tissue which grows upon another tissue is called common function by their physical &/or chemical Epithelium. interaction, they together form organ system. Division of labour: Cell, tissue, organs and organ systems splits up the work in a way that they exhibit division of labour. 1. Types of Animal Tissue On the basis of functions & structure tissues are of four types : 1. Epithelium/Epithelial Tissue : Covering & protective tissue . 2. Connective Tissue - To connect structures, provide support to the body and transport substances in the body. 3. Muscular Tissue - Helps in contraction & locomotion. Fig. 1.1 4. Nervous tissue - To generate and conduct nerve Epi - Upon Thelia - growth impulses in body. HISTORICAL BACKGROUND » Word Epithelium was given by - Ruysch » Word animal tissue was coined by - Bichat (Plant tissue by - Grew). » Study of tissue - Histology. » Histology word was given by - Mayer » Father of Histology - Bichat » Detail study of tissue is called Microscopic anatomy. » Founder of microscopic anatomy - Marcello Malpighi CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota 6 | Theory and Exercise Book 5. It always rest upon underlaying connective tissue. (ii) Adhering / Desmosomes - This type of Epithelium is the only tissue in which cells are always (Macula Adherens) Junction consists of arranged in uniform layer. disc - like protein plate with intermediate Epithelium cells are compactly packed with little fibre known as tonofibrils composed of intercellular matrix. keratin like protein. These filaments are 6. Due to absence of intercellular spaces blood vessels, deeply situated in the cytoplasm of lymph vessels & capillaries are unable to pierce respective cell. These structures provide this tissue so blood circulation is absent in epithelium. mechanical support to stratified Hence cells depend for their nutrients on underlying epithelium or performing cementing to connective tissue. keep neighbouring cell together. e.g. 7. Basement membrane : Between epithelium and Stratified epithelium connective tissue, a thin non living acellular basement (iii) Tight Junction - At some places plasma membrane is present which is highly permeable. membrane of adjacent cells become fused Basement membrane consist of 2 layers. to form tight junction to stop substances (a) Basal lamina : Towards epithelium and it from leaking across a tissue. These is made up of glycoprotein, which is structures are mostly found in columnar secreted by epithelium cells. epithelium. (b) Fibrous lamina : Towards connective (iv) Gap Junction - Facillate the cells to tissue, in which collagen and reticular fibres communicate with each other by are suspended in mucopolysaccharide which connecting cytoplasm of adjoining cells for is matrix of connective tissue. rapid transfer of ions, small molecules and Mucopolysaccharide is present in the form sometimes big molecules. of Hyaluronic acid. Fig. 1.2 So basement membrane is secreted by both epithelium III. Modification of plasma membrane of and connective tissue. epithelial tissue : II. Cell Junction: To provide both structural and (i) Microvilli functional link between its individual cell epithelial 1. These are minute process which are non cells modify to form following structures motile, non contractile. They increase (Intercellular Junctions) : surface area by more than 20 times. (i) Interdigitation - Finger like processes of 2. They help in absorption, secretion and plasma membrane which enter into excretion. cytoplasm of adjacent cell. These These are present in the wall of Intestine, structures are mainly found in transitional Gall bladder, Proximal convoluted epithelium. tubule etc. CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota Structural Organisation in Animals | 7 (ii) Cilia or Kinocilia 4. Lining of brain ventricle & central canal of spinal 1. Long cylindrical process, those are motile cord is lined by :- and contractile. (A) Ependyma epithelium 2. These helps in movement of particles or (B) Endothelium mucus in a specific direction. Mainly (C) Mesothelium present in the inner surface of hollow (D) Neurosensory organs. 5. Desmosomes : 3. These are found in e.g. - Fallopian tube, Uterus (Cilia is only (A) Connect the Epithelial cells present in patches). (B) are types of lysosomes - Trachea and Bronchioles (C) are granules of muscle fibres - Ependymal epithelium: (Inner lining of (D) Found in Bone ventricles of brain and central canal of 6. Ciliated Epithelium found in : spinal cord. Function of cilia is to (A) Oviduct (B) Trachea conduct substances in CSF) (C) Brain ventricles (D) All of these (iii) Steriocilia 7. Gap junctions : (i) Long process those are non motile and non (A) help to stop substances from leaking across a contractile. tissue. (ii) Its plasma membrane is thick and rigid. (B) perform cementing to keep neighbouring cells (iii) They increase surface area and found in together eg. - Epididymis - Vasa deferens (C) provide stretchability to the epithelium Origin of Epithelium Tissue (D) facilitate the cells to communicate with each It is the only tissue which originated from all the other by connecting the cytoplasm of adjoining cells three primordial germinal layers. 8. Condition necessary for the formation of organ eg. (i) Ectodermal- Epidermis (stratified system: squamous Epithelium) (A) presence of all four basic type of tissues (ii) Mesodermal - Mesothelium (simple (B) Chemical interaction squamous Epithelium) (C) Physical interaction (iii) Endodermal - Inner living of gut (simple (D) All of these columnar Epithelium) 9. Tissue which provide support to the body is : CHECK YOUR CONCEPTS-1 (A) Epithelial tissue (B) Connective tissue (C) Muscular tissue (D) Nervous tissue 1. Epithelial tissue origined from :- 10. Intercellular junction which helps in exchange of (A) Ectoderm (B) Endoderm substances is : (C) Mesoderm (D) All of these (A) Tight junction (B) Gap junction 2. Basement membrane is composed of :- (A) Hyaluronic Acid + glycoproteins (C) Interdigitation (D) Desmosome (B) Only mucopolysacharides ANSWERKEY (C) Endodermal cells (D) Epidermal cells 1. D 2. A 3. A 4. A 3. Stereocilia present in :- 5. A 6. D 7. D 8. A (A) Epididymis (B) Seminal vesicle 9. B 10. B (C) Ureter (D) Kidney : [email protected], url : www.motion.ac.in, : 1800-212-179999, 8003899588 8 | Theory and Exercise Book IV. Types of Epithelium Tissue | On the basis of number of cell layers Simple epithelial Tissue Compound epithelial Tissue - Composed of single layer of cells - Consists of 2 or more cell layers - Functions as lining for body cavities, - It has protective function as it ducts and tubes does in our skin On the bssis of shape / structural modifications of cells (1) Simple Squamous (2) Simple Cuboidal (3) Simple Columnar (4) Pseudostratified (a) Simple Epithelium Tissue 1. Simple Squamous epithelium (i) Single layer of flat, scale like cell with irregular boundries. (ii) It is also called pavement epithelium due to its tile like appearance. Fig. 1.3 (iii) It is also called Tesselated to its wavy epithelium due appearance. Functions: Fig. 1.4 eg. It is found in the lining of : - Bowman's capsule (podocyte) CORPORATE OFFICE : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota Structural Organisation in Animals | 9 - Tubular part of Nephrons Modifications of simple cuboidal epithelium (i) Brush bordered cuboidal epithelium : When microvilli are present on free end of cuboidal cells then it is called as brush bordered cuboidal epithelium. It is found in PCT of nephron. (ii) Ciliated cuboidal epithelium : When cilia present on free end of cuboidal cells then it is called as ciliated cuboidal epithelium. It Fig. 1.5 is found in neck of the nephron and in - Alveoli of lungs (Pneumocytes) collecting duct. 3. Simple columnar Epithelium (i) Cells are pillar like in shape. (Tall and Slender) (ii) Elongated nucleus is present at the base of cell. Function: It helps in absorption and secretion. eg. Bile Duct, Liver Fig. 1.6 Modifications of Simple Columnar epithelium - Mesothelium - Covering of coelom is called (a) Brush Bordered Columnar epithelium : When as mesothelium.(Tesselated). (Visceral & microvilli are present on free end of columnar Parietal peritonium, Visceral and parietal epithelium. pleura, Visceral and Parietal, (pericardium). e.g. Gall bladder - Endothelium - Inner lining of blood vessels (b) Glandular columnar epithelium : Unicellular and lymph vessels. (Tesselated) mucous secreting goblet cells are also present in - Inner lining of heart wall (Tesselated). between columnar cells. 2. Simple Cuboidal Epithelium eg.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Reticulum Cell Sarcoma of Lymph Node with Mixed Dendritic and Fibroblastic Features Dan Jones, M.D., Ph.D., Mitual Amin, M.D., Nelson G
    Reticulum Cell Sarcoma of Lymph Node with Mixed Dendritic and Fibroblastic Features Dan Jones, M.D., Ph.D., Mitual Amin, M.D., Nelson G. Ordonez, M.D., Armand B. Glassman, M.D., Kimberly J. Hayes, B.S., L. Jeffrey Medeiros, M.D. Division of Pathology and Laboratory Medicine, University of Texas-M.D. Anderson Cancer Center, Houston, Texas Lymph nodes contain a heterogeneous population We report a case of clinically aggressive reticulum of stromal cells with reticular morphology. These cell sarcoma with mixed follicular dendritic cell include antigen-presenting follicular dendritic cells (FDC) and fibroblastic reticular cell (FRC) features. (FDC) within the lymphoid follicle; interdigitating Histologically, the tumor was confined to lymph reticular cells (IDCs) related to the myeloid/mono- nodes occurring as a multifocal epithelioid and cytic lineage, and interfollicular fibroblastic reticu- spindle cell proliferation with appreciable mitotic lar cells (FRCs) of mesenchymal origin (1–4). The rate and numerous admixed non-neoplastic B-cells. FDC population includes multiple immunopheno- Ultrastructural examination revealed elongated typically distinct subsets of stromal cells within the cells with prominent nucleoli, interdigitating cell lymphoid follicle and mantle zone that regulate processes and frequent desmosomes. These fea- distinct stages of B cell differentiation (5, 6). IDCs tures are typical of FDC sarcoma. However, immu- have a primary function in antigen presentation in nohistochemical stains showed no expression of an- the interfollicular zones of the node and differenti- tigens characteristic of FDCs, including CD21, CD23 ate from Langerhans cells migrating from skin or and CD35. Cytogenetic characterization of this tu- from bone marrow-derived precursors (2).
    [Show full text]
  • 6189.Full.Pdf
    Organizer-Like Reticular Stromal Cell Layer Common to Adult Secondary Lymphoid Organs This information is current as Tomoya Katakai, Hidenori Suto, Manabu Sugai, Hiroyuki of September 25, 2021. Gonda, Atsushi Togawa, Sachiko Suematsu, Yukihiko Ebisuno, Koko Katagiri, Tatsuo Kinashi and Akira Shimizu J Immunol 2008; 181:6189-6200; ; doi: 10.4049/jimmunol.181.9.6189 http://www.jimmunol.org/content/181/9/6189 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2008/10/17/181.9.6189.DC1 Material http://www.jimmunol.org/ References This article cites 57 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/181/9/6189.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Organizer-Like Reticular Stromal Cell Layer Common to Adult Secondary Lymphoid Organs1 Tomoya Katakai,2*‡ʈ Hidenori Suto,*† Manabu Sugai,*‡ Hiroyuki Gonda,*‡ Atsushi Togawa,§ Sachiko Suematsu,¶ Yukihiko Ebisuno,ʈ Koko Katagiri,ʈ Tatsuo Kinashi,ʈ and Akira Shimizu*†‡ Mesenchymal stromal cells are crucial components of secondary lymphoid organs (SLOs).
    [Show full text]
  • Papillary and Reticular Fibroblasts Generate Distinct Microenvironments
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.402594; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PAPILLARY AND RETICULAR FIBROBLASTS GENERATE DISTINCT MICROENVIRONMENTS THAT DIFFERENTIALLY IMPACT ANGIOGENESIS Adèle Mauroux1,2,3, Pauline Joncour2, Benjamin Gillet2, Sandrine Hughes2, Corinne Ardidie- Robouant1, Laëtitia Marchand3, Athanasia Liabotis1, Philippe Mailly1, Catherine Monnot1, Stephane Germain1, Sylvie Bordes3, Brigitte Closs3, Florence Ruggiero 2†*, Laurent Muller 1†* 1: Center for Interdisciplinary Research in Biology (CIRB), College de France - Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France. 2: Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, Univ Lyon 1, Lyon,France; 3: R&D Department, SILAB, Brive,France * These authors contributed equally to this work † Corresponding authors Corresponding authors e-mail: [email protected] ; Laurent.muller@college-de- france.fr 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.402594; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization, and fibroblasts isolated from these compartments have different gene expression patterns and behaviour in vitro. However, due to lack of relevant models, the contribution of skin fibroblast sub-populations to vascularization remains unknown.
    [Show full text]
  • LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response—A Systematic Review
    cells Review LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response—A Systematic Review Bianca O. Ferreira 1,† , Lionel F. Gamarra 1,†, Mariana P. Nucci 1,2 , Fernando A. Oliveira 1 , Gabriel N. A. Rego 1 and Luciana Marti 1,* 1 Department of Experimental Research, Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; [email protected] (B.O.F.); [email protected] (L.F.G.); [email protected] (M.P.N.); [email protected] (F.A.O.); [email protected] (G.N.A.R.) 2 LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil * Correspondence: [email protected]; Tel.: +55-11-2151-1353 † These authors contributed equally to this work. Abstract: Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to Citation: Ferreira, B.O.; Gamarra, control the immune response, as well as their ability in determining the fate of T cells.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Electron Microscopic Studies of the Differentiation of Fat Cells in Human Fetal Skin
    THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 53, No. 2 Copyright C 1959 by The Williams & Wilkins Co. Printed in U.S.A. ELECTRON MICROSCOPIC STUDIES OF THE DIFFERENTIATION OF FAT CELLS IN HUMAN FETAL SKIN* HIDESUKE FUJITA, M.D., CHIDORI ASAGAMI, M.D., YOSHIHIKO ODA, M.D., TAKASHI MORI, M.D. AND YOSHIKO SUETOMI. M.D. ABSTRACT 1) Electron microscopic studies of primitive fat organs showing various degrees of fat storage from human fetuses 20 to 26 weeks of age were undertaken, with special reference to the origin of fat cells and the lipid formations in them. Based on this study, three types of cells, namely an undifferentiated-type cell, a young-type fat cell and a mature- type fat cell were discerned ultrastructurally, but they are considered to be identical con- cerning the morphology of mitochondria, smooth endoplasmic reticula and glycogen granules. 2) Concerning the origin of white fat cells, it was revealed that young-type and mature- type fat cells are not derived from reticuloendothelial cells or fibroblasts but from a certain definite type of mesenchymal cell which we have referred to as the undifferentiated-type cell. 3) The finding that cytoplasmic microvesicles are more prominent in young-type fat cells than in mature-type ones might be interpreted that the young-type cells may be actively releasing lipids or free fatty acids according to Williamson's concept of these organelles. But, contrary to Williamson's postulation, the young-type fat cells seem to be accumulating lipids or free fatty acids. Despite previous embryological studies on RESULTS the differentiation of fat cells in human skin made by light microscopy, important prob- Light Microscopy lems still remain unsolved (1—5).
    [Show full text]