Similas05031.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Similas05031.Pdf Copyright by Suvi Tuula Simila 2008 The Dissertation Committee for Suvi Tuula Simila Certifies that this is the approved version of the following dissertation: Applications of Ring-closing Metathesis in Construction of Alkaloid Natural Products: Synthetic Studies on the Immunosuppressant FR901483 and Lundurines A-C Committee: Stephen F. Martin, Supervisor Philip D. Magnus Michael J. Krische Sean M. Kerwin Jennifer S. Brodbelt Applications of Ring-closing Metathesis in Construction of Alkaloid Natural Products: Synthetic Studies on the Immunosuppressant FR901483 and Lundurines A-C by Suvi Tuula Simila, M. S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2008 Dedication Omistan väitoskirjani rakkaille vanhemmileni Sirkka Liisa ja Jukka Antero Similälle Acknowledgements I am sincerely grateful to my supervisor Prof. Stephen F. Martin for his continuous support, guidance and encouragement during my challenges in graduate school. He has taught me the most valuable skills, and the concept of critical thinking needed for becoming a successful synthetic chemist. The content of my dissertation would not exist without his guidance. I am indebted to Dr. Robert C. Andrews, my supervisor at Transtech Pharma, Inc., for guiding me to the best possible direction to obtain my graduate degree. I have had the pleasure to work with the most talented colleagues over the years in the Martin group, especially with Dr. Chi-Li Chen, Dr. Christopher Dockendorff, Ms. Anna Smith, and Mr. Michael O‟Keefe, who have not only been there for me during my professional challenges but who would also go above and beyond as my dear friends. I want to thank John DeLorbe, Mike O‟Keefe, Charlie Shanahan, and Daniel Knueppel for proofreading my dissertation. I thank my entire family, my parents Sirkka and Jukka, and my brothers Antti and Jarkko for all of their support, encouragement and for their faith in me as becoming the first doctor in the family. Especially, I‟m indebted to my grandparents, Liisa and Reino Oinas, who have made it possible for me to visit my family in Finland over the years by supporting me financially. I want to thank all my friends, and especially express my sincere gratitude to Victor Dixon and Christopher Friske for opening doors to their beautiful home for me and my family. Lastly, but most importantly, I am forever thankful to Trevor Orr for being by my side through this journey in graduate school. He has made me laugh every single day, through shine and rain. He has brought joy and happiness to my life. Forever grateful. v Applications of Ring-closing Metathesis in Construction of Alkaloid Natural Products: Synthetic Studies on the Immunosuppressant FR901483 and Lundurines A-C Publication No._____________ Suvi Tuula Simila, Ph. D. The University of Texas at Austin, 2008 Supervisor: Stephen F. Martin Ring-closing metathesis (RCM) has proven to be a valuable tool for constructing alkaloid-like, poly-cyclic compounds. The syntheses of alkaloid structures we were interested in developing, could utilize RCM to construct a spirocyclic structure for the immunosuppressant FR901483 and the tetracyclic framework of lundurines A-C asymmetrically. The azaspirane core of FR901483 was obtained via an addition of an allylsilane to an N-acyl iminium ion, and a RCM. Other key functional group manipulations were a stereoselective hydroboration and a subsequent lactonization that provided a precursor for a lactone-lactam rearrangement. This rearrangement provided the azatricyclic core of FR901483. In the enantioselective approach to FR901483 a new mildly cleavable protecting group was developed. Addition of a zinc nucleophile to a chiral N-acyl iminium ion, and a RCM provided the desired precursor for the hydroboration/lactone- lactam rearrangement sequence but without a sufficient stereoselection. vi A novel approach toward the total synthesis of lundurines A-C has been developed. The key features of the approach involve an intramolecular cyclopropanation of the indole C(2)-C(3) double bond, an enantioselective tandem RCM to construct the tetracyclic core and a concise synthesis to access the RCM precursor. An Ugi reaction was utilized with both cyclic and acyclic ketones, 2-vinyltryptamine derivative, a carboxylic acid and an isocyanide to access diverse compounds, including RCM precursors. An alternative reductive amination route to construct the RCM precursor for the lundurines was found to be more efficient and high yielding than the Ugi approach. An RCM was utilized to affect the closure of the five-and eight-membered rings of the tetracyclic core. This constitutes as the first example of RCM of a 2-vinylindole derivative to give an indole-fused eight-membered ring. vii Table of Contents Chapter 1: Ring-closing Metathesis in Alkaloid Synthesis ................................1 1.1. Introduction ............................................................................................1 1.2. Ring-closing Metathesis (RCM) ............................................................2 1.2.1. Ruthenium and Molybdenum RCM Catalysts .....................2 1.2.2. Mechanism of RCM .............................................................4 1.2.3. Heterocyclic Medium Size Rings by RCM .........................6 1.3. RCM Leading to Spirocyclic Structures ..............................................10 1.3.1. Spirocyclic Carbocycles via RCM .....................................10 1.3.2. Oxospirocyclic Structures via RCM ..................................13 1.3.3. Azaspirocyclic Structures via RCM ...................................14 1.4. Asymmetric Ring-closing Metathesis (ARCM) ..................................21 1.4.1. Chiral RCM Catalysts ........................................................21 1.4.2. ARCM Leading to Heterocyclic Structures .......................24 1.5. Applications of RCM to Alkaloids ......................................................32 1.5.1. Ircinal A and Manzamine A ...............................................32 1.5.2. Apogeissoschizine..............................................................34 1.5.3. Ergoline ..............................................................................35 1.5.4. (+)-FR900482 ....................................................................38 1.5.5. Tabersonine ........................................................................39 1.5.6. Oxindole Alkaloids ............................................................41 1.5.7. Mitralactonine ....................................................................43 1.5.8. Methyllycaconitine Analogues ..........................................44 Chapter 2: Synthetic Studies toward the Immunosuppressant FR901483.....46 2.1. Introduction ............................................................................................46 2.1.1. Isolation and Biological Activity .......................................46 2.1.2. Previous Syntheses and Approaches to FR901483 ............49 2.1.3. Previous Work in the Martin Group ..................................72 2.1.4. Retrosynthesis of FR901483 ..............................................79 viii 2.2. Results and Discussion ..........................................................................81 2.2.1. Model Studies ....................................................................81 2.2.1.1. Additions to N-Acyl Iminium Ions ................................81 2.2.1.2. Preformation of the Imine ..............................................85 2.2.1.3. RCM to Access the Azaspirane .....................................91 2.2.1.4. Hydroboration ................................................................93 2.2.1.5. Lactone-lactam Rearrangement ...................................101 2.2.2. Enantioselective Studies ..................................................103 2.2.2.1. Attempts to Form the Chiral Imine ..............................103 2.2.2.2. Development of a new protecting group ......................108 2.2.2.3. Development of a Zinc Nucleophile ............................115 2.2.2.4. Addition of the Zinc Reagent to the Chiral Imine .......119 2.3. Conclusions ..........................................................................................122 Chapter 3: Synthetic Studies toward Lundurines A-C ..................................128 3.1. Introduction ........................................................................................128 3.1.1. Isolation and Biological Activity .....................................128 3.1.2. Studies on the Framework of Lundurines ........................129 3.1.3. Retrosynthesis of Lundurines A-C...................................130 3.2. Results and Discussion ........................................................................133 3.2.1. Ugi Route to the Ring-closing Metathesis Precursor .......133 3.2.1.1. Ugi Reaction ................................................................133 3.2.1.2. Synthesis of the Amine Component ............................136 3.2.1.3. Syntheses of the Masked Divinyl Ketones ..................140 3.2.1.4. The Ugi Reaction with Ketones ...................................143 3.2.1.5. Synthesis of the RCM Precursor via Ugi Reaction ......163 3.2.1.6. Staudinger Reactions to Access the Ketimine .............169 3.2.2. Reductive Amination Route to the RCM Precursor ........172 3.2.2.1. Synthesis of the Divinyl Glycine Coupling
Recommended publications
  • Medical Problems and Treatment Considerations for the Red Imported Fire Ant
    MEDICAL PROBLEMS AND TREATMENT CONSIDERATIONS FOR THE RED IMPORTED FIRE ANT Bastiaan M. Drees, Professor and Extension Entomologist DISCLAIMER: This fact sheet provides a review of information gathered regarding medical aspects of the red imported fire ant. As such, this fact sheet is not intended to provide treatment recommendations for fire ant stings or reactions that may develop as a result of a stinging incident. Readers are encouraged to seek health-related advice and recommendations from their medical doctors, allergists or other appropriate specialists. Imported fire ants, which include the red imported fire ant - Solenopsis invicta Buren (Hymenoptera: Formicidae), the black imported fire ant - Solenopsis richteri Forel and the hybrid between S. invicta and S. richteri, cause medical problems when sterile female worker ants from a colony sting and inject a venom that cause localized sterile blisters, whole body allergic reactions such as anaphylactic shock and occasionally death. In Texas, S. invicta is the only imported fire ant, although several species of native fire ants occur in the state such as the tropical fire ant, S. geminata (Fabricius), and the desert fire ant, S. xyloni McCook, which are also capable of stinging (see FAPFS010 and 013 for identification keys). Over 40 million people live in areas infested by the red imported fire ant in the southeastern United States. An estimated 14 million people are stung annually. According to The Scripps Howard Texas Poll (March 2000), 79 percent of Texans have been stung by fire ants in the year of the survey, while 20% of Texans report not ever having been stung.
    [Show full text]
  • M.Sc. CHEMISTRY
    M.Sc. CHEMISTRY ANALYTICAL CHEMISTRY SPECIALISATION SYLLABUS OF III & IV SEMESTERS REVISED AS PER NEW (CB) SYLLABUS FOR STUDENTS ADMITTED FROM THE YEAR 2016 ONWARDS M.Sc. CHEMISTRY (ANALYTICAL CHEMISTRY SPECIALISATION) Syllabus for III and IV Semesters (for the batches admitted in academic year 2016 & later under CBCS pattern) [Under Restructured CBCS Scheme] Grand total marks and credits (all 4 semesters) 2400 marks – 96 credits (Approved in the P.G. BOS meeting held on 01-07-2017) Semester - III (ANALYTICAL CHEMISTRY) [Under CBCS Scheme] (for the batches admitted in academic year 2016 & later under CBCS pattern) Hrs/week Internal assessment Semester exam Total Credits CH(AC)301T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)302T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)303T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)304T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)351P (LAB-I) 9 100 marks 4 CH(AC)352P (LAB-II) 9 100 marks 4 Total 600 marks 24 Semester - IV (ANALYTICAL CHEMISTRY) Hrs/week Internal assessment Semester exam Total Credits CH(AC)401T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)402T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)403T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)404T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)451P (LAB-I) 9 100 marks 4 CH(AC)452P (LAB-II) 9 100 marks 4 Total 600 marks 24 Grand total marks and credits (all 4 semesters) 2400 marks - 96 credits M.Sc.ANALYTICAL CHEMISTRY Semester III Paper I :CH (AC) 301T: CORE : Sampling, Data handling, Classical and Atomic spectral methods
    [Show full text]
  • Chapter Two Biomimetic Partial Synthesis Of
    CHAPTER TWO BIOMIMETIC PARTIAL SYNTHESIS OF VALPARICINE AND APPARICINE 2.1 Introduction 2.1.1 Alkaloids of Kopsia arborea A total of 62 alkaloids were isolated from the stem-bark and leaves of Kopsia arborea of which 25 are new alkaloids. Among the alkaloids isolated are valparicine (28),26,27 pericine (31),26,28,29 pericidine (32),30,31 arbophylline (33),32 arboricine (34),30,33 arboricinine (35),30,33 arboflorine (36),30,34 arboloscine (37),30,31 and mersicarpine (38).35 14 The compounds of interest to this research are valparicine (28) and pericine (31). Valparicine (28) was isolated from the stem-bark extract of K. arborea in trace amount. It represents the first member of the pericine-type alkaloids, characterized by a 16-22 exocyclic double bond, in which bond-formation has occurred between C-3 and C-7.26 Preliminary tests indicated that valparicine (28) showed strong cytotoxic effects −1 against human KB cells (IC50 < 5 μgmL ). Valparicine (28) was obtained as a colorless oil, with [α]D −40 (c 0.22, CHCl3). The UV spectrum (228 and 297 nm) indicated the presence of an unsubstituted indolenine chromophore. The EIMS of 28 showed a molecular ion at m/z 276, which 13 analyzed for C19H20N2, differing from pericine (31) by loss of two hydrogens. The C NMR spectrum gave a total of 19 carbon resonances (one methyl, five methylenes, seven methines, and six quaternary carbons) in agreement with the molecular formula. In addition to the six carbon resonances readily attributable to the aromatic moiety, and the imine resonance at δC 186.4, two other downfield quaternary resonances were observed at δC 139.2 and 144.6.
    [Show full text]
  • Studies on the Synthesis and Biosynthesis Of
    STUDIES ON THE SYNTHESIS AND BIOSYNTHESIS OF INDOLE ALKALOIDS BY GEORGE BOHN FULLER B.A. (cum laude) , Macalester College, 1969 M.Sc, The University of California, Berkeley, 19 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMISTRY We accept this thesis as conforming to the required standard /-) THE UNIVERSITY OF BRITISH COLUMBIA July, 1974 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Depa rtment The University of British Columbia Vancouver 8, Canada ABSTRACT Part A of this thesis provides a resume1 of the synthesis of various radioactively labelled forms of secodine C76) and provides an evaluation of these compounds, as well as some radioactively labelled forms of tryptophan C25), as precursors in the Biosynthesis of apparicine (81), uleine C83), guatam- buine (90) , and olivacine (88) in Aspidosperma australe. Only apparicine (81) could be shown to incorporate these precursors to a significant extent. Degradation of apparicine (81) from Aspidosperma pyricollum provided evidence for the intact incorporation of the secodine system. Part B discusses the synthesis of 16-epi-stemmadenine (161), which provides an entry into the stemmadenine system with, radioactive labels at key positions in the molecule.
    [Show full text]
  • Total Synthesis of the Bridged Indole Alkaloid Apparicine
    pubs.acs.org/joc Total Synthesis of the Bridged Indole Alkaloid Apparicine M.-Lluı¨ sa Bennasar,* Ester Zulaica, Daniel Sole, Tomas Roca, Davinia Garcı´ a-Dı´ az, and Sandra Alonso Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona 08028, Spain [email protected] Received September 15, 2009 An indole-templated ring-closing metathesis or a 2-indolylacyl radical cyclization constitute the central steps of two alternative approaches developed to assemble the tricyclic ABC substructure of the indole alkaloid apparicine. From this key intermediate, an intramolecular vinyl halide Heck reaction accomplished the closure of the strained 1-azabicyclo[4.2.2]decane framework of the alkaloid with concomitant incorporation of the exocyclic alkylidene substituents. Introduction Apparicine (Figure 1) is a fairly widespread monoterpenoid indole alkaloid, first isolated from Aspidosperma dasycarpon more than 40 years ago.1,2 Its structural elucidation,2 carried out by chemical degradation and early spectroscopic techni- ques, revealed a particular skeleton with a bridged 1-azabi- cyclo[4.2.2]decane framework fused to the indole ring and two exocyclic alkylidene (16-methylene and 20E-ethylidene) sub- Publication Date (Web): October 14, 2009 | doi: 10.1021/jo901986v stituents.3 Thesamearrangementwasalsofoundinvallesa- mine4 and later in a small number of alkaloids, including 16(S)- 5 6 Downloaded by UNIV OF BARCELONA on October 20, 2009 | http://pubs.acs.org hydroxy-16,22-dihydroapparicine or ervaticine, which differ from apparicine in the substitution at C-16.7 The apparicine alkaloids are biogenetically defined by the presence of only one carbon (C-6) connecting the indole 3- position and the aliphatic nitrogen, which is the result of the C-5 (1) Gilbert, B.; Duarte, A.
    [Show full text]
  • Partial Purification and Properties of S-Adenosylmethionine. (R), (S
    Planta Journal of Medicinal Plant Research medica Organ der Editor-in-Chief A. Baerheim-Svendsen, E. Hecker, Heidelberg J. M. Rowson, Mablethorpe Gesellschaft für E. Reinhard, Tübingen Leiden R. Hegnauer, Leiden M. v. Schantz, Helsinki Arzneipflanzen• Pharmazeutisches Institut H. Böhm, Halle W. Herz, Tallahassee K. F. Sewing, Hannover forschung Auf der Morgenstelle 8 F. Bohlmann, Berlin K. Hostettmann, Lausanne E. J. Shellard, London D-7400 Tübingen A. Cave, Chatenay-Malabry H. Inouye, Kyoto S. Shibata, Tokyo P. Delaveau, Paris M. A. Iyengar, Manipal Ch. Tamm, Basel Editorial Board Ding Guang-sheng, F. Kaiser, Mannheim W. S. Woo, Seoul H. P. T. Ammon, Tübingen Shanghai F. H. Kemper, Münster Xiao Pei-gen, Beijing W. Barz, Münster C. -J. Estler, Erlangen W. R. Kukovetz, Graz E. Reinhard, Tübingen N. Farnsworth, Chicago J. Lemli, Leuven •O. Sticher, Zürich H. Floss, Columbus Liang Xiao-tian, Beijing H. Wagner, München H. Friedrich, Münster M. Lounasmaa, Helsinki M. H. Zenk, München D. Fritz, Weihenstephan M. Luckner, Halle A. G. Gonzalez, La Laguna J. Lutomski, Poznan Advisory Board O. R. Gottlieb, Sao Paulo H. Menßen, Köln N. Anand, Lucknow E. Graf, Köln E. Noack, Düsseldorf R. Anton, Strasbourg H. Haas, Mannheim J. D. Phillipson, London Contents Volume 49,1983 ISSN 0032-0943 (f) Hippokrates Hippokrates Verlag Stuttgart II Contents 49,1983 Atta-ur-Rahman, Bashir, M.\ Isolation of New Alkaloids Cannabinoids in Phelipaea ramosa, a Parasite of Canna• from Catharanthus roseus 124 bis sativa) 250 Atta-ur-Rahman, Nisa, M., Farhi, S.: Isolation of Moenjod- aramine from Buxus papilosa 126 Galun, £., Aviv, D., Dantes, A., Freeman, A.
    [Show full text]
  • A Highly Specific O-Methyltransferase for Nororientaline Synthesis Isolated from Argemone Platyceras Cell Cultures
    Planta Journal of Medicinal Plant Research medica Organ der Editor-in-Chief A. Baerheim-Svendsen, E. Hecker, Heidelberg J. M. Rowson, Mablethorpe Gesellschaft für E. Reinhard, Tübingen Leiden R. Hegnauer, Leiden M. v. Schantz, Helsinki Arzneipflanzen• Pharmazeutisches Institut H. Böhm, Halle W. Herz, Tallahassee K. F. Sewing, Hannover forschung Auf der Morgenstelle 8 F. Bohlmann, Berlin K. Hostettmann, Lausanne E. J. Shellard, London D-7400 Tübingen A. Cave, Chatenay-Malabry H. Inouye, Kyoto S. Shibata, Tokyo P. Delaveau, Paris M. A. Iyengar, Manipal Ch. Tamm, Basel Editorial Board Ding Guang-sheng, F. Kaiser, Mannheim W. S. Woo, Seoul H. P. T. Ammon, Tübingen Shanghai F. H. Kemper, Münster Xiao Pei-gen, Beijing W. Barz, Münster C. -J. Estler, Erlangen W. R. Kukovetz, Graz E. Reinhard, Tübingen N. Farnsworth, Chicago J. Lemli, Leuven •O. Sticher, Zürich H. Floss, Columbus Liang Xiao-tian, Beijing H. Wagner, München H. Friedrich, Münster M. Lounasmaa, Helsinki M. H. Zenk, München D. Fritz, Weihenstephan M. Luckner, Halle A. G. Gonzalez, La Laguna J. Lutomski, Poznan Advisory Board O. R. Gottlieb, Sao Paulo H. Menßen, Köln N. Anand, Lucknow E. Graf, Köln E. Noack, Düsseldorf R. Anton, Strasbourg H. Haas, Mannheim J. D. Phillipson, London Contents Volume 49,1983 ISSN 0032-0943 (§)• Hippokrates Hippokrates Verlag Stuttgart II Contents 49,1983 Atta-ur-Rahman, Bashir, M.\ Isolation of New Alkaloids Cannabinoi'ds in Phelipaea ramosa, a Parasite of Canna- from Catharanthus roseus 124 bis sativa) 250 Atta-ur-Rahman, Nisa, M., Farhi, S.: Isolation of Moenjod- aramine from Buxus papilosa 126 Galun, £., Aviv, D., Dantes, A.y Freeman, A.
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Two New Aromatic Polyketides from a Sponge- Derived Fusarium by Agus Trianto
    Two new aromatic polyketides from a sponge- derived Fusarium by Agus Trianto Submission date: 27-Jan-2020 09:53AM (UTC+0700) Submission ID: 1246808605 File name: Two_new_aromatic_polyketides_from_a.pdf (496.71K) Word count: 4972 Character count: 23548 Two new aromatic polyketides from a sponge-derived Fusarium ORIGINALITY REPORT 15% % 15% % SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS PRIMARY SOURCES "Biosynthesis of Indocarbazostatin B, 1 % Incorporation of D-[U-13C] Glucose and L-[2- 1 13C] Tryptophan", The Journal of Antibiotics, 12/2005 Publication Peng Sun, Feng-Yuan Cai, Gianluigi Lauro, Hua 2 % Tang et al. "Immunomodulatory Biscembranoids 1 and Assignment of Their Relative and Absolute Configurations: Data Set Modulation in the Density Functional Theory/Nuclear Magnetic Resonance Approach", Journal of Natural Products, 2019 Publication You-Sheng Cai, Ariel M. Sarotti, Ting-Lan Zhou, 3 % Rong Huang et al. " Flabellipparicine, a 1 Flabelliformide-Apparicine-Type Bisindole Alkaloid from ", Journal of Natural Products, 2018 Publication Stefan Brä se, Arantxa Encinas, Julia Keck, Carl 4 % F. Nising. "Chemistry and Biology of Mycotoxins 1 and Related Fungal Metabolites", Chemical Reviews, 2009 Publication Parinda Khaengkhan, Yuki Nishikaze, Tetsuhiro 5 % Niidome, Kenji Kanaori et al. "Identification of an 1 antiamyloidogenic substance from mulberry leaves", NeuroReport, 2009 Publication G Hari Mangeswara Rao. "Studies towards the 6 % synthesis of hyperireflexolide A", Beilstein 1 Journal of Organic Chemistry, 2018 Publication María M. Zanardi, Alejandra G. Suárez, Ariel M. 7 % Sarotti. "Determination of the Relative <1 Configuration of Terminal and Spiroepoxides by Computational Methods. Advantages of the Inclusion of Unscaled Data", The Journal of Organic Chemistry, 2016 Publication Prompanya, Chadaporn, Tida Dethoup, Luís 8 % Gales, Michael Lee, José Pereira, Artur Silva, <1 Madalena Pinto, and Anake Kijjoa.
    [Show full text]
  • Organic Chemistry Iv
    FACULTY OF SCIENCE Department of Chemistry SATAVAHANA UNIVERSITY – KARIMNAGAR M.Sc. ORGANIC CHEMISTRY III & IV SEMESTER SYLLABUS (For the batch admitted during the academic year 2017-2018, Under Choice Based Credit System (CBCS)) M.Sc. (Organic Chemistry) III Semester Paper Workload Per Week Marks Duration Title Credits of the Code Theory Practical Internal External Total Exams. MCHE (OC) 301T Spectral techniques 4 -- 20 80 100 4 3 Hrs Conformational analysis, asymmetric MCHE (OC) 302T 4 -- 20 80 100 4 3 Hrs synthesis & Combinatorial chemistry MCHE (OC) 303T (E-I) Modern organic synthesis (OR) (or) 4 -- 20 80 100 4 3 Hrs MCHE (OC) 303T (E-II) Heterocyclic Compounds MCHE (OC) 304T (E-I) General Organic Chemistry (or) (OR) 4 -- 20 80 100 4 3 Hrs MCHE (OC) 304T (E-II) Natural Products Separation and identification of organic MCHE (OC) 351P -- 6 20 80 100 4 4 Hrs compounds synthesis of organic molecules and MCHE (OC) 352P -- 6 20 80 100 4 4 Hrs isolation of natural products Student Seminar 2 -- 25 -- 25 1 1 Hr TOTAL 18 12 145 480 625 25 M.Sc. (Organic Chemistry) IV Semester Paper Workload Per Week Marks Duration Title Credits of the Code Theory Practical Internal External Total Exams. MCHE (OC) 401T Drug design and Drug Discovery 4 -- 20 80 100 4 3 Hrs Reaction Mechanism, Non benzenoid MCHE (OC) 402T 4 -- 20 80 100 4 3 Hrs Aromatics and Nanomaterials Drug synthesis and mechanism of MCHE (OC) 403T (E-I) action (OR) (or) 4 -- 20 80 100 4 3 Hrs MCHE (OC) 403T (E-II) Biopharmaceutics and Pharmacodynamics MCHE (OC) 404T (E-I) Advanced Natural
    [Show full text]
  • Phcogj.Com Potential Activity of Medicinal Plants As Pain Modulators
    Pharmacogn J. 2021; 13(1): 248-263 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Review Article www.phcogj.com Potential Activity of Medicinal Plants as Pain Modulators: A Review Carmen R. Silva-Correa1,*, Jorge L. Campos-Reyna2, Víctor E Villarreal-La Torre1, Abhel A. Calderón-Peña3, María V. González Blas1, Cinthya L. Aspajo-Villalaz3, José L. Cruzado-Razco1, William Antonio Sagástegui- Guarniz1, Luz M. Guerrero-Espino2, Julio Hilario-Vargas2 ABSTRACT This review aims to demonstrate the relevance that medicinal plants and their promising results have in prevention and treatment of pain. The neurophysiological bases of pain have been analyzed and the potential mechanisms of action have been proposed, it has also been Carmen R. Silva-Correa1,*, determined that the main experimental models used for the evaluation of the analgesic Jorge L. Campos-Reyna2, Víctor potential are: acetic acid-induced writhing test, formalin test, hot-plate test, capsaicin-induced E Villarreal-La Torre1, Abhel nociception, cinnamaldehyde-induced nociception, glutamate-induced nociception, tail–flick A. Calderón-Peña3, María V. test and tail immersion test. There are countless medicinal plants with potential analgesic González Blas1, Cinthya L. Aspajo- activity, in some of them main responsible compounds for the activity are flavonoids (vitexin, Villalaz3, José L. Cruzado-Razco1, quercetin, naringenin, astragalin, eupatilin), alkaloids (scotanamine B, bullatine A, S-(+)- William Antonio Sagástegui- dicentrine, stephalagine, lappaconitine), terpenoids (p-cymene, thymol, menthol, citronellol, Guarniz1, Luz M. Guerrero- myrcene, carvacrol, linalool) and saponins (siolmatroside I, cayaponoside D, cayaponoside B4, Espino2, Julio Hilario-Vargas2 cayaponoside A1); however, all studies have only been carried out up to pre-clinical stages.
    [Show full text]
  • Building Polyfunctional Piperidines
    RSC Advances View Article Online PAPER View Journal | View Issue Building polyfunctional piperidines: a stereoselective strategy of a three-component Cite this: RSC Adv.,2015,5, 18894 Mannich reaction inspired by biosynthesis and applications in the synthesis of natural alkaloids (+)-241D; (À)-241D; isosolenopsin A and (À)-epimyrtine† Yang Yang* A general method to assemble multi-substituted chiral piperidines was developed, inspired by the biosynthesis of piperidine natural products. In biosynthesis, D1-piperideine 4 plays a key role as a common intermediate giving rise to a variety of piperidine-based natural alkaloids. Nature uses L-lysine as a building block, enzymatically transforming it into a d-amino carbonyl intermediate 3 as the Creative Commons Attribution 3.0 Unported Licence. precursor to cyclize into D1-piperideine 4. We envisioned that such a process could be accomplished by a vinylogous type Mannich reaction if a functionalized dienolate was employed. A stereoselective three- component vinylogous Mannich-type reaction (VMR) of 1,3-bis-trimethylsily enol ether 7 was therefore investigated and was found to give cyclized chiral dihydropyridinone compound 9 as an adduct. Like D1- piperideine in biosynthesis, the chiral 2,3-dihydropyridinone compound 9 from VMR is a versatile intermediate for building a variety of new chiral piperidine compounds. The method was showcased by concise two-step approaches in the synthesis of the bioactive natural alkaloids (+)-241D; (À)-241D and Received 12th November 2014 isosolenopsin A. Furthermore, when properly functionalized substrate aldehyde 24 was employed, the Accepted 6th February 2015 This article is licensed under a corresponding dihydropyridinone adduct 25 cyclized to form a second piperidine ring, leading to a chiral DOI: 10.1039/c4ra14418j polyfunctional quinolizidine enaminone 27.
    [Show full text]