Beach Nourishment Profile Equilibration: What to Expect After Sand Is Placed on a Beach By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Quick Guide to Southeast Florida's Coral Reefs
A Quick Guide to Southeast Florida’s Coral Reefs DAVID GILLIAM NATIONAL CORAL REEF INSTITUTE NOVA SOUTHEASTERN UNIVERSITY Spring 2013 Prepared by the Land-based Sources of Pollution Technical Advisory Committee (TAC) of the Southeast Florida Coral Reef Initiative (SEFCRI) BRIAN WALKER NATIONAL CORAL REEF INSTITUTE, NOVA SOUTHEASTERN Southeast Florida’s coral-rich communities are more valuable than UNIVERSITY the Spanish treasures that sank nearby. Like the lost treasures, these amazing reefs lie just a few hundred yards off the shores of Martin, Palm Beach, Broward and Miami-Dade Counties where more than one-third of Florida’s 19 million residents live. Fishing, diving, and boating help attract millions of visitors to southeast Florida each year (30 million in 2008/2009). Reef-related expen- ditures generate $5.7 billion annually in income and sales, and support more than 61,000 local jobs. Such immense recreational activity, coupled with the pressures of coastal development, inland agriculture, and robust cruise and commercial shipping industries, threaten the very survival of our reefs. With your help, reefs will be protected from local stresses and future generations will be able to enjoy their beauty and economic benefits. Coral reefs are highly diverse and productive, yet surprisingly fragile, ecosystems. They are built by living creatures that require clean, clear seawater to settle, mature and reproduce. Reefs provide safe havens for spectacular forms of marine life. Unfortunately, reefs are vulnerable to impacts on scales ranging from local and regional to global. Global threats to reefs have increased along with expanding ART SEITZ human populations and industrialization. Now, warming seawater temperatures and changing ocean chemistry from carbon dioxide emitted by the burning of fossil fuels and deforestation are also starting to imperil corals. -
Brighton Beach Groynes
CASE STUDY: BRIGHTON BEACH GROYNES BRIGHTON, SOUTH AUSTRALIA FEBRUARY 2017 CLIENT: CITY OF HOLDFAST BAY Adelaide’s beaches are affected by a common phenomenon called ELCOROCK® longshore drift - the flow of water, in one direction, along a beach occurring as a result of winds and currents. In Adelaide longshore drift flows from south to north and it frequently erodes beaches The ELCOROCK system consists of sand- over time, particularly during storm events when tides are high and filled geotextile containers built to form sea is rough. a stabilising, defensive barrier against coastal erosion. Without sand replenishment, the southern end of Adelaide’s beaches will slowly erode and undermine existing infrastructure at The robustness and stability of Elcorock the sea/land interface. The objective of Elcorock sand container geotextile containers provide a solutions groynes, laid perpendicular to the beach, is to capture some of for other marine structures such as groynes and breakwaters. These the natural sand as well as dredged sand, that moves along the structures extend out into the wave zone coast. Over time, this process builds up the beach, particularly and provide marina and beach protection, between the groynes which results in the protection of the existing sand movement control and river training. infrastructure. The size of the container can easily be Geofabrics met with the city of Holdfast Bay in the early stages of selected based on the wave climate and the project to discuss the product, durability and previous projects other conditions ensuring stability under with a similar application. Due to recent weather events, the beach the most extreme conditions. -
A Field Experiment on a Nourished Beach
CHAPTER 157 A Field Experiment on a Nourished Beach A.J. Fernandez* G. Gomez Pina * G. Cuena* J.L. Ramirez* Abstract The performance of a beach nourishment at" Playa de Castilla" (Huel- va, Spain) is evaluated by means of accurate beach profile surveys, vi- sual breaking wave information, buoy-measured wave data and sediment samples. The shoreline recession at the nourished beach due to "profile equilibration" and "spreading out" losses is discussed. The modified equi- librium profile curve proposed by Larson (1991) is shown to accurately describe the profiles with a grain size varying across-shore. The "spread- ing out" losses measured at " Playa de Castilla" are found to be less than predicted by spreading out formulations. The utilization of borrowed material substantially coarser than the native material is suggested as an explanation. 1 INTRODUCTION Fernandez et al. (1990) presented a case study of a sand bypass project at "Playa de Castilla" (Huelva, Spain) and the corresponding monitoring project, that was going to be undertaken. The Beach Nourishment Monitoring Project at the "Playa de Castilla" was begun over two years ago. The project is being *Direcci6n General de Costas. M.O.P.T, Madrid (Spain) 2043 2044 COASTAL ENGINEERING 1992 carried out to evaluate the performance of a beach fill and to establish effective strategies of coastal management and represents one of the most comprehensive monitoring projects that has been undertaken in Spain. This paper summa- rizes and discusses the data set for wave climate, beach profiles and sediment samples. 2 STUDY SITE & MONITORING PROGRAM Playa de Castilla, Fig. 1, is a sandy beach located on the South-West coast of Spain between the Guadiana and Gualdalquivir rivers. -
CITY of MIAMI BEACH DUNE MANAGEMENT PLAN January 2016
CITY OF MIAMI BEACH DUNE MANAGEMENT PLAN January 2016 Prepared by: CITY OF MIAMI BEACH COASTAL MANAGEMENT 1700 Convention Center Drive AND CONSULTING Miami Beach, Florida 33139 7611 Lawrence Road Boynton Beach, Florida 33436 I. STATEMENT OF PURPOSE Coastal dunes are habitat for wildlife and support a high biodiversity of flora and fauna. They also keep beaches healthy by accreting sand and minimizing beach erosion rates. The dunes protect coastal infrastructure and upland properties from storm damage by blocking storm surge and absorbing wave energy. Therefore, a healthy dune system is an invaluable asset to coastal communities like Miami Beach. The purpose of the City of Miami Beach Dune Management Plan (“the Plan”) is to outline the framework and specifications that the City will use to foster and maintain a healthy, stable, and natural dune system that is appropriate for its location and reduces public safety and maintenance concerns. The Plan shall guide the City’s efforts in managing the urban, man-made dune as close to a natural system as possible and ensuring the dune provides storm protection, erosion control, and a biologically-rich habitat for local species. II. OBJECTIVES This plan was developed collaboratively with local government and community stakeholders, as well as local experts to meet the following primary objectives: 1. Reduce to the maximum extent possible the presence of invasive, non-native pest plant species within the dune system. Non-native species compete with and overwhelm more stable native dune plants, thereby threatening the stability and biodiversity of the dune system. Reducing the presence of aggressive, non-native vegetation preserves and promotes the structural integrity and biodiversity of the dune. -
Observations of Nearshore Infragravity Waves: Seaward and Shoreward Propagating Components A
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C8, 3095, 10.1029/2001JC000970, 2002 Observations of nearshore infragravity waves: Seaward and shoreward propagating components A. Sheremet,1 R. T. Guza,2 S. Elgar,3 and T. H. C. Herbers4 Received 14 May 2001; revised 5 December 2001; accepted 20 December 2001; published 6 August 2002. [1] The variation of seaward and shoreward infragravity energy fluxes across the shoaling and surf zones of a gently sloping sandy beach is estimated from field observations and related to forcing by groups of sea and swell, dissipation, and shoreline reflection. Data from collocated pressure and velocity sensors deployed between 1 and 6 m water depth are combined, using the assumption of cross-shore propagation, to decompose the infragravity wave field into shoreward and seaward propagating components. Seaward of the surf zone, shoreward propagating infragravity waves are amplified by nonlinear interactions with groups of sea and swell, and the shoreward infragravity energy flux increases in the onshore direction. In the surf zone, nonlinear phase coupling between infragravity waves and groups of sea and swell decreases, as does the shoreward infragravity energy flux, consistent with the cessation of nonlinear forcing and the increased importance of infragravity wave dissipation. Seaward propagating infragravity waves are not phase coupled to incident wave groups, and their energy levels suggest strong infragravity wave reflection near the shoreline. The cross-shore variation of the seaward energy flux is weaker than that of the shoreward flux, resulting in cross-shore variation of the squared infragravity reflection coefficient (ratio of seaward to shoreward energy flux) between about 0.4 and 1.5. -
Littoral Cells, Sand Budgets, and Beaches: Understanding California S
LITTORAL CELLS, SAND BUDGETS, AND BEACHES: UNDERSTANDING CALIFORNIA’ S SHORELINE KIKI PATSCH GARY GRIGGS OCTOBER 2006 INSTITUTE OF MARINE SCIENCES UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA DEPARTMENT OF BOATING AND WATERWAYS CALIFORNIA COASTAL SEDIMENT MANAGEMENT WORKGROUP Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline By Kiki Patch Gary Griggs Institute of Marine Sciences University of California, Santa Cruz California Department of Boating and Waterways California Coastal Sediment Management WorkGroup October 2006 Cover Image: Santa Barbara Harbor © 2002 Kenneth & Gabrielle Adelman, California Coastal Records Project www.californiacoastline.org Brochure Design & Layout Laura Beach www.LauraBeach.net Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline Kiki Patsch Gary Griggs Institute of Marine Sciences University of California, Santa Cruz TABLE OF CONTENTS Executive Summary 7 Chapter 1: Introduction 9 Chapter 2: An Overview of Littoral Cells and Littoral Drift 11 Chapter 3: Elements Involved in Developing Sand Budgets for Littoral Cells 17 Chapter 4: Sand Budgets for California’s Major Littoral Cells and Changes in Sand Supply 23 Chapter 5: Discussion of Beach Nourishment in California 27 Chapter 6: Conclusions 33 References Cited and Other Useful References 35 EXECUTIVE SUMMARY he coastline of California can be divided into a set of dis- Beach nourishment or beach restoration is the placement of Ttinct, essentially self-contained littoral cells or beach com- sand on the shoreline with the intent of widening a beach that partments. These compartments are geographically limited and is naturally narrow or where the natural supply of sand has consist of a series of sand sources (such as rivers, streams and been signifi cantly reduced through human activities. -
INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The
INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The Intertidal Zone is the narrow belt along the shoreline lying between the lowest and highest tide marks. The intertidal or littoral zone is subdivided broadly into four vertical zones based on the amount of time the zone is submerged. From highest to lowest, they are Supratidal or Spray Zone Upper Intertidal submergence time Middle Intertidal Littoral Zone influenced by tides Lower Intertidal Subtidal Sublittoral Zone permanently submerged The intertidal zone may also be subdivided on the basis of the vertical distribution of the species that dominate a particular zone. However, zone divisions should, in most cases, be regarded as approximate! No single system of subdivision gives perfectly consistent results everywhere. Please refer to the intertidal zonation scheme given in the attached table (last page). Zonal Distribution of organisms is controlled by PHYSICAL factors (which set the UPPER limit of each zone): 1) tidal range 2) wave exposure or the degree of sheltering from surf 3) type of substrate, e.g., sand, cobble, rock 4) relative time exposed to air (controls overheating, desiccation, and salinity changes). BIOLOGICAL factors (which set the LOWER limit of each zone): 1) predation 2) competition for space 3) adaptation to biological or physical factors of the environment Species dominance patterns change abruptly in response to physical and/or biological factors. For example, tide pools provide permanently submerged areas in higher tidal zones; overhangs provide shaded areas of lower temperature; protected crevices provide permanently moist areas. Such subhabitats within a zone can contain quite different organisms from those typical for the zone. -
Beach Nourishment: Massdep's Guide to Best Management Practices for Projects in Massachusetts
BBEACHEACH NNOURISHMEOURISHMENNTT MassDEP’sMassDEP’s GuideGuide toto BestBest ManagementManagement PracticesPractices forfor ProjectsProjects inin MassachusettsMassachusetts March 2007 acknowledgements LEAD AUTHORS: Rebecca Haney (Coastal Zone Management), Liz Kouloheras, (MassDEP), Vin Malkoski (Mass. Division of Marine Fisheries), Jim Mahala (MassDEP) and Yvonne Unger (MassDEP) CONTRIBUTORS: From MassDEP: Fred Civian, Jen D’Urso, Glenn Haas, Lealdon Langley, Hilary Schwarzenbach and Jim Sprague. From Coastal Zone Management: Bob Boeri, Mark Borrelli, David Janik, Julia Knisel and Wendolyn Quigley. Engineering consultants from Applied Coastal Research and Engineering Inc. also reviewed the document for technical accuracy. Lead Editor: David Noonan (MassDEP) Design and Layout: Sandra Rabb (MassDEP) Photography: Sandra Rabb (MassDEP) unless otherwise noted. Massachusetts Massachusetts Office Department of of Coastal Zone Environmental Protection Management 1 Winter Street 251 Causeway Street Boston, MA Boston, MA table of contents I. Glossary of Terms 1 II. Summary 3 II. Overview 6 • Purpose 6 • Beach Nourishment 6 • Specifications and Best Management Practices 7 • Permit Requirements and Timelines 8 III. Technical Attachments A. Beach Stability Determination 13 B. Receiving Beach Characterization 17 C. Source Material Characterization 21 D. Sample Problem: Beach and Borrow Site Sediment Analysis to Determine Stability of Nourishment Material for Shore Protection 22 E. Generic Beach Monitoring Plan 27 F. Sample Easement 29 G. References 31 GLOSSARY Accretion - the gradual addition of land by deposition of water-borne sediment. Beach Fill – also called “artificial nourishment”, “beach nourishment”, “replenishment”, and “restoration,” comprises the placement of sediment within the nearshore sediment transport system (see littoral zone). (paraphrased from Dean, 2002) Beach Profile – the cross-sectional shape of a beach plotted perpendicular to the shoreline. -
Mapping Turbidity Currents Using Seismic Oceanography Title Page Abstract Introduction 1 2 E
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 8, 1803–1818, 2011 www.ocean-sci-discuss.net/8/1803/2011/ Ocean Science doi:10.5194/osd-8-1803-2011 Discussions OSD © Author(s) 2011. CC Attribution 3.0 License. 8, 1803–1818, 2011 This discussion paper is/has been under review for the journal Ocean Science (OS). Mapping turbidity Please refer to the corresponding final paper in OS if available. currents using seismic E. A. Vsemirnova and R. W. Hobbs Mapping turbidity currents using seismic oceanography Title Page Abstract Introduction 1 2 E. A. Vsemirnova and R. W. Hobbs Conclusions References 1Geospatial Research Ltd, Department of Earth Sciences, Tables Figures Durham University, Durham DH1 3LE, UK 2Department of Earth Sciences, Durham University, Durham DH1 3LE, UK J I Received: 25 May 2011 – Accepted: 12 August 2011 – Published: 18 August 2011 J I Correspondence to: R. W. Hobbs ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1803 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD Using a combination of seismic oceanographic and physical oceanographic data ac- quired across the Faroe-Shetland Channel we present evidence of a turbidity current 8, 1803–1818, 2011 that transports suspended sediment along the western boundary of the Channel. We 5 focus on reflections observed on seismic data close to the sea-bed on the Faroese Mapping turbidity side of the Channel below 900m. Forward modelling based on independent physi- currents using cal oceanographic data show that thermohaline structure does not explain these near seismic sea-bed reflections but they are consistent with optical backscatter data, dry matter concentrations from water samples and from seabed sediment traps. -
Appendix 1 : Marine Habitat Types Definitions. Update Of
Appendix 1 Marine Habitat types definitions. Update of “Interpretation Manual of European Union Habitats” COASTAL AND HALOPHYTIC HABITATS Open sea and tidal areas 1110 Sandbanks which are slightly covered by sea water all the time PAL.CLASS.: 11.125, 11.22, 11.31 1. Definition: Sandbanks are elevated, elongated, rounded or irregular topographic features, permanently submerged and predominantly surrounded by deeper water. They consist mainly of sandy sediments, but larger grain sizes, including boulders and cobbles, or smaller grain sizes including mud may also be present on a sandbank. Banks where sandy sediments occur in a layer over hard substrata are classed as sandbanks if the associated biota are dependent on the sand rather than on the underlying hard substrata. “Slightly covered by sea water all the time” means that above a sandbank the water depth is seldom more than 20 m below chart datum. Sandbanks can, however, extend beneath 20 m below chart datum. It can, therefore, be appropriate to include in designations such areas where they are part of the feature and host its biological assemblages. 2. Characteristic animal and plant species 2.1. Vegetation: North Atlantic including North Sea: Zostera sp., free living species of the Corallinaceae family. On many sandbanks macrophytes do not occur. Central Atlantic Islands (Macaronesian Islands): Cymodocea nodosa and Zostera noltii. On many sandbanks free living species of Corallinaceae are conspicuous elements of biotic assemblages, with relevant role as feeding and nursery grounds for invertebrates and fish. On many sandbanks macrophytes do not occur. Baltic Sea: Zostera sp., Potamogeton spp., Ruppia spp., Tolypella nidifica, Zannichellia spp., carophytes. -
Hydrodynamics and Morphodynamics in the Swash Zone: Hydralab Iii Large-Scale Experiments
UNIVERSITÀ DEGLI STUDI DI NAPOLI ―FEDERICO II‖ in consorzio con SECONDA UNIVERSITÀ DI NAPOLI UNIVERSITÀ ―PARTHENOPE‖ NAPOLI in convenzione con ISTITUTO PER L‘AMBIENTE MARINO COSTIERO – C.N.R. STAZIONE ZOOLOGICA ―ANTON DOHRN‖ Dottorato in Scienze ed Ingegneria del Mare XXIV ciclo Tesi di Dottorato HYDRODYNAMICS AND MORPHODYNAMICS IN THE SWASH ZONE: HYDRALAB III LARGE-SCALE EXPERIMENTS Relatore: Prof. Diego Vicinanza Co-relatore: Prof. Maurizio Brocchini Candidato: Ing. Pasquale Contestabile Il Coordinatore del Dottorato: Prof. Alberto Incoronato ANNO 2011 ABSTRACT The modelling of swash zone hydrodynamics and sediment transport and the resulting morphodynamics has been an area of very active research over the last decade. However, many details are still to be understood, whose knowledge will be greatly advanced by the collection of high quality data under controlled large-scale laboratory conditions. The advantage of using a large wave flume is that scale effects that affected previous laboratory experiments are minimized. In this work new large-scale laboratory data from two sets of experiments are presented. Physical model tests were performed in the large-scale wave flumes at the Grosser Wellen Kanal (GWK) in Hannover and at the Catalonia University of Technology (UPC) in Barcelona, within the Hydralab III program. The tests carried out at the GWK aimed at improving the knowledge of the hydrodynamic and morphodynamic behaviour of a beach containing a buried drainage system. Experiments were undertaken using a set of multiple drains, up to three working simultaneously, located within the beach and at variable distances from the shoreline. The experimental program was organized in series of tests with variable wave energy. -
Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing
Journal of Marine Science and Engineering Article Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing Stephanie Contardo 1,*, Graham Symonds 2, Laura E. Segura 3, Ryan J. Lowe 4 and Jeff E. Hansen 2 1 CSIRO Oceans and Atmosphere, Crawley 6009, Australia 2 Faculty of Science, School of Earth Sciences, The University of Western Australia, Crawley 6009, Australia; [email protected] (G.S.); jeff[email protected] (J.E.H.) 3 Departamento de Física, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] 4 Faculty of Engineering and Mathematical Sciences, Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia; [email protected] * Correspondence: [email protected] Received: 18 September 2019; Accepted: 23 October 2019; Published: 28 October 2019 Abstract: An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea 1 breeze cycle at the study site (wind speeds frequently > 10 m s− ) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment.