Experiences with Soft-Core Processor Design

Total Page:16

File Type:pdf, Size:1020Kb

Experiences with Soft-Core Processor Design Experiences with Soft-Core Processor Design Franjo Plavec Blair Fort Zvonko G. Vranesic Stephen D. Brown University of Toronto Department of Electrical and Computer Engineering Toronto,ON, Canada {plavec, fort, zvonko, brown}@eecg.toronto.edu Abstract tions and others. In this work, we present a new implemen- tation of the Nios architecture, called UT Nios [3]. Soft-core processors exploit the flexibility of Field Pro- In the paper we refer to the original Nios implementation grammable Gate Arrays (FPGAs) to allow a system de- as Altera Nios, and use the term Nios for the Nios architec- signer to customize the processor to the needs of a target ture, independent of the implementation. To assess the per- application. This paper describes the UT Nios implementa- formance of the UT Nios and compare it with Altera Nios, tion of Altera’s Nios architecture. A benchmark set appro- a UT Nios benchmark set was defined. priate for soft-core processors is defined. Using the bench- The paper is organized as follows. In section 2, the key mark set, the performance of UT Nios is explored and com- features of the Nios architecture are described, and the UT pared with the commercial implementation. Nios implementation is presented. Section 3 defines the UT Nios benchmark set, and gives the performance comparison of UT and Altera Nios is given. Section 4 concludes the pa- per. 1. Introduction 2. UT Nios Field Programmable Gate Arrays (FPGAs) are becom- ing increasingly popular for implementation of logic cir- 2.1. Nios architecture cuits. Inclusion of abundant memory resources in FPGAs has made them suitable for implementation of embedded Nios is a highly customizable RISC architecture. One of SOPC systems, where a complete system fits on a single the architectural parameters that is selected at design time programmable chip. A processor unit in such a system is is the width of the datapath, which can be 16 or 32 bits [4]. usually a soft-core processor. The instruction word is 16 bits wide, regardless of the data- A soft-core processor is a microprocessor fully described path width, to reduce the code size compared to the 32 bits in software, usually in an HDL, which can be synthesized wide instruction word. We will focus on the 32-bit datap- in programmable hardware, such as FPGAs. Soft-core pro- ath,whichismorelikelytobeusedinhighperformance cessors implemented in FPGAs can be easily customized applications. to the needs of a specific target application. The two major The Nios instruction set supports only the basic arith- FPGA manufacturers provide commercial soft-core proces- metic and logic instructions, with optional support for in- sors. Xilinx offers its MicroBlaze processor [1], while Al- teger multiplication. The instruction set can be augmented tera has Nios and Nios II processors [2]. In this paper we with up to five custom instructions. A custom instruc- focus on the Nios architecture. tion performs a user-defined operation in hardware, thus Nios is a RISC soft-core processor optimized for imple- speeding-up the critical parts of an application [5]. Nios has mentation in Altera FPGAs. Many architectural parameters a load-store architecture, with most instructions using reg- of Nios can be customized at design time, including the dat- ister file operands. Although the size of the register file is apath width, register file size, cache size, custom instruc- configurable, only 32 registers are visible to programs at any given time. The register file is divided into register win- This work was supported in part by NSERC, CITR and University of dows. The sliding windows overlap, facilitating fast context Toronto Master’s Fellowship switching on entrance and exit from procedures. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 1530-2075/05 $ 20.00 IEEE ¨ ' ( ] ¨ ' 5 ¨ ] ¥ ¦ ¨ ] ¥ ¨ ' ¨ ] e _ R R _ _ d ! _ T H U F V W X D L M V h ¥ R ¨ & ¨ ' ( % £ ¥ h e Y Z Y Z ? < / > ? 0 @ ) * ) + % P f f g , - . / 0 1 Y Z Y < / > ? 0 @ [ A A 0 / \ \ * 6 \ Z 0 - 8 Z : ? 6 < / > ? 0 @ Y Z Y . 0 ? > [ A A 0 / \ \ < / > ? 0 @ 2 ¨ ¨ 3 ¦ 5 ¨ % ¨ ¨ * 6 \ Z 0 - 8 Z : ? 6 \ ¨ ¨ ¨ ' 5 1 ¡ £ ¨ ¨ ¨ ¨ ¨ ' 5 ¨ R ¨ ¨ S + < ¨ ¨ + 6 7 8 9 : ; < / > ? 0 @ ! # < ? A - B / ¨ ¥ ¦ ¨ ¨ + 6 7 8 9 : ; < / > ? 0 @ < ? A - B / C D F G H D I Y Z Y ) ? 0 i Y 0 A : 6 j J K L M N G K H N k ? j : 8 Figure 1. UT Nios datapath Processor, memory and other peripherals are intercon- Most instructions commit in the execute stage. The re- nected using the automatically generated Avalon bus [6]. quired calculations are performed by the arithmetic and This is a synchronous bus defining the interface and proto- logic unit (ALU). The results are stored in the register file col for connecting master and slave components in the sys- and control registers. Since the result of the instruction exe- tem. Memory modules and peripherals in the system can cution may be coming from different sources, such as mem- reside on or off-chip, but the bus logic is always placed on- ory for load instructions or ALU for arithmetic and logic in- chip. structions, the result is selected by a register file write mul- tiplexer. 2.2. UT Nios datapath All UT Nios components were described in Verilog HDL. The current version of UT Nios does not support some optional components, such as instruction and data UT Nios datapath, shown in Figure 1, is organized in caches, multiplication support in hardware, and advanced 4 pipeline stages: fetch (F), decode (D), operand (O), and debug support [3]. execute (X). Prefetch unit fetches instructions from the in- struction memory. The address of the next instruction to be fetched is stored in the prefetch program counter (PPC). 3. Performance evaluation If the pipeline stalls, the fetched instruction is temporarily stored in a FIFO buffer. Otherwise, the instruction is for- 3.1. UT Nios benchmark set warded to the decode stage, where it is decoded and ad- dresses of its register operands are calculated. A set of benchmark programs was defined to assess the In the operand stage, immediate operands are formed. performance of UT Nios and compare it with the perfor- Since the instruction word is only 16 bits wide, it is not pos- mance of Altera Nios. Although several benchmark sets for sible to specify a 16-bit immediate constant in a single in- embedded systems already exist, we found most of them struction word. 16-bit constants are formed by preloading to be inappropriate for benchmarking soft-core processors. an 11-bit prefix into the K register using the PFX instruc- Since many of these benchmarks contain computationally tion. An instruction following PFX specifies the remaining intensive programs, which are much more efficiently imple- 5 bits to form a 16-bit immediate operand. Since the Nios ar- mented in custom hardware, it is not likely that a soft-core chitecture supports several different addressing modes, de- processor would be used for such an application. A new set pending on the addressing mode used the operands may be of benchmark programs was defined to measure the perfor- coming from several different sources. Therefore, proper mance of soft-core processors. operands have to be selected from the possible sources. The UT Nios benchmark set is based on MiBench [7], a Operand handling also includes the data forwarding logic. freely available benchmark suite. A subset of the MiBench Branch instructions commit in the operand stage, because benchmarks was selected and augmented with other pro- all of the necessary information is available (through the grams that better characterize the performance of UT Nios. data forwarding logic); this reduces the branch penalty. Since Nios-based systems generally do not include a file- Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 1530-2075/05 $ 20.00 IEEE system, all benchmarks were adapted to use the input data • 1 MB of 32-bit off-chip SRAM that contains the pro- from memory. gram, the data, and the interrupt vector table. The UT Nios benchmark set is divided into three cate- • Avalon tri-state bridge with default settings gories: test benchmarks, which test the performance of spe- cific architectural features of the processor, toy benchmarks, • UART peripheral with default settings used to down- which are small programs performing simple calculations, load the programs to the development board and com- and application benchmarks that represent the real applica- municate with the program. tions expected to run on the processor. • Timer peripheral with default settings used to measure Test benchmarks include Loops, that tests the perfor- the program execution time. mance of branch instructions, Memory, which performs op- erations on an array residing in memory, Pipeline,which The processor’s instruction and data masters were both tests the data forwarding capabilities of the pipeline imple- connected to the on-chip memory and the tri-state bridge, mentation, and PipelineM, which tests the data forwarding while the data master was also connected to the UART and when instruction operands are in the data memory. timer peripherals. The tri-state bridge was connected to the th Toy benchmarks include Fibo, which calculates the 9 off-chip SRAM. All arbitration priorities were set to 1. Both Fibonacci number using a recursive procedure, Multiply, systems were compiled using Quartus II 4.1 SP2 target- which uses a triply nested loop to multiply two integer ma- ing the Stratix EP1S10F780C6ES FPGA chip, optimizing trices, and QsortInt, a program that sorts an integer array the design for speed, and using the standard fit (highest ef- using the qsort algorithm.
Recommended publications
  • L'universite BORDEAUX 1 DOCTEUR Ahmed BEN ATITALLAH
    N° d’ordre 3409 THESE présentée à L’UNIVERSITE BORDEAUX 1 ECOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGENIEUR POUR OBTENIR LE GRADE DE DOCTEUR SPECIALITE : ELECTRONIQUE Par Ahmed BEN ATITALLAH Etude et Implantation d’Algorithmes de Compression d’Images dans un Environnement Mixte Matériel et Logiciel Soutenue le : 11 Juillet 2007 Après avis de : M. Noureddine ELLOUZE Professeur à l’ENIT, Tunis, Tunisie Rapporteur M. Patrick GARDA Professeur à l’Université Paris VI Rapporteur Devant la Commission d’examen formée de : M. Lotfi KAMOUN Professeur à l’ENIS, Sfax, Tunisie Président M. Patrick GARDA Professeur à l’Université Paris VI Rapporteur M. Noureddine ELLOUZE Professeur à l’ENIT, Tunis, Tunisie Rapporteur M. Philippe MARCHEGAY Professeur à l’ENSEIRB M. Nouri MASMOUDI Professeur à l’ENIS, Sfax, Tunisie M. Patrice KADIONIK Maître de Conférences à l’ENSEIRB M. Patrice NOUEL Maître de Conférences à l’ENSEIRB -2007- A mes parents A ma famille A tous ceux qui me tiennent à cœur REMERCIEMENTS Cette thèse s’est effectuée en cotutelle entre l’équipe circuits et systèmes du Laboratoire d'Electronique et des Technologies de l'Information (LETI) de l’ENIS à Sfax, Tunisie ainsi que dans l’équipe Circuits Intégrés Numériques du Laboratoire de l’Intégration du Matériau au Système (IMS) de l’Université de Bordeaux et de l’ENSEIRB. Je remercie Monsieur le Professeur Nouri MASMOUDI ainsi que Monsieur le Professeur Philippe MARCHEGAY pour m’avoir accueilli au sein de leur équipe et pour l’intérêt qu’ils ont porté au déroulement de mes travaux. Je tiens à présenter ma vive gratitude à Monsieur Patrice KADIONIK, Maître de conférences à l’ENSEIRB, co-encadrant de ma thèse et Monsieur Patrice NOUEL, Maître de conférences à l’ENSEIRB, qui ont contribué activement à la réalisation de mes travaux, d’une part pour leurs conseils efficaces, leurs grandes compétences mais aussi pour leurs grandes qualités humaines.
    [Show full text]
  • Implementation of PS2 Keyboard Controller IP Core for on Chip Embedded System Applications
    The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 4 ||Pages|| 48-50||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 Implementation of PS2 Keyboard Controller IP Core for On Chip Embedded System Applications 1, 2, Medempudi Poornima, Kavuri Vijaya Chandra 1,M.Tech Student 2,Associate Proffesor. 1,2,Prakasam Engineering College,Kandukuru(post), Kandukuru(m.d), Prakasam(d.t). -----------------------------------------------------------Abstract----------------------------------------------------- In many case on chip systems are used to reduce the development cycles. Mostly IP (Intellectual property) cores are used for system development. In this paper, the IP core is designed with ALTERA NIOSII soft-core processors as the core and Cyclone III FPGA series as the digital platform, the SOPC technology is used to make the I/O interface controller soft-core such as microprocessors and PS2 keyboard on a chip of FPGA. NIOSII IDE is used to accomplish the software testing of system and the hardware test is completed by ALTERA Cyclone III EP3C16F484C6 FPGA chip experimental platform. The result shows that the functions of this IP core are correct, furthermore it can be reused conveniently in the SOPC system. ---------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 8 April 2013 Date Of Publication: 25, April.2013 ---------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Software Development Reference Manual Nios Embedded Processor
    Nios Embedded Processor Software Development Reference Manual 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 Document Version: 2.2 http://www.altera.com Document Date: July 2002 Copyright Nios Custom Instructions Tutorial Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. ii Altera Corporation MNL-NIOSPROG-2.2 About this Manual This document provides information for programmers developing software for the Nios® embedded soft core processor. Primary focus is given to code written in the C programming language; however, several sections discuss the use of assembly code as well. The terms Nios processor or Nios embedded processor are used when referring to the Altera® soft core microprocessor in a general or abstract context.
    [Show full text]
  • PS2 Controller IP Core for on Chip Embedded System Applications
    International Journal of Computational Engineering Research||Vol, 03||Issue, 6|| PS2 Controller IP Core For On Chip Embedded System Applications 1,V.Navya Sree , 2,B.R.K Singh 1,2,M.Tech Student, Assistant Professor Dept. Of ECE, DVR&DHS MIC College Of Technology, Kanchikacherla,A.P India. ABSTRACT In many case on chip systems are used to reduce the development cycles. Mostly IP (Intellectual property) cores are used for system development. In this paper, the IP core is designed with ALTERA NIOSII soft-core processors as the core and Cyclone III FPGA series as the digital platform, the SOPC technology is used to make the I/O interface controller soft-core such as microprocessors and PS2 keyboard on a chip of FPGA. NIOSII IDE is used to accomplish the software testing of system and the hardware test is completed by ALTERA Cyclone III EP3C16F484C6 FPGA chip experimental platform. The result shows that the functions of this IP core are correct, furthermore it can be reused conveniently in the SOPC system. KEYWORDS: Intellectual property, I. INTRODUCTION An intellectual property or an IP core is a predesigned module that can be used in other designs IP cores are to hardware design what libraries are to computer programming. An IP (intellectual property) core is a block of logic or data that is used in making a field programmable gate array ( FPGA ) or application-specific integrated circuit ( ASIC ) for a product. As essential elements of design reuse , IP cores are part of the growing electronic design automation ( EDA ) industry trend towards repeated use of previously designed components.
    [Show full text]
  • AN 351: Simulating Nios II Processor Designs
    Simulating Nios II Embedded Processor Designs May 2004, ver.1.0 Application Note 351 Introduction The increasing pressure to deliver robust products to market in a timely manner has amplified the importance of comprehensively verifying embedded processor designs. Therefore, when choosing an embedded processor a key consideration is the verification solution supplied with the processor. Nios® II embedded processor designs support a broad range of verification solutions including: ■ Board Level Verification — Altera offers a number of development boards that provide a versatile platform for verifying both the hardware and software of a Nios II embedded processor system. The Nios II integrated development environment (IDE) can be used to verify designs running on development or custom boards using it’s built in debugger. You can find more information on the Nios II IDE debugger in the Nios II IDE online help. Hardware components that interact with the processor can further be debugged with the Signal Tap II embedded logic analyzer. For more information on Signal Tap II, see AN 323: Using Signal Tap II Embedded Logic Analyzer in SOPC Builder Systems. ■ Instruction Set Simulator (ISS) — An instruction set simulator is used to model the Nios II processors instruction set in a software based simulation model. This allows designers to run the executable image from their software project on the ISS and to debug the software using the Nios II IDE debugger. The ISS is particularly useful if a development board is not available. The ISS is principally used for software debugging purposes; however, it is also capable of modeling a subset of the components available in the SOPC Builder.
    [Show full text]
  • Introduction to Embedded System Design Using Field Programmable Gate Arrays Rahul Dubey
    Introduction to Embedded System Design Using Field Programmable Gate Arrays Rahul Dubey Introduction to Embedded System Design Using Field Programmable Gate Arrays 123 Rahul Dubey, PhD Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) Gandhinagar 382007 Gujarat India ISBN 978-1-84882-015-9 e-ISBN 978-1-84882-016-6 DOI 10.1007/978-1-84882-016-6 A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008939445 © 2009 Springer-Verlag London Limited ChipScope™, MicroBlaze™, PicoBlaze™, ISE™, Spartan™ and the Xilinx logo, are trademarks or registered trademarks of Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA. http://www.xilinx.com Cyclone®, Nios®, Quartus® and SignalTap® are registered trademarks of Altera Corporation, 101 Innovation Drive, San Jose, CA 95134, USA. http://www.altera.com Modbus® is a registered trademark of Schneider Electric SA, 43-45, boulevard Franklin-Roosevelt, 92505 Rueil-Malmaison Cedex, France. http://www.schneider-electric.com Fusion® is a registered trademark of Actel Corporation, 2061 Stierlin Ct., Mountain View, CA 94043, USA. http://www.actel.com Excel® is a registered trademark of Microsoft Corporation, One Microsoft Way, Redmond, WA 98052- 6399, USA. http://www.microsoft.com MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. http://www.mathworks.com Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • Pdf, October 2004
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-2007 A CAD tool for design space exploration of embedded CPU cores for FPGAs. Ian D. L. Anderson University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Anderson, Ian D. L., "A CAD tool for design space exploration of embedded CPU cores for FPGAs." (2007). Electronic Theses and Dissertations. 7120. https://scholar.uwindsor.ca/etd/7120 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. A CAD Tool for Design Space Exploration of Embedded CPU Cores for FPGAs by Ian D. L. Anderson A Thesis Submitted to the Faculty of Graduate Studies and Research through Electrical and Computer Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2007 Reproduced with permission of the copyright owner.
    [Show full text]
  • Nios II/F 1800 Xilinx Microblaze 1324
    4.12.2014 Computer System Structures cz:Struktury počítačových systémů Version: 1.0 Lecturer: Richard Šusta ČVUT-FEL in Prague, CR – subject A0B35SPS Microprocessors 2 1 4.12.2014 Definition: Microprocessor A Microprocessor is a Single VLSI Chip that has a CPU and may also have some Other Units (for example, caches, floating point processing arithmetic unit, pipelining, and super-scaling units) Source Microprocessor Family Motorola 68HCxxx Intel 80x86 & i860 Sun SPARC IBM PowerPC Source: Raj Kamal, Embedded Systems: Architecture, Programming and Design 3 Existovalo a dodnes existuje mnoho typů od různých výrobců http://research.microsoft.com/en-us/um/people/gbell/CyberMuseum_contents/Microprocessor_Evolution_Poster.jpg 2 4.12.2014 From 8 bit to 32 bit CISC processors 8 bit µ-processor 8008 8080 8085 Z80 Year 1972 1974 1976 1976 Instructions 66 111 113 158 MIPS 0.06 0.29 0.37 0.58 Minimum system (IO circuits) 20-40 7 3 3 16 and 32 bit 64bit example: Intel 8086/88 80286 80386 80486 Pentium I5-2500K Quad core µ-processor Year 1978/79 1982 1985-91 1989-94 1993-98 2011 Instructions processor 133 ~175 ~195 ~200 ~225 ~500 + numeric cooprocessor MIPS 0.33-0.75 0.9-2.6 2.5-11 16-70 100-300 ~80000 Memory Physical / Virtual 1 MB 16 MB/1 GB 4 GB / 64TB 32 GB / 256 TB Definition: Microcontroller A microcontroller is a single-chip VLSI unit which, though having limited computational capabilities possesses enhanced input- output capabilities and a number of on- chip functional units Source Microcontroller Family Motorola 68HC11xx, HC12xx, HC16xx Intel
    [Show full text]
  • Upgrading Nios Processor Systems to the Nios II Processor
    Upgrading Nios Processor Systems to the Nios II Processor July 2006 - ver 1.1 Application Note 350 Overview The purpose of this document is to guide you through the process of migrating to the Nios® II CPU in an existing embedded system with the Nios embedded processor. This document discusses all necessary hardware and software changes to use the Nios II CPU, as well as optional changes that can be made to further enhance system performance and functionality. Audience This document is intended for both hardware and software developers who have used the Altera® Nios development kit and have created one or more functioning designs with the first-generation Nios processor. Software developers should note that this document discusses topics such as: ■ Minimal C and assembly source code modifications ■ GNU tool chain behavior, such as the treatment of the volatile keyword and its effect on compiler behavior ■ Software development tool flow for the Nios processor (such as the use of integrated development environments (IDE), and command line tools such as nios-build, nios-run, nios-debug, etc.) Hardware developers should note that this document discusses topics such as: ■ Use of SOPC Builder (adding and removing components in a design) ■ Possible interrupt request (IRQ) reassignments ■ Possible modification of any previously-designed custom instruction hardware ■ Simulation using an RTL simulator such as ModelSim Readers who may not be proficient in the above topics are encouraged to review documents such as the Nios II Hardware Development Tutorial and the online Nios II Software Development Tutorial or other relevant Altera® documentation to re-familiarize themselves with the above bulleted topics.
    [Show full text]
  • Design of Custom Instruction Set for FFT Using FPGA-Based Nios Processors Divya Lakshmi Sunkara
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Design of Custom Instruction Set for FFT Using FPGA-Based Nios Processors Divya Lakshmi Sunkara Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING DESIGN OF CUSTOM INSTRUCTION SET FOR FFT USING FPGA-BASED NIOS PROCESSORS By DIVYA LAKSHMI SUNKARA A Thesis submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2004 The members of the Committee approve the Thesis of DivyaLakshmi Sunkara defended on June 17th, 2004. ____________________________________ Uwe Meyer-Baese Professor Directing Thesis ____________________________________ Anke Meyer-Baese Committee Member _____________________________________ Shonda Walker Committee Member Approved: ______________________________________________________________ Reginald J Perry, Chair, Department of Electrical and Computer Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I am thankful to my major professor Dr. Uwe Mayer-Baese for his guidance, advice and constant support throughout my thesis work. I would like to thank him for being my adviser here at Florida State University. I would like to thank my committee members Dr. Anke Mayer- Baese and Dr. Shonda Walker for their support. I am thankful to my parents and my family members for their love and affection. I would like to thank my beloved husband Madhusudhana Reddy for his cooperation and support through out my stay in Florida State University. I wish to thank the administrative staff of the Electrical and Computer Engineering Department for their support.
    [Show full text]
  • Design of Standard and Custom Peripheral Using Nios Ii Processor
    DESIGN OF STANDARD AND CUSTOM PERIPHERAL USING NIOS II PROCESSOR K.J.VARALAKSHMI, DR.M.KAMARAJU 1Student, 2Professor and HOD Abstract- Today, Field programmable gate arrays (FPGA) play a very vital role in realizing embedded systems which are used in the area of defence systems, bioinformatics, cryptography, and many more. The recent developments of soft-core processors like NIOS II have redefined the use of FPGA in embedded systems. In this project processing and realizing general purpose embedded system using soft-core Nios-II processor on Altera Cyclone II FPGA. Here, we are developing the test logic for every component in the system to debug the system efficiently and the user-logic will decide the application whose realization is done using Nios II IDE. Index Terms- FPGA, Nios II Processor, Sopc Builder, Quartus II 1. INTRODUCTION The system designing is performed on the board This paper is proposed to provide security for includes CPU, System clock,[9] System id, flag, flash, militaries and defence systems etc. It means that all SRAM and other peripheral interfaces along with the components which are taking part are tested and user interface. Building embedded systems in FPGAs controlled according to their requirements. The Nios is a broad subject, involving system requirements development board comes pre-programmed with a analysis, hardware design tasks, and software design Nios II processor reference design as shown in Fig 1. tasks.[11] The Nios II processor can be used with a variety of other components to form a complete system. These components include a number of standard peripherals, but it is also possible to define custom peripherals.
    [Show full text]
  • PCI32 Nios Target „ Nios Ethernet Development Kit (NEDK) „ Microtronix Linux Development Kit (LDK) „ Nios 2.0 „ Competitive Landscape
    Excalibur-NiosExcalibur-Nios EmbeddedEmbedded SoftwareSoftware ProcessorProcessor CoreCore EnterEnter aa NewNew RealmRealm ofof Technology…Technology… ©2001 1 ® AgendaAgenda Quartus II Limited Edition PCI32 Nios Target Nios Ethernet Development Kit (NEDK) Microtronix Linux Development Kit (LDK) Nios 2.0 Competitive Landscape ©2001 2 ® ® QuartusQuartus IIII LimitedLimited EditionEdition ©2001 3 QuartusQuartus IIII LLiimitedmited EditionEdition Provides device compilation for Nios Development Kit customers Feature set based on Quartus II Web Edition, with some extra features to support Nios − TCL scripting − LeonardoSpectrum synthesis for Nios core − Development kit-specific devices: z EP20K200EFC484 – Used in NDK z EP20K200EBC652 z EP20K100EQC240 − See https://go.altera.com/extranet2001/products/literature/mb_2001/mb_411.doc for QII Web edition details. Provided to all Nios customers, starting in September − Shipped to all current Nios customers − Shipping today with all new Excalibur Nios ©2001 4Development Kits ® QuartusQuartus IIII LELE KeyKey PointsPoints Current Quartus II subscribers do not need to install QII LE Obtaining License Files − Altera sends an email that includes a new license file for QII LE to all current Nios customers. z Quartus II v1.1 enabled through October 31, 2001 z Quartus II Limited Edition enabled to eternity − The QII LE shipment also includes explicit instructions how to obtain a license online. NOTE: LogicLock is not enabled in QII LE − May affect customers with high performance needs “Where
    [Show full text]