ENVIRONMENTAL IMPACT ASSESSMENT Proposed Coastal Modification Works at Ayada Maldives Gdh

Total Page:16

File Type:pdf, Size:1020Kb

ENVIRONMENTAL IMPACT ASSESSMENT Proposed Coastal Modification Works at Ayada Maldives Gdh ENVIRONMENTAL IMPACT ASSESSMENT Proposed Coastal Modification Works at Ayada Maldives GDh. Magudhdhuvaa Island August 2019 Prepared for: Maldives Tourism Development Corporation (MTDC) PLC Prepared by: Mohamed Zuhair (EIA01/15) & Ibrahim Shakir (BP03106) Page | 1 TABLE OF CONTENTS .............................................................................................................................................. 14 1. EXECUTIVE SUMMARY .......................................................................................................... 17 2. INTRODUCTION ........................................................................................................................ 21 2.1 OVERVIEW OF THE PROJECT ......................................................................................... 21 2.2 LEGAL REQUIREMENT .................................................................................................... 22 2.3 PROJECT JUSTIFICATION AND RATIONALE .............................................................. 23 2.4 DONORS AND INSTITUTIONAL ARRANGEMENTS ................................................... 25 2.5 EIA BACKGROUND AND RATIONALE ......................................................................... 25 2.6 EIA APPROACH, SCOPE AND OBJECTIVE ................................................................... 25 2.7 EIA METHODOLOGY ........................................................................................................ 26 2.8 REVIEW OF RELEVANT STUDIES ................................................................................. 27 2.9 EIA TEAM ............................................................................................................................ 28 2.10 EIA TERMS OF REFERENCE (TOR) ............................................................................ 29 3. STUDY AREA ............................................................................................................................. 30 4. PROJECT DESCRIPTION .......................................................................................................... 32 4.1 PROJECT LOCATION AND SETTING ............................................................................. 32 4.2 PROJECT PROPONENT ..................................................................................................... 32 4.3 PROJECT OUTLINE ........................................................................................................... 33 4.3.1 Scope of the Project ...................................................................................................... 33 4.3.2 Coastal Modification Concept ...................................................................................... 33 4.4 KEY PROJECT DEVELOPEMNT ...................................................................................... 33 4.4.1 Temporary Setup and Arrangement .............................................................................. 34 4.4.2 Beach Nourishment Works ........................................................................................... 34 4.4.3 Burrow Site ................................................................................................................... 36 4.4.4 Coastal Protection ......................................................................................................... 38 4.4.5 Environmental Monitoring During Project Implementation ......................................... 39 4.4.6 Key Measures for Environmental Protection During Project Implementation ............. 40 4.5 PROJECT MANAGEMENT ................................................................................................ 40 4.5.1 Project Duration ............................................................................................................ 40 4.5.2 Communication ............................................................................................................. 40 4.5.3 Work Safety .................................................................................................................. 40 4.5.4 Fuel Management .......................................................................................................... 41 Page | 2 4.5.5 Emergency Plan ............................................................................................................ 41 4.5.6 Key Project Inputs ......................................................................................................... 41 4.5.7 Key Project Outputs ...................................................................................................... 41 4.6 ACTIVITIES THAT ARE LIKELY TO CAUSE MAJOR ENVIRONMENTAL IMPACTS 42 4.7 AFFECTED BOUNDARIES ................................................................................................ 42 5. LEGAL AND REGULATORY FRAMEWORK ........................................................................ 44 5.1 APPLICABLE LAWS AND REGULATIONS.................................................................... 44 5.1.1 Tourism Act of Maldives (Law No. 2/99) .................................................................... 44 5.1.2 Environmental Protection and Preservation Act (Law No. 4/93) and Amendments, 2014 45 5.1.3 Maldives EIA Regulation and Amendment, 2018 ........................................................ 46 5.1.4 Penalty and Liabilities Regulation, 2011 ...................................................................... 47 5.1.5 Waste Management Regulation and Amendments, 2018 ............................................. 47 5.1.6 Dredging and Reclamation Regulation, 2013 ............................................................... 49 5.2 RELEVANT POLICIES ....................................................................................................... 49 5.2.1 National Biodiversity Strategy and Action Plan, 2016-2025 ........................................ 49 5.2.2 National Solid Waste Management Policy, 2007 ......................................................... 50 5.3 RELEVANT AUTHORITIES .............................................................................................. 51 5.3.1 Ministry of Tourism, MOT ........................................................................................... 51 5.3.2 Ministry of Environment, MOE .................................................................................... 51 5.3.3 Environmental Protection Agency, EPA ....................................................................... 51 5.4 PERMITS OBTAINED AND REQUIRED ......................................................................... 52 6. EXISTING ENVIRONMENT ..................................................................................................... 53 6.1 DATA COLLECTION METHODS ..................................................................................... 53 6.1.1 Geophysical Environment ............................................................................................. 53 6.1.2 Climate Environment .................................................................................................... 53 6.1.3 Coastal and Marine Environment.................................................................................. 54 6.1.4 Derivation of Environmental Indicators........................................................................ 54 6.1.5 Uncertainties on Data Collection Methods ................................................................... 54 6.2 ASSESSMENTS UNDERTAKEN....................................................................................... 55 6.3 GEOPHYSICAL ENVIRONMENT ..................................................................................... 60 6.3.1 Geography and Environmental Setting ......................................................................... 60 6.3.2 Geology and Geomorphology ....................................................................................... 60 6.3.3 Characteristics of Seabed Sediments ............................................................................ 61 Page | 3 6.4 CLIMATE ENVIRONMENT ............................................................................................... 63 6.4.1 Climatic Setting............................................................................................................. 63 6.4.2 Monsoons ...................................................................................................................... 63 6.4.3 Temperature .................................................................................................................. 63 6.4.4 Rainfall .......................................................................................................................... 65 6.4.5 Sunshine ........................................................................................................................ 66 6.4.6 Winds ............................................................................................................................ 67 6.5 COASTAL AND MARINE ENVIRONMENT.................................................................... 70 6.5.1 Coastal Geomorphology ............................................................................................... 70 6.5.2 Seasonal Erosion and Accretion.................................................................................... 72 6.5.3 Tides .............................................................................................................................
Recommended publications
  • A Field Experiment on a Nourished Beach
    CHAPTER 157 A Field Experiment on a Nourished Beach A.J. Fernandez* G. Gomez Pina * G. Cuena* J.L. Ramirez* Abstract The performance of a beach nourishment at" Playa de Castilla" (Huel- va, Spain) is evaluated by means of accurate beach profile surveys, vi- sual breaking wave information, buoy-measured wave data and sediment samples. The shoreline recession at the nourished beach due to "profile equilibration" and "spreading out" losses is discussed. The modified equi- librium profile curve proposed by Larson (1991) is shown to accurately describe the profiles with a grain size varying across-shore. The "spread- ing out" losses measured at " Playa de Castilla" are found to be less than predicted by spreading out formulations. The utilization of borrowed material substantially coarser than the native material is suggested as an explanation. 1 INTRODUCTION Fernandez et al. (1990) presented a case study of a sand bypass project at "Playa de Castilla" (Huelva, Spain) and the corresponding monitoring project, that was going to be undertaken. The Beach Nourishment Monitoring Project at the "Playa de Castilla" was begun over two years ago. The project is being *Direcci6n General de Costas. M.O.P.T, Madrid (Spain) 2043 2044 COASTAL ENGINEERING 1992 carried out to evaluate the performance of a beach fill and to establish effective strategies of coastal management and represents one of the most comprehensive monitoring projects that has been undertaken in Spain. This paper summa- rizes and discusses the data set for wave climate, beach profiles and sediment samples. 2 STUDY SITE & MONITORING PROGRAM Playa de Castilla, Fig. 1, is a sandy beach located on the South-West coast of Spain between the Guadiana and Gualdalquivir rivers.
    [Show full text]
  • Littoral Cells, Sand Budgets, and Beaches: Understanding California S
    LITTORAL CELLS, SAND BUDGETS, AND BEACHES: UNDERSTANDING CALIFORNIA’ S SHORELINE KIKI PATSCH GARY GRIGGS OCTOBER 2006 INSTITUTE OF MARINE SCIENCES UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA DEPARTMENT OF BOATING AND WATERWAYS CALIFORNIA COASTAL SEDIMENT MANAGEMENT WORKGROUP Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline By Kiki Patch Gary Griggs Institute of Marine Sciences University of California, Santa Cruz California Department of Boating and Waterways California Coastal Sediment Management WorkGroup October 2006 Cover Image: Santa Barbara Harbor © 2002 Kenneth & Gabrielle Adelman, California Coastal Records Project www.californiacoastline.org Brochure Design & Layout Laura Beach www.LauraBeach.net Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline Kiki Patsch Gary Griggs Institute of Marine Sciences University of California, Santa Cruz TABLE OF CONTENTS Executive Summary 7 Chapter 1: Introduction 9 Chapter 2: An Overview of Littoral Cells and Littoral Drift 11 Chapter 3: Elements Involved in Developing Sand Budgets for Littoral Cells 17 Chapter 4: Sand Budgets for California’s Major Littoral Cells and Changes in Sand Supply 23 Chapter 5: Discussion of Beach Nourishment in California 27 Chapter 6: Conclusions 33 References Cited and Other Useful References 35 EXECUTIVE SUMMARY he coastline of California can be divided into a set of dis- Beach nourishment or beach restoration is the placement of Ttinct, essentially self-contained littoral cells or beach com- sand on the shoreline with the intent of widening a beach that partments. These compartments are geographically limited and is naturally narrow or where the natural supply of sand has consist of a series of sand sources (such as rivers, streams and been signifi cantly reduced through human activities.
    [Show full text]
  • Beach Nourishment: Massdep's Guide to Best Management Practices for Projects in Massachusetts
    BBEACHEACH NNOURISHMEOURISHMENNTT MassDEP’sMassDEP’s GuideGuide toto BestBest ManagementManagement PracticesPractices forfor ProjectsProjects inin MassachusettsMassachusetts March 2007 acknowledgements LEAD AUTHORS: Rebecca Haney (Coastal Zone Management), Liz Kouloheras, (MassDEP), Vin Malkoski (Mass. Division of Marine Fisheries), Jim Mahala (MassDEP) and Yvonne Unger (MassDEP) CONTRIBUTORS: From MassDEP: Fred Civian, Jen D’Urso, Glenn Haas, Lealdon Langley, Hilary Schwarzenbach and Jim Sprague. From Coastal Zone Management: Bob Boeri, Mark Borrelli, David Janik, Julia Knisel and Wendolyn Quigley. Engineering consultants from Applied Coastal Research and Engineering Inc. also reviewed the document for technical accuracy. Lead Editor: David Noonan (MassDEP) Design and Layout: Sandra Rabb (MassDEP) Photography: Sandra Rabb (MassDEP) unless otherwise noted. Massachusetts Massachusetts Office Department of of Coastal Zone Environmental Protection Management 1 Winter Street 251 Causeway Street Boston, MA Boston, MA table of contents I. Glossary of Terms 1 II. Summary 3 II. Overview 6 • Purpose 6 • Beach Nourishment 6 • Specifications and Best Management Practices 7 • Permit Requirements and Timelines 8 III. Technical Attachments A. Beach Stability Determination 13 B. Receiving Beach Characterization 17 C. Source Material Characterization 21 D. Sample Problem: Beach and Borrow Site Sediment Analysis to Determine Stability of Nourishment Material for Shore Protection 22 E. Generic Beach Monitoring Plan 27 F. Sample Easement 29 G. References 31 GLOSSARY Accretion - the gradual addition of land by deposition of water-borne sediment. Beach Fill – also called “artificial nourishment”, “beach nourishment”, “replenishment”, and “restoration,” comprises the placement of sediment within the nearshore sediment transport system (see littoral zone). (paraphrased from Dean, 2002) Beach Profile – the cross-sectional shape of a beach plotted perpendicular to the shoreline.
    [Show full text]
  • The Project for Pilot Gravel Beach Nourishment Against Coastal Disaster on Fongafale Island in Tuvalu
    MINISTRY OF FOREIGN AFFAIRS, TRADES, TOURISM, ENVIRONMENT AND LABOUR THE GOVERNMENT OF TUVALU THE PROJECT FOR PILOT GRAVEL BEACH NOURISHMENT AGAINST COASTAL DISASTER ON FONGAFALE ISLAND IN TUVALU FINAL REPORT (SUPPORTING REPORT) April 2018 JAPAN INTERNATIONAL COOPERATION AGENCY NIPPON KOEI CO., LTD. FUTABA INC. GE JR 18-058 MINISTRY OF FOREIGN AFFAIRS, TRADES, TOURISM, ENVIRONMENT AND LABOUR THE GOVERNMENT OF TUVALU THE PROJECT FOR PILOT GRAVEL BEACH NOURISHMENT AGAINST COASTAL DISASTER ON FONGAFALE ISLAND IN TUVALU FINAL REPORT (SUPPORTING REPORT) April 2018 JAPAN INTERNATIONAL COOPERATION AGENCY NIPPON KOEI CO., LTD. FUTABA INC. Table of Contents Supporting Report-1 Study on the Quality and Quantity of Materials in Phase-1 (quote from Interim Report 1) .............................................................. SR-1 Supporting Report-2 Planning and Design in Phase-1 (quote from Interim Report 1) ............ SR-2 Supporting Report-3 Design Drawing ..................................................................................... SR-3 Supporting Report-4 Project Implementation Plan in Phase-1 (quote from Interim Report 1)................................................................................................. SR-4 Supporting Report-5 Preliminary Environmental Assessment Report (PEAR) ....................... SR-5 Supporting Report-6 Public Consultation in Phase-1 (quote from Interim Report 1) .............. SR-6 Supporting Report-7 Bidding Process (quote from Progress Report) ...................................... SR-7 Supporting
    [Show full text]
  • The Shifting Sand of Provincetown
    The Shifting Sand of Provincetown Greg Berman (Woods Hole Sea Grant & Cape Cod Cooperative Extension) March 15, 2019 Glacial History 25,000 yr ago 400’ below SL, ~1 mile thick By ~ 15,000 ice was gone. 11,000 years ago 6,000 years ago Present Day (Shaw et al., 2002) General Coastal Processes Longshore Sediment Transport +3’/yr +4’/yr +5’/yr +8’/yr -2’/yr -2’/yr -1’/yr 0’/yr Direction of Direction of Longshore Current Longshore Current Deposition Erosion Downdrift Coastal Structure Source: MORIS: CZM’s Online Mapping Tool Longshore Sediment Transport Longshore Sediment Transport Longshore Sediment Transport Longshore Sediment Transport Longshore Sediment Transport Google Earth Engine: Timelapse is a global, zoomable video that lets you see how the Earth has changed over the past 32 years. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library. General Coastal Processes Coastal Processes: Barrier Migration Perpendicular to Shore Overwash: Storms push sand across the island and into the lagoon area beyond. Barrier `rolls over on itself.‘ Coastal Processes: Barrier Migration Perpendicular to Shore Adapted from http://www.nasa.gov/vision/earth/lookingatearth/katrina_poststorm.html Peggotty Beach 2016 Video by Peter Miles Perpendicular Transport…….Blocked input 1.3mi What is Erosion? It’s all sediment transport! What is Erosion???..... just more leaving than coming in Accretion Dynamic Equilibrium Erosion Living with Erosion 1. Erosion of glacial landforms is the MOST important source of sediment for dunes and beaches in Massachusetts.
    [Show full text]
  • Shoreline Stabilisation
    Section 5 SHORELINE STABILISATION 5.1 Overview of Options Options for handling beach erosion along the western segment of Shelley Beach include: • Do Nothing – which implies letting nature take its course; • Beach Nourishment – place or pump sand on the beach to restore a beach; • Wave Dissipating Seawall – construct a wave dissipating seawall in front of or in lieu of the vertical wall so that wave energy is absorbed and complete protection is provided to the boatsheds and bathing boxes behind the wall for a 50 year planning period; • Groyne – construct a groyne, somewhere to the east of Campbells Road to prevent sand from the western part of Shelley Beach being lost to the eastern part of Shelley Beach; • Offshore Breakwater – construct a breakwater parallel to the shoreline and seaward of the existing jetties to dissipate wave energy before it reaches the beach; and • Combinations of the above. 5.2 Do Nothing There is no reason to believe that the erosion process that has occurred over at least the last 50 years, at the western end of Shelley Beach, will diminish. If the water depth over the nearshore bank has deepened, as it appears visually from aerial photographs, the wave heights and erosive forces may in fact increase. Therefore “Do Nothing” implies that erosion will continue, more structures will be threatened and ultimately damaged, and the timber vertical wall become undermined and fail, exposing the structures behind the wall to wave forces. The cliffs behind the wall will be subjected to wave forces and will be undermined if they are not founded on solid rock.
    [Show full text]
  • Coastal Processes Study at Ocean Beach, San Francisco, CA: Summary of Data Collection 2004-2006
    Coastal Processes Study at Ocean Beach, San Francisco, CA: Summary of Data Collection 2004-2006 By Patrick L. Barnard, Jodi Eshleman, Li Erikson and Daniel M. Hanes Open-File Report 2007–1217 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Barnard, P.L.., Eshleman, J., Erikson, L., and Hanes, D.M., 2007, Coastal processes study at Ocean Beach, San Francisco, CA; summary of data collection 2004-2006: U. S. Geological Survey Open-File Report 2007- 1217, 171 p. [http://pubs.usgs.gov/of/2007/1217/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Executive Summary of Major Findings..................................................................................................................................1 Chapter 2 - Beach Topographic Mapping..............................................................................................................1
    [Show full text]
  • EIA for the Proposed Coastal Protection and Beach Nourishment at Madifushi Island, Meemu Atoll
    EIA for the Proposed Coastal Protection and Beach Nourishment at Madifushi Island, Meemu Atoll Madifushi Island; Photo by: Water Solutions Pvt Ltd Proposed by: Maldives Inflight Caterings Pte Ltd Prepared by: Ahmed Jameel (EIA P07/2007) and Mohamed Umar (EIA P02/2019) For Water Solutions Pvt. Ltd., Maldives March 2021 EIA for the Proposed Coastal Protection and Beach Nourishment at Madifushi, Meemu Atoll Blank Page Prepared by Water Solutions Pvt. Ltd, March 2021 Page 2 EIA for the Proposed Coastal Protection and Beach Nourishment, Meemu Atoll 1 Table of contents EIA for the Proposed Coastal Protection and Beach Nourishment at Madifushi Island, Meemu Atoll .............................................................................................................................. 1 1 Table of contents ...................................................................................................... 3 2 List of Figures and Tables ........................................................................................ 8 3 Declaration of the consultants ................................................................................ 10 4 Proponents Commitment and Declaration ............................................................. 11 5 Non-Technical Summary ....................................................................................... 16 6 Introduction ............................................................................................................ 18 Structure of the EIA ..........................................................................................
    [Show full text]
  • Beach Nourishment Profile Equilibration: What to Expect After Sand Is Placed on a Beach By
    ASBPA WHITE PAPER: Beach nourishment profile equilibration: What to expect after sand is placed on a beach By Kenneth Willson, Gordon Thomson, Tiffany Roberts Briggs, Nicole Elko, and Jon Miller ASBPA Science & Technology Committee March 2017 each nourishment is a commonly implemented solution to mitigate long-term erosion, provide habi- tat,B and reduce storm-damage to coastal communities. During a beach nourish- ment project, large volumes of sand (with similar properties as the native sand) are added to the beach from upland, offshore, or nearby inlet sources to establish a de- signed level of protection and/or restore sand that has eroded. During the construction of a beach nourishment project, sand is brought to the beach by dredges or truck hauling to Figure 1. Diagram showing the basic features of a beach profile typical of widen the beach. Bulldozers are then used many U.S. beaches. to grade the sand into a pre-determined refers to the typically dry area between the natural processes by including a vol- construction template. Nourishment the (high) water level and dune/upland ume of sand intended to be transported projects are designed and constructed region. Seaward of the beach is the surf offshore (Figure 2). to take advantage of the natural forces, zone, extending beyond the region where The constructed beach nourishment such as waves and currents, to move sand waves break. The dune, beach, surf zone, project includes a total volume of sand, offshore. This process results in a natural and dune comprise the beach profile “constructed fill,” which consists of sloping beach within the littoral zone, and (Figure 1).
    [Show full text]
  • MARID VI Marine and River Dune Dynamics 2019 1 - 3 April 2019  Bremen, Germany
    International conference MARID VI Marine and River Dune Dynamics 2019 1 - 3 April 2019 Bremen, Germany Books of Abstracts Editors: Alice Lefebvre, ierry Garlan and Christian Winter Kiel University Christian-Albrechts-Universität zu Kiel French Hydrographic & Oceanographic Ofce MARID VI Marine and River Dune Dynamics Bremen, Germany 1 - 3 April, 2019 Organising Committee: Dr Alice Lefebvre, MARUM, University of Bremen, Germany Prof Dr Christian Winter, Kiel University, Germany Dr Thierry Garlan, French Hydrographic Office, France Prof Dr Burghard Flemming, Senckenberg am Meer, Germany Dr Knut Krämer, MARUM, University of Bremen, Germany Dr Marius Becker, Kiel University, Germany Scientific Committee: Dr Jaco Baas, Bangor University, United Kingdom Dr Marius Becker, Kiel University, Germany Prof Dr Jim Best, University of Illinois, United States of America Prof Dr Burghard Flemming, Senckenberg am Meer, Germany Dr Thierry Garlan, French Hydrographic Office, France Prof Dr Suzanne Hulscher, Twente University, Netherlands Prof Dr Maarten Kleinhans, Utrecht University, Netherlands Dr Sophie Le Bot, Université de Rouen, France Dr Alice Lefebvre, MARUM, University of Bremen, Germany Prof Dr Dan Parsons, University of Hull, United Kingdom Dr Marc Roche, Federal Public Service Economy, Self-employed, SME's and Energy, Belgium Prof Dr Alain Trentesaux, Université de Lille, France Prof Dr Vera Van Lancker, Royal Belgian Institute of Natural Sciences, Belgium Dr Katrien Van Landeghem, Bangor University, United Kingdom Prof Dr Christian Winter, Kiel University, Germany This publication should be cited as follows: Lefebvre, A., Garlan, T. and Winter, C. (Eds), 2019. MARID VI. Sixth International Conference on Marine and River Dune Dynamics. Bremen, Germany, 1-3 April 2019. MARUM – Center for Marine Environmental Sciences, University Bremen and SHOM.
    [Show full text]
  • Concept Designs for a Groyne Field on the Far North Nsw Coast
    CONCEPT DESIGNS FOR A GROYNE FIELD ON THE FAR NORTH NSW COAST I Coghlan 1, J Carley 1, R Cox 1, E Davey 1, M Blacka 1, J Lofthouse 2 1 Water Research Laboratory (WRL), School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, NSW 2Tweed Shire Council (TSC), Murwillumbah, NSW Introduction On the open coast of NSW, many options exist to adapt to the hazards of erosion and recession. Perhaps the most common historical approach to counter the erosion and recession hazard is to construct a seawall or revetment to protect the existing foreshore. Other alternatives include the construction of a submerged breakwater, assisted beach recovery and/or beach nourishment. For beaches with a littoral drift imbalance, the construction of one or more groyne structures is a further possibility. This paper presents two different concept designs for a long term groyne field at Kingscliff Beach. Background Information Case Study: Kingscliff Beach Kingscliff Beach, located at the southern end of Wommin Bay on the far north coast of NSW (Figure 1), is a section of the Tweed coastline with built assets at immediate risk from coastal hazards. Ongoing erosion in the last few years has resulted in substantial loss of beach amenity and community land. Storm erosion episodes between 2009 and 2012 severely impacted the Kingscliff Beach Holiday Park (KBHP). This section is also affected by moderate ongoing underlying shoreline recession (WBM, 2001). To manage the Kingscliff Beach foreshore (Figure 2) in the longer term, Tweed Shire
    [Show full text]
  • CSDMS Strategic Plan 2013 Master
    FIVE-YEAR STRATEGIC PLAN NOV 1, 2013 TO OCT 31, 2018 2 CSDMS2.0 STRATEGIC PLAN Table of Contents 1.0 CSDMS Mission 4 2.0 CSDMS Long Range Goals and CSDMS Cyber-Infrastructure 5 3.0 CSDMS Proof-of-Concept Community Challenges 7 4.0 Details of Working Group Short-, Intermediate-, and Long-Term Goals 10 4.1 CSDMS Terrestrial Working Group 10 4.2 CSDMS Coastal Working Group 12 4.3 CSDMS Marine Working Group 17 4.4 CSDMS Cyberinfrastructure and Numerics Working Group 19 4.5 CSDMS Education and Knowledge Transfer Working Group 21 4.6 CSDMS Carbonate Focus Working Group 24 4.7 CSDMS Hydrology Focus Working Group 27 4.8 CSDMS Chesapeake Focus Working Group 28 4.9 CSDMS Geodynamics Focus Working Group 29 4.10 CSDMS Anthropocene Focus Working Group 31 4.11 CSDMS Critical Zone Focus Working Group 32 4.12 CSDMS Coastal Vulnerability Initiative 33 4.13 CSDMS Continental Margin Initiative 36 5. Achieving Our Long-Range Goals 37 6. Community Computational Resources 39 7. Organizing Community Participation 41 8. User Training 42 9. CSDMS Membership and Communication 43 10. Five Year Management Plan 44 10.1 CSDMS Membership (Working & Focus Research Groups) 44 10.2 The CSDMS Executive Committee (ExCom) 45 10.3 The CSDMS Steering Committee (SC) 45 10.4 The CSDMS Integration Facility (IF) 46 10.5 CSDMS Industrial Consortium 46 10.6 CSDMS Interagency Committee 46 10.7 CSDMS Priorities and Management of Its Resources 47 Appendix 1: By-Laws of the Community Surface Dynamics Modeling System (10/25/2013) 50 Appendix 2: CSDMS Industrial Consortium (Oct 25, 2013) 56 Appendix 3: Institutional Membership (July 1, 2013) 59 3 1.0 CSDMS Mission The Community Surface Dynamics Modeling System (CSDMS) catalyzes new paradigms and practices in developing and employing software to understand the Earth’s surface — the ever- changing dynamic interface between lithosphere, hydrosphere, cryosphere and atmosphere.
    [Show full text]