Managed and Unmanaged Pinus Sylvestris Forest Stands Harbour Similar Diversity and Composition of the Phyllosphere and Soil Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungal Systematics: Is a New Age to Some Fungal Taxonomists, the Changes Were Seismic11
Nature Reviews Microbiology | AOP, published online 3 January 2013; doi:10.1038/nrmicro2942 PERSPECTIVES Nomenclature for Algae, Fungi, and Plants ESSAY (ICN). To many scientists, these may seem like overdue, common-sense measures, but Fungal systematics: is a new age to some fungal taxonomists, the changes were seismic11. of enlightenment at hand? In the long run, a unitary nomenclature system for pleomorphic fungi, along with the other changes, will promote effective David S. Hibbett and John W. Taylor communication. In the short term, however, Abstract | Fungal taxonomists pursue a seemingly impossible quest: to discover the abandonment of dual nomenclature will require mycologists to work together and give names to all of the world’s mushrooms, moulds and yeasts. Taxonomists to resolve the correct names for large num‑ have a reputation for being traditionalists, but as we outline here, the community bers of fungi, including many economically has recently embraced the modernization of its nomenclatural rules by discarding important pathogens and industrial organ‑ the requirement for Latin descriptions, endorsing electronic publication and isms. Here, we consider the opportunities ending the dual system of nomenclature, which used different names for the sexual and challenges posed by the repeal of dual nomenclature and the parallels and con‑ and asexual phases of pleomorphic species. The next, and more difficult, step will trasts between nomenclatural practices for be to develop community standards for sequence-based classification. fungi and prokaryotes. We also explore the options for fungal taxonomy based on Taxonomists create the language of bio‑ efforts to classify taxa that are discovered environmental sequences and ask whether diversity, enabling communication about through metagenomics5. -
High-Severity Wildfire Reduces Richness and Alters Composition of Ectomycorrhizal Fungi in Low-Severity Adapted Ponderosa Pine Forests
Forest Ecology and Management 485 (2021) 118923 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests M. Fabiola Pulido-Chavez a,c,*, Ernesto C. Alvarado a, Thomas H. DeLuca b, Robert L. Edmonds a, Sydney I. Glassman c a School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195, United States b College of Forestry, Oregon State University, Corvallis, OR 97331-5704, United States c Department of Microbiology and Plant Pathology, 3401 Watkins Drive, Riverside, CA 92521, United States ARTICLE INFO ABSTRACT Keywords: Ponderosa pine (Pinus ponderosa) forests are increasingly experiencing high-severity, stand-replacing fires. Ectomycorrhizal fungi Whereas alterations to aboveground ecosystems have been extensively studied, little is known about soil fungal Saprobic fungi responses in fire-adaptedecosystems. We implement a chronosequence of four different firesthat varied in time High-severity wildfires since fire,2 years (2015) to 11 years (2006) and contained stands of high severity burned P. ponderosa in eastern Ponderosa pine Washington and compared their soil fungal communities to adjacent unburned plots. Using Illumina Miseq Illumina MiSeq Soil nutrients (ITS1), we examined changes in soil nutrients, drivers of species richness for ectomycorrhizal (plant symbionts) Succession and saprobic (decomposers) fungi, community shifts, and post-fire fungal succession in burned and unburned plots. Ectomycorrhizal richness was 43.4% and saprobic richness 12.2% lower in the burned plots, leading to long-term alterations to the fungal communities that did not return to unburned levels, even after 11 years. -
Molecular Evolution and Functional Divergence of Tubulin Superfamily In
OPEN Molecular evolution and functional SUBJECT AREAS: divergence of tubulin superfamily in the FUNGAL GENOMICS MOLECULAR EVOLUTION fungal tree of life FUNGAL BIOLOGY Zhongtao Zhao1*, Huiquan Liu1*, Yongping Luo1, Shanyue Zhou2, Lin An1, Chenfang Wang1, Qiaojun Jin1, Mingguo Zhou3 & Jin-Rong Xu1,2 Received 18 July 2014 1 NWAFU-PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, 2 Accepted Northwest A&F University, Yangling, Shaanxi 712100, China, Department of Botany and Plant Pathology, Purdue University, West 3 22 September 2014 Lafayette, IN 47907, USA, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Key Laboratory of Pesticide, Nanjing, Jiangsu 210095, China. Published 23 October 2014 Microtubules are essential for various cellular activities and b-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi Correspondence and across the fungal kingdom. Phylogenetic analysis showed that a-/b-tubulin genes underwent multiple requests for materials independent duplications and losses in different fungal lineages and formed distinct paralogous/ should be addressed to orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two a a a b b b a J.-R.X. (jinrong@ paralogs of -tubulin ( 1/ 2) and -tubulin ( 1/ 2) genes but 2-tubulin genes were lost in basidiomycetes and b2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that a1, a2, purdue.edu) and b2-tubulins have been under strong divergent selection and adaptive positive selection. -
Vol1art2.Pdf
VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 13–22 doi.org/10.3114/fuse.2018.01.02 Epitypification and re-description of the zombie-ant fungus, Ophiocordyceps unilateralis (Ophiocordycipitaceae) H.C. Evans1,2*, J.P.M. Araújo3, V.R. Halfeld4, D.P. Hughes3 1CAB International, UK Centre, Egham, Surrey, UK 2Departamentos de Entomologia e Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 3Departments of Entomology and Biology, Penn State University, University Park, Pennsylvania, USA 4Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil *Corresponding author: [email protected] Key words: Abstract: The type of Ophiocordyceps unilateralis (Ophiocordycipitaceae, Hypocreales, Ascomycota) is based on an Atlantic rainforest immature specimen collected on an ant in Brazil. The host was identified initially as a leaf-cutting ant (Atta cephalotes, Camponotus sericeiventris Attini, Myrmicinae). However, a critical examination of the original illustration reveals that the host is the golden carpenter ants carpenter ant, Camponotus sericeiventris (Camponotini, Formicinae). Because the holotype is no longer extant and epitype the original diagnosis lacks critical taxonomic information – specifically, on ascus and ascospore morphology – a new Ophiocordyceps type from Minas Gerais State of south-east Brazil is designated herein. A re-description of the fungus is provided and phylogeny a new phylogenetic tree of the O. unilateralis clade is presented. It is predicted that many more species of zombie- ant fungi remain to be delimited within the O. unilateralis complex worldwide, on ants of the tribe Camponotini. Published online: 15 December 2017. Editor-in-Chief INTRODUCTIONProf. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. -
Unravelling the Diversity Behind the Ophiocordyceps Unilateralis (Ophiocordycipitaceae) Complex: Three New Species of Zombie-Ant Fungi from the Brazilian Amazon
Phytotaxa 220 (3): 224–238 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.220.3.2 Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon JOÃO P. M. ARAÚJO1*, HARRY C. EVANS2, DAVID M. GEISER3, WILLIAM P. MACKAY4 & DAVID P. HUGHES1, 5* 1 Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. 2 CAB International, E-UK, Egham, Surrey, United Kingdom 3 Department of Plant Pathology, Penn State University, University Park, Pennsylvania, United States of America. 4 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, United States of America. 5 Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America. * email: [email protected]; [email protected] Abstract In tropical forests, one of the most commonly encountered relationships between parasites and insects is that between the fungus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Ascomycota) and ants, especially within the tribe Campono- tini. Here, we describe three newly discovered host-specific species, Ophiocordyceps camponoti-atricipis, O. camponoti- bispinosi and O. camponoti-indiani, on Camponotus ants from the central Amazonian region of Brazil, which can readily be separated using morphological traits, in particular the shape and behavior of the ascospores. DNA sequence data support inclusion of these species within the Ophiocordyceps unilateralis complex. Introduction In tropical forests, social insects (ants, bees, termites and wasps) are the most abundant land-dwelling arthropods. -
Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). -
Ontario Species at Risk Evaluation Report for Tri-Colored Bat
Ontario Species at Risk Evaluation Report for Tri-colored Bat (Perimyotis subflavus) Committee on the Status of Species at Risk in Ontario (COSSARO) Assessed by COSSARO as Endangered June, 2015 Final Pipistrelle de l’Est (Perimyotis subflavus) La pipistrelle de l’Est (Perimyotis subflavus) est l’une des plus petites chauves-souris en Amérique du Nord. Environ 10 p. 100 de son aire de répartition mondiale se situe au Canada (en Ontario, au Québec, au Nouveau-Brunswick et en Nouvelle-Écosse) et elle est considérée rare dans la majeure partie de son aire de répartition canadienne. En Ontario, elle est considérée peu courante, bien que la taille des populations ne soit pas bien connue. La pipistrelle de l’Est se nourrit d’insectes. Elle s’alimente au-dessus de l’eau, le long des cours d’eau ainsi qu’à la lisière des forêts; elle évite généralement les grands champs ouverts ou les zones de coupe à blanc. À l’automne, les chauves-souris reviennent aux gîtes d’hibernation, qui peuvent être à des centaines de kilomètres de distance de leurs sites d’été. Elles s’agglutinent près de l’entrée, elles s’accouplent, puis elles pénètrent dans ce gîte d’hibernation ou elles se déplacent vers un gîte différent pour y passer l’hiver. La femelle produit un ou deux petits par année après l’âge d’un an et la longévité maximale consignée est de 15 ans. La principale menace qui pèse sur la pipistrelle de l’Est est une maladie appelée le syndrome du museau blanc (SMB), qui est causé par l’introduction du champignon Pseudogymnoascus destructans. -
Occurrence of Rust on Solidago Canadensis, a New Host Record for Coleosporium Asterum from India
Plant Pathology & Quarantine 6(1): 43–46 (2016) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2016 Online Edition Doi 10.5943/ppq/6/1/6 Occurrence of rust on Solidago canadensis, a new host record for Coleosporium asterum from India Thite SV, Hande PR and Kore BA* Department of Botany, Yashvantrao Chavan Institute of Science, Satara – 415 001, (M.S), India Thite SV, Hande PR, Kore BA 2016 – Occurrence of rust on Solidago canadensis, a new host record for Coleosporium asterum from India. Plant Pathology & Quarantine 6(1), 43–46, Doi 10.5943/ppq/6/1/6 Abstract In September 2012, leaves of Solidago canadensis with typical symptoms of rust were collected in the Botanical Garden of Yashvantrao Chavan Institute of Science, Satara (MS, India). The rust was identified as Coleosporium asterum. This rust is recorded on S. canadensis in India for the first time. Key words – Asteraceae – Coleosporiaceae – Coleosporium asterum – Solidago canadensis. Introduction Solidago canadensis L. (Asteraceae) (cf. The Plant List, 2014) (Fig. 1A), commonly called Canadian goldenrod, is native to North America (Hegi 1979). It often occurs as a weed in abandoned fields and roadsides, grasslands, forest edges and human-influenced habitats in urban areas and settlements (Walck et al. 1999). It is also cultivated as an ornamental in botanical gardens and home gardens in various parts of the world. The plant is exotic to India and was introduced for its ornamental value. The inflorescence of the plant forms a broad pyramidal panicle with a central axis and recurving branches giving it a gorgeous look. Its golden yellow attractive inflorescence is largely used in bouquets. -
Isolation of Fungal Cellulase Gene Transcript from Penicillium Spinulosum
Isolation of fungal cellulase gene transcript from Penicillium spinulosum A Master’s Thesis Presented to the faculty of The College of Science and Mathematics Colorado State University – Pueblo In Partial Fulfillment of the requirements for the degree of Master of Science in Biochemistry By Srivatsan Parthasarathy Colorado State University – Pueblo May, 2018 ACKNOWLEDGEMENTS I would like to thank my research mentor Dr. Sandra Bonetti for guiding me through my research thesis and helping me in difficult times during my Master’s degree. I would like to thank Dr. Dan Caprioglio for helping me plan my experiments and providing the lab space and equipment. I would like to thank the department of Biology and Chemistry for supporting me through assistantships and scholarships. I would like to thank my wife Vaishnavi Nagarajan for the emotional support that helped me complete my degree at Colorado State University – Pueblo. III TABLE OF CONTENTS 1) ACKNOWLEDGEMENTS …………………………………………………….III 2) TABLE OF CONTENTS …………………………………………………….....IV 3) ABSTRACT……………………………………………………………………..V 4) LIST OF FIGURES……………………………………………………………..VI 5) LIST OF TABLES………………………………………………………………VII 6) INTRODUCTION………………………………………………………………1 7) MATERIALS AND METHODS………………………………………………..24 8) RESULTS………………………………………………………………………..50 9) DISCUSSION…………………………………………………………………….77 10) REFERENCES…………………………………………………………………...99 11) THESIS PRESENTATION SLIDES……………………………………………...113 IV ABSTRACT Cellulose and cellulosic materials constitute over 85% of polysaccharides in landfills. Cellulose is also the most abundant organic polymer on earth. Cellulose digestion yields simple sugars that can be used to produce biofuels. Cellulose breaks down to form compounds like hemicelluloses and lignins that are useful in energy production. Industrial cellulolysis is a process that involves multiple acidic and thermal treatments that are harsh and intensive. -
DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species
microorganisms Article DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species Diana Marˇciulyniene˙ 1,* , Adas Marˇciulynas 1,Jurat¯ e˙ Lynikiene˙ 1, Migle˙ Vaiˇciukyne˙ 1, Arturas¯ Gedminas 1 and Audrius Menkis 2 1 Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu˛Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; [email protected] (A.M.); [email protected] (J.L.); [email protected] (M.V.); [email protected] (A.G.) 2 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: The production of tree seedlings in forest nurseries and their use in the replanting of clear-cut forest sites is a common practice in the temperate and boreal forests of Europe. Although conifers dominate on replanted sites, in recent years, deciduous tree species have received more attention due to their often-higher resilience to abiotic and biotic stress factors. The aim of the present study was to assess the belowground fungal communities of bare-root cultivated seedlings of Alnus glutinosa, Betula pendula, Pinus sylvestris, Picea abies and Quercus robur in order to gain a better understanding of the associated fungi and oomycetes, and their potential effects on the seedling performance in forest nurseries and after outplanting. The study sites were at the seven largest bare-root forest nurseries in Lithuania. The sampling included the roots and adjacent soil of 2–3 year old healthy-looking seedlings. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
Fungal Sampling of a Maternity Roost of Big Brown Bats (Eptesicus Fuscus) on the Baca National Wildlife Refuge
Fungal sampling of a maternity roost of Big Brown Bats (Eptesicus fuscus) on the Baca National Wildlife Refuge. Erin M Lehmer, Stephen Fenster & Kirk Navo Background The initial research was focused on sampling fungal community diversity on the migratory Mexican free-tailed bat (Tadarida brasiliensis) population from the Orient Mine upon arrival and prior to departure from Colorado. However, in June 2015 because of cold spring temperatures and higher than average precipitation, arrival of the free-tailed population was delayed, and we were unable to capture bats after repeated sampling efforts. Because of these failed efforts, it was decided to move to the nearby Baca National Wildlife Refuge in an attempt to capture resident (i.e. non-migratory) bats, using a stacked mist net system. During the single night of sampling at the Baca NWR, we captured 32 adult female big brown bats (Eptesicus fuscus) from a single maternity roost located in the attic of an abandoned outbuilding on the refuge property. These bats were processed in the same manner that we had processed the free-tailed bats in previous seasons; after capture, they were weighed, sex and reproductive condition were determined, and forearm lengths were measured. Fungal spores were collected by swabbing the wing membranes and dorsal and ventral fur with sterile cotton swabs dipped in sterile water. During routine processing of the fungal spores (i.e. culturing, PCR and DNA sequence barcoding analysis), we determined that 2 of the samples were a very close genetic match to P. destructans based on sequence alignment data of the internal transcribed spacer (ITS) region of the genome.