Title Bumble Bee (Bombus Impatiens) Pollination of Field Crops in the State of California

Total Page:16

File Type:pdf, Size:1020Kb

Title Bumble Bee (Bombus Impatiens) Pollination of Field Crops in the State of California Title Bumble bee (Bombus impatiens) pollination of field crops in the state of California California Environmental Quality Act Initial Study and mitigated negative declaration September, 2006 Prepared for California Department of Food and Agriculture Contact: Stephen Brown, Jim Rains Prepared by Koppert Biological Systems, Inc. Ardea consulting This report was prepared by Koppert Biological Systems and its named sources in this paper. The material in it reflects the preparers best judgment on the information available to it at the time of preparation. Any use which the public makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of the public. Koppert Biological Systems and the preparers of this document accept no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. CEQA Initial Study: Bumble bee (Bombus impatiens) pollination of field crops in the state of California. Table of Contents 1.0 PROJECT DESCRIPTION .......................................................................................................................3 1.1 Introduction............................................................................................................................................4 1.2 Regulatory Setting.................................................................................................................................4 1.3 Required Approvals...............................................................................................................................4 1.4 Detailed project description...................................................................................................................4 2.0 INITIAL STUDY.........................................................................................................................................5 2.1 CEQA Initial Study & Environmental Check List Form..........................................................................5 2.2 Environmental Factors Potentially Affected .........................................................................................7 3.0 EVALUATION OF POTENTIAL SIGNIFICANT IMPACTS.......................................................................7 3.1 Definitions..............................................................................................................................................7 3.1.1. Significant ......................................................................................................................................7 3.1.2. Endangered species......................................................................................................................9 3.2 Areas of impact .....................................................................................................................................9 3.3 Transmission of insect diseases or -parasites by the introduced pollinator .10 3.3.1 Exotic pest and diseases..............................................................................................................10 3.3.2 Pest and disease spread..............................................................................................................10 3.3.3 Summary ......................................................................................................................................11 3.3.4 CEQA findings of significance ......................................................................................................11 3.4 Genetic dilution....................................................................................................................................11 3.4.1 Hybridization.................................................................................................................................11 3.4.2 Summary ......................................................................................................................................12 3.4.3 CEQA findings of significance ......................................................................................................12 3.5 Establishment......................................................................................................................................13 3.5.1 Risk of establishment ...................................................................................................................13 3.5.2 Summary ......................................................................................................................................13 3.5.3 CEQA findings of significance ......................................................................................................14 3.6 Competition .........................................................................................................................................14 3.6.1 Competition from introduced hives with native bees....................................................................14 3.6.2 Competition from the established non-native bee with native bees.............................................14 3.6.3 Summary ......................................................................................................................................14 3.6.4 CEQA findings of significance ......................................................................................................14 4.0 LIST OF MITIGATION MEASURES .......................................................................................................15 5.0 DETERMINATION ..................................................................................................................................16 6.0 PERSONS AND AGENCIES CONTACTED ..........................................................................................17 7.0 LIST OF PREPARERS ...........................................................................................................................17 8.0 LITERATURE CITED..............................................................................................................................17 APPENDIX A: Checklist of environmental impacts. .....................................................................................19 APPENDIX B: Ecological risk analysis .........................................................................................................37 APPENDIX C: Disease management procedures........................................................................................57 APPENDIX D: Healthcertificate ....................................................................................................................58 APPENDIX E: Grower pollination contract ...................................................................................................59 2 1.0 PROJECT DESCRIPTION 1.1 Introduction The following documents are being presented to the California public per the requirements of the California Environmental Quality Act to inform the public regarding any potential environmental impacts associated with the suggested introduction of Bombus impatiens as a pollinator for fruit, nut and vegetable crops in the state of CA. Agriculture is a primary industry and source of income for the state of California. Many seed and fruit crops depend on pollination for adequate production and fruit quality. This project is initiated due to the increasing pressure on the availability of commercially available crop pollinators, which could become a limiting factor for the continued sustainability of California agriculture. Pollination deficits have been reported throughout California due to a lack of honeybees available for rent. Honeybees are currently the only pollinator commercially available in sufficient numbers for the pollination of fruit and vegetable crops. An increase in the rental fee for honeybee hive rentals has been experienced up to the point where prices have become difficult to afford by growers state wide. Observers have questioned the future availability of pollination services for important agricultural crops (Sumner and Boriss, 2006) As part of these concerns there has been an increasing demand for bumblebees as an alternative in pollination also driven by the following desires of the agricultural community: - availability of more pollinators (quantity) - availability of alternative pollinators (quality); and - price competition between pollinators (economics). Bumblebees are currently one of very few pollinators commercially available in quantities that could prove to be of help to California agriculture. Bumblebees have previously been evaluated for permitting in covered crops and are currently made available to California greenhouse growers under permit by CDFA. Since the commercially available bumblebee species, Bombus impatiens, is not native to California ecologists and biologists have raised potential concerns regarding the release of bumblebees in an outdoor setting. This paper serves as a study to determine the potential impact of the release of a non-native bumblebee, Bombus impatiens, into the agro-ecological system of the state of California for crop pollination. In this paper several impacts will be explained and described in detail, mitigations to prevent potential impacts from occurring are introduced as well. This CEQA document specifically addresses the association between the potential release of bumblebees in California with the requirements described in CEQA. In addition to the
Recommended publications
  • The Mite-Y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus Spp., Hymenoptera: Apidae)
    The Mite-y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus spp., Hymenoptera: Apidae) By Stephanie Margaret Haas Thesis submitted to the Faculty of Graduate and Postdoctoral Studies, University of Ottawa, in partial fulfillment of the requirements for M.Sc. Degree in the Ottawa-Carleton Institute of Biology Thèse soumise à la Faculté des études supérieures et postdoctorales, Université d’Ottawa en vue de l’obtention de la maîtrise en sciences de l’Institut de Biologie d’Ottawa-Carleton © Stephanie Haas, Ottawa, Canada, 2017 Abstract Parasites and other associates can play an important role in shaping the communities of their hosts; and their hosts, in turn, shape the community of host-associated organisms. This makes the study of associates vital to understanding the communities of their hosts. Mites associated with bees have a range of lifestyles on their hosts, acting as anything from parasitic disease vectors to harmless scavengers to mutualistic hive cleaners. For instance, in Apis mellifera (the European honey bee) the parasitic mite Varroa destructor has had a dramatic impact as one of the causes of colony-collapse disorder. However, little is known about mites associated with bees outside the genus Apis or about factors influencing the makeup of bee- associated mite communities. In this thesis, I explore the mite community of bees of the genus Bombus and how it is shaped by extrinsic and intrinsic aspects of the bees' environment at the individual bee, bee species, and bee community levels. Bombus were collected from 15 sites in the Ottawa area along a land-use gradient and examined for mites.
    [Show full text]
  • Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
    Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al.
    [Show full text]
  • Plant Diversity Effects on Plant-Pollinator Interactions in Urban and Agricultural Settings
    Research Collection Doctoral Thesis Plant diversity effects on plant-pollinator interactions in urban and agricultural settings Author(s): Hennig, Ernest Ireneusz Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006689739 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 19624 Plant Diversity Effects on Plant-Pollinator Interactions in Urban and Agricultural Settings A dissertation submitted to the ETH ZURICH¨ for the degree of DOCTOR OF SCIENCES presented by ERNEST IRENEUSZ HENNIG Degree in Environmental Science (Comparable to Msc (Master of Science)) University Duisburg-Essen born 09th February 1977 in Swiebodzice´ (Poland) accepted on the recommendation of Prof. Dr. Jaboury Ghazoul, examiner Prof. Dr. Felix Kienast, co-examiner Dr. Simon Leather, co-examiner Prof. Dr. Alex Widmer, co-examiner 2011 You can never make a horse out of a donkey my father Andrzej Zbigniew Hennig Young Man Intrigued by the Flight of a Non-Euclidian Fly (Max Ernst, 1944) Contents Abstract Zusammenfassung 1 Introduction 9 1.1 Competition and facilitation in plant-plant interactions for pollinator services .9 1.2 Pollination in the urban environment . 11 1.3 Objectives . 12 1.4 References . 12 2 Does plant diversity enhance pollinator facilitation? An experimental approach 19 2.1 Introduction . 20 2.2 Materials & Methods . 21 2.2.1 Study Design . 21 2.2.2 Data Collection . 22 2.2.3 Analysis . 22 2.3 Results . 23 2.3.1 Pollinator Species and Visits .
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Guide to MN Bumble Bees: Females
    Guide to MN Bumble Bees: Females This guide is only for females (12 antennal segments, 6 abdominal segments, most bumble Three small bees, most have pollen baskets, no beards on their mandibles). First determine which yellow eyes highlighted section your bee is in, then go through numbered characters to find a match. See if your bee matches the color patterns shown and the description in the text. Color patterns ® can vary. More detailed keys are available at discoverlife.org. Top of head Bee Front of face Squad Join the search for bumble bees with www.bumbleebeewatch.org Cheek Yellow hairs between wings, 1st abdominal band yellow (may have black spot in center of thorax) 1. Black on sides of 2nd ab, yellow or rusty in center 2.All other ab segments black 3. 2nd ab brownish centrally surrounded by yellow 2nd abdominal 2nd abdominal Light lemon Center spot band with yellow band with yellow hairs on on thorax with in middle, black yellow in middle top of head and sometimes faint V on sides. Yellow bordered by and on thorax. shaped extension often in a “W” rusty brown in a back from the shape. Top of swooping shape. middle. Queens head yellow. Top of head do not have black. Bombus impatiens Bombus affinis brownish central rusty patched bumble bee Bombus bimaculatus Bombus griseocollis common eastern bumble bee C patch. two-spotted bumble bee C brown-belted bumble bee C 5. Yellow on front edge of 2nd ab 6. No obvious spot on thorax. 4. 2nd ab entirely yellow and ab 3-6 black Yellow on top Black on top of Variable color of head.
    [Show full text]
  • Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture
    Matteson and Langellotto: URBAN BUMBLE BEE ABUNDANCE Cities and the Environment 2009 Volume 2, Issue 1 Article 5 Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture Kevin C. Matteson and Gail A. Langellotto Abstract A variety of crops are grown in New York City community gardens. Although the production of many crops benefits from pollination by bees, little is known about bee abundance in urban community gardens or which crops are specifically dependent on bee pollination. In 2005, we compiled a list of crop plants grown within 19 community gardens in New York City and classified these plants according to their dependence on bee pollination. In addition, using mark-recapture methods, we estimated the abundance of a potentially important pollinator within New York City urban gardens, the common eastern bumble bee (Bombus impatiens). This species is currently recognized as a valuable commercial pollinator of greenhouse crops. However, wild populations of B. impatiens are abundant throughout its range, including in New York City community gardens, where it is the most abundant native bee species present and where it has been observed visiting a variety of crop flowers. We conservatively counted 25 species of crop plants in 19 surveyed gardens. The literature suggests that 92% of these crops are dependent, to some degree, on bee pollination in order to set fruit or seed. Bombus impatiens workers were observed visiting flowers of 78% of these pollination-dependent crops. Estimates of the number of B. impatiens workers visiting individual gardens during the study period ranged from 3 to 15 bees per 100 m2 of total garden area and 6 to 29 bees per 100 m2 of garden floral area.
    [Show full text]
  • Global Trends in Bumble Bee Health
    EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality.
    [Show full text]
  • Conserving Missouri's Wild and Managed Pollinators
    Conserving Missouri’s Wild and Managed Pollinators At the heart of the pollination issue lies our bounty of foods such as peaches, Go to the bee, thou poet: strawberries, squash and apples. These and other foods requiring pollination have consider her ways and be wise. been staples in the human diet for centuries, and their pollinators have been highly — George Bernard Shaw revered since ancient times. From Egyptian hieroglyphics and Native American cave paintings to Greek mythology and English poetry, bees and butterflies have been a source of fascination and awe for millennia (Figure 1). Yet, over the past century, pollinator numbers have suffered declines. During this time, global development, a booming human population, and industrial agriculture brought about drastic landscape changes. These changes have resulted in greater losses of forage and nesting resources for pollinators than ever before seen. The ecosystem service of pollination, once taken for granted, is now potentially threatened as many pollinator species face declines in Missouri, the United States and many regions around the world. Pollinators are critically important for natural ecosystems and crop production. Through pollination, they perform roles essential to human welfare. Heightened public awareness of their services and of their declines over the past two decades has prompted action, but much remains to be done. This publication introduces issues regarding the conservation of pollinators in Missouri. It explores why pollinators are crucial, what major threats confront them, what conservation steps are being taken, and how you can help. It highlights bees over other pollinators as bees are the most important for both agricultural and natural pollination in Missouri.
    [Show full text]
  • Station-News-July-2021.Pdf
    Station News The Connecticut Agricultural Experiment Station Volume 11 Issue 6 July 2021 This Issue The mission of The Connecticut Agricultural Experiment Station is to de- Grants Received 2 velop, advance, and disseminate scientific knowledge, improve agricultur- al productivity and environmental quality, protect plants, and enhance Administration 2 human health and well-being through research for the benefit of Connecti- cut residents and the nation. Seeking solutions across a variety of disci- Analytical Chemistry 3 plines for the benefit of urban, suburban, and rural communities, Station Entomology 3 scientists remain committed to "Putting Science to Work for Society", a motto as relevant today as it was at our founding in 1875. Environmental Sciences 4 Forestry and Horticulture 5 Plant Pathology and Ecology 6 Valley Laboratory 7 Dept. Research Updates 7 Journal Articles Approved 14 STATION NEWS STATION New Staff, Students, and 15 The Connecticut Agricultural Experiment Station | Station News | VolumeVolunteers 11 Issue 6 | July 2021 1 GRANTS RECEIVED JUNE 2021 DR. CAROLE CHEAH received a grant (June 23) from the Farmington River Coordi- nating Committee ($10,000) for a 2021-2022 project entitled “Augmentative biolog- ical control of hemlock woolly adelgid (HWA) as a strategy to mitigate eastern hemlock decline from HWA outbreaks in the upper Farmington River watershed.” The FRCC grant supported June S. tsugae releases in the People’s State Forest and the American Legion State Forest in Barkhamsted. ADMINISTRATION DR. JASON C. WHITE,
    [Show full text]
  • Portland Field Guide
    FIELD GUIDE FRITZ HAEG’S ANIMAL ESTATES REGIONAL MODEL HOMES 5.0 PORTLAND, OREGON 5 . N 0 O P G O RE RTLAND, O ANIMAL ESTATES 5.0 PORTLAND, OREGON DOUGLAS F. COOLEY MEMORIAL ART GALLERY REED COLLEGE 26 AUGUST–5 OCTOBER 2008 FRITZ HAEG 04 INTRODUCTION 10 IN LIVABLE CITIES IS FRITZ HAEG PRESERVATION OF THE WILD MIKE HOUCK 06 BUILD A BETTER SNAG! 14 SNAGS AND LOGS STEPHANIE SNYDER CHARLOTTE CORKRAN ANIMAL CLIENTS 18 CLIENT 5.1 34 CLIENT 5.5 VAUX’S SWIFT NORTHWESTERN GARTER SNAKE CHAETURA VAUXI THAMNOPHIS SIRTALIS TETRATAENIA CONTENTS BOB SALLINGER TIERRA CURRY 2 2 CLIENT 5.2 38 CLIENT 5.6 WHITE-BREASTED NUTHATCH ORANGE-RUMPED BUMBLEBEE SITTA CAROLINENSIS BOMBUS MELANOPYGUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 26 CLIENT 5.3 42 CLIENT 5.7 OLIVE-SIDED FLYCATCHER SNAIL-EATING GROUND BEETLE CONTOPUS COOPERI SCAPHINOTUS ANGULATUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 30 CLIENT 5.4 SILVER-HAIRED BAT LASIONYCTERIS NOCTIVAGANS CHARLOTTE CORKRAN 46 FIELD NOTES 48 CREDITS CLIENT 5.1 VAUX’S SWIFT CHAETURA VAUXI The ongoing Animal Estates lished between the man-made and the wild. initiative creates dwellings for Animals and their habitats are woven back into our cities, strip malls, garages, offi ce parks, animals that have been displaced freeways, backyards, parking lots, and neigh- by humans. Each edition of borhoods. Animal Estates intends to provide a the project is accompanied by provocative twenty-fi rst-century model for the some combination of events, human-animal relationship that is more intimate, visible, and thoughtful. workshops, exhibitions, videos, printed materials, and a temporary PORTLAND headquarters presenting an ever- In the gallery, the temporary Animal Estates expanding urban wildlife archive.
    [Show full text]
  • Bee Viruses: Routes of Infection in Hymenoptera
    fmicb-11-00943 May 27, 2020 Time: 14:39 # 1 REVIEW published: 28 May 2020 doi: 10.3389/fmicb.2020.00943 Bee Viruses: Routes of Infection in Hymenoptera Orlando Yañez1,2*, Niels Piot3, Anne Dalmon4, Joachim R. de Miranda5, Panuwan Chantawannakul6,7, Delphine Panziera8,9, Esmaeil Amiri10,11, Guy Smagghe3, Declan Schroeder12,13 and Nor Chejanovsky14* 1 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Agroscope, Swiss Bee Research Centre, Bern, Switzerland, 3 Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 4 INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France, 5 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany, 9 Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany, 10 Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States, 11 Department Edited by: of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States, 12 Department of Veterinary Akio Adachi, Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States,
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]