<<

RI/RD90-149-5

OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) DATA BOO K

Volume V - OEPSS Final Briefing for 1st Year Stud y

Prepared for Kennedy Space Center NAS 10-11568

14 August 1990

Rocketdyne Study Managers : G . S. Wong / G . S . Waldrop NASA, KSC Study Manager : R . E. Rhodes

Rockwell International, Rocketdyne Divisio n 6633 Canoga Avenu e Canoga Park, CA 9130 3 e Rockwell Internationa l Rocketdyne Division

91 ALS-060- 1 FOREWOR D

This document is part of the final report for the Operationally Efficient Propulsion System Stud y (OEPSS) conducted by Rocketdyne Division, Rockwell International for the AFSSD/NASA AL S Program . The study was conducted under NASA contract NAS10-11568 and the NASA Stud y Manager is Mr. R. E . Rhodes . The period of study was from 24 April 1989 to 24 April 1990 .

ABSTRACT

This study was initiated to identify operations problems and cost drivers for propulsion system s and to identify technology and design approaches to increase the operational efficiency and reduce operations cost for future propulsion systems . To provide readily usable data for the ALS program, the results of the OEPSS study have been organized into a series of OEPSS data books as follows : Volume I, Generic Ground Operations Data : Volume II, Ground Operations Problems ; Volume Ill , Operations Technology; and Volume IV, OEPSS Design Concepts .

Volume V contains the OEPSS Final Briefing, summarizing the first year study, and is hereby mad e part of the OEPSS Data books . The final briefing was presented at NASA, MSFC, Huntsville, AL, 1 4 August 1990 .

11~ Rockwell Internationa l Rocketdyne Division

91 ALS-060-1a OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) Agenda 14 August 1990

• Introduction R. Rhodes

• Operationally Efficient Integrated P/M G. Wong

• Operations Problems G. Waldrop

• Operations Technology G. Wong

• Operations Database

O e Rockwell Internationa l l Rocketdyne Division

91ALS-060- a PROPULSION DEVELOPMEN T Where are we headed?

• First 30 years focused on space effort • All criteria based on performance : Is, GLOW, T/W, mass fraction • Engine development based on establishing artificial interfaces fo r design and operational contro l • Engine CEI and ICD - ease of procurement and development tes t • Vehicle assumed burden of all systems demanded by the engin e • Mission use determined number of engines required by vehicl e • Cost and launch rate were not a Big concern • Reusability was answer to cost reductio n • Where are we falling short in vision • Experience identified many generic operations concerns that caus e status quo • OEPSS Study identified alternate concepts that offer majo r reduction in complexity and manpower intensive operation s

Rockwell Internationa l

Rocketdyne Division

91ALS-o60- 2 PROPULSION DEVELOPMEN T

• Next 30 years focused on ambitious space exploratio n • By applying the principles of TOM to Advanced Planning ; Conceptual Design ; Development of Requirements ; and Design Development Processes provides • Low cost, reliable, timely access to spac e • Low cost, reliable, operationally flexible space transfer system • Develop a simple, reliable, operationally efficient, integrated propulsio n system concept to be used and sized for different missions/vehicle s • Fully integrated to achieve major reduction in propulsion component s • Major reduction in traditional vehicle support systems • Concentrate on LOX/LH2 for all vehicle fluid need s • Providing environmentally clean and totally integrated propulsion and vehicle power requirements, i .e. • MPS, OMS, RCS, fuel cells, cooling/thermal managemen t and life support systems

® , Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 3 PROPULSION DEVELOPMEN T

• Surface the necessary technology needs to allow thi s ambitious space exploration program to occu r • Develop these technology items into projects and follow the m through maturity for use • Maximize the use of manpower and facilities • Realign our government and industry teams and procurement practices to perform productive work and increase operationa l flexibility • Let us accept this challenge for the future • Let us not build a new 1990 mode l But • Let us provide real measurable progress, allowing us to achiev e the next frontier "Routine access to Space "

e Rockwell Internationa l Rocketdyne Division

91 ALS-060 . 4 PROPULSION DEVELOPMEN T

Simplistic Space Vehicle Desig n • Integrate functions • Efficient component packagin g High Reliability Increased OperationalFlexibility • Sized to meet performance requirements • Reduce number of • Combined cycle booster propulsion • Common concept for different missio n systems and components providing power recovery needs by maximizing integration and TQM practices • Decrease criticality of equipmen t function • Provide greater performance margins to accommodate low cos t robust approach Maintainability • High accessibility The Technology Challenge" • Automatic retest Low Cost, Reliable, Timel y Operability Access to Space • Simple servicing • Minimum number of Maximize use of Resources major elements • Use environmental assets, i .e. Earth atmosphere, Moo n surfaces, Mars, etc . • Productive use of manpower Reduced Operation s • Maximize team approach i .e. PersonnelSkills Environmentally cleanaffordable government, industry, academi a • Simplified, integrate d • All LOXJLH2 as consummable s robust, highly automate d and functional fluids vehicle concept • MPS, power, cooling, life support • Major reduction in operations staff • Adopt low cost manufacturing concepts

,1% Rockwell Internationa l Rocketdyne Division

91ALS-060- 5 OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) Agenda 14 August 199 0

• Introduction R. Rhodes

• Operationally Efficient Integrated P/M G. Wong

• Operations Problems G. Waldrop

• Operations Technology G. Wong

• Operations Database

11 Rockwell Internationa l Rocketdyne Division

91ALS-060- b THE OEPSS TEAM

OEPSS

Rocketdyne

Boeing Aerospace Rockwell STS D Operations

Rockwell Internationa l Rocketdyne Division

91ALS-060- 6

OEPSS STUDY SCHEDUL E

YEAR 1989 1990 A~ M I J J I A I S 0 N D J F M A TASK MONTH 1 2 3 4 5 6 7 8 9 10 11 1 2 1 .0 Generic Cryogenic Baseline Propulsion/Fluid Syste m • Generic ground operations : STS/MPS, LR B • ELV ground operations: Atlas, Delta, Titan 2.0 Generic Operationally Efficient Propulsion System Concept s • LOX tank aft • Air-augmented, afterburning 3 .0 Alternative ALS Operationally Efficient Propulsion System Concept s • Integrated propulsion module • Fully integrated propulsion module 4 .0 Operational Analysis/Critique of ALS Propulsion Systems

• OEPSS/ALS Workshops OEPSS Concerns ■ • Operations Issues (PSIWG, STEP, ADP) ADP ■Workshops • Recommendations _ / ADP 5 .0 Final Report PSIWG-2 PSIWG-3 • Generic operations databook • Operations concerns databook • Operations technology databoo k • Design concepts databook 6 .0 Reports and Reviews • Monthly Progress Report v • Technical Revie w w Iry • Quarterly Review • Midterm Revie w Iry • Final Review ®1P Rockwell Internationa l Rockeldyne Division

91 ALS-060- 6 c LAUNCH OPERATIONS COST PER FLIGH T

0/0 of Total Recurring Cos t

Operation s 45%

Hardware

STS Titan IV

Rockwell International PROPULSION SYSTEM FOR ALS

• Defined as a totally "integrated" system of components and subsystems to provide vehicle thrust and contro l • Tankage • Fluid Systems • Structure • Thrust Chamber(s) • Turbopump(s) • Controls • Use a "minimum" of components and subsystems to meet th e functions of the propulsion system • Simple • Reliable • Robust • Operationally efficient • Achieve lowest possible cost by applying TQM to propulsio n system development process • Design/Build/Operate

Rockwell International Rocketdyne Division

91 ALS-060- 12

BASELINE ALS VEHICL E

• Payload 120,000 lbs (LEO) • GLOW 3,500,000 lbs • Thrust/weight 1 .30 • Booster vehicle 150 x 30 dia. • Core vehicle 280 x 30 dia. • Booster engines 7 • Core engines 3 1111111111 11111011 1 • Engine thrust (vac) 580,000 lbs (STME) Booster Core

11/11111 1111111111

®1® Rockwell Internationa l Rocketdyne Division

91ALS-060-13 SPACE TRANSPORTATION MAIN ENGIN E

Rockwell Internationa l Rocketdyne Division SC89c-30-67A 443

FULLY INTEGRATED PROPULSION MODUL E

Rockwell Internationa l Rocketdyne Division

91ALS-060-14 "INTEGRATED" DESIGN INCREASES OPERABILIT Y

• Single He-pressurization System

• Single LOX-pressurization System (HX ) • Single Control System • No flexible propellant line s • No gimbal actuators

provided in propulsion modul e

0 , Rockwell Internationa l 1 Rocketdyne Division

91ALS-060-15

INTEGRATED DESIGN ELIMINATE S COMPONENTS AND INTERFACE S

• Torus propellant manifold allows 50% reduction of • Propellant inlet lines • Turbopumps • Gas generators

• Torus manifold provides "engine-out" capabilit y • Thrust chamber-out • Turbopump-ou t

~ ® Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 16 INTEGRATED DESIGN INCREASES ROBUSTNES S AND COMMONALITY

• Normal engine operation at 85% nominal thrust • Engine operates at 100% thrust with "engine-out" (1-T/C, 1-T/P )

• Outer thrust chamber arrangement maximizes maintainabilit y • Booster-core configuration achieves maximum commonality • Identical module thrust structure • Identical feedlines and valves • Identical thrust chambers • Identical turbopumps

® , Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 17 ROBUST TURBOPUMP DESIG N • Lower design speed • Operating margin

7-engine 8-thrust chambe r (7-T/P) (4-T/P) Booster Des. RPM Des. RPM Oper. RPM (100%) (100%) (90%)

LH2-Turbopump 26,000 16,300 14,700

L02-Turbopump 10,000 6,210 5,521

®1~ Rockwell International

TURBOPUMP OPERATING MARGI N

Head

One T/C out 7 T/C

8 T/C

I ~ I No T/P out One T/P ou t

V Flowrate 4 T/P 3 T/P Operational Operationa l

® ~ Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 22 SEPARATE ENGINE HELIUM SUPPLY SYSTEM S

7- Helium tanks 63 - Valves, regulators, filters and PCAs Many leakage and maintenance requirements

® , Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060- 23 INTEGRATED ENGINE HELIUM SUPPLY SYSTE M

11I1 II 1 11 1 1 1

1 - Helium tank 9 - Valves, regulators, filters and sonic nozzle 1 - Pneumatic Control Assembly (PCA) Reduced leakage and maintenance requirements

®1, Rockwell International Rocketdyne Division

91 ALS-060- 24

THRUST VECTOR CONTROL OPTION S

Approach Options Issues Recommendations

1 . Gimbal Booster Engines • Complexity • Acceptabl e Gimbal Core Engines • Cost • Evaluate cost an d • Reliability reliability issues

2. Fix Booster Engines • Engine out • Acceptable for 4-engin e Gimbal Core Engines • Large gimbal angles core on core engines • Requires further evalua- tion for 3 engine cor e • Requires fixed engin e can t 3. Differential Throttle Booster • Response time • Evaluate only i f Engines • Engine reliability Option 2 not feasible Gimbal Core Engines • Engine cost

4 . Gimbal GG Exhaust • Complexity • Evaluate only if Gimbal Core Engines • Requires large thrust Option 2 not feasible

e Rockwell Internationa l Rocketdyne Divisio n

91 ALS-060- 2 5 THRUST VECTOR CONTROL FOR FIXED BOOSTER AN D GIMBALED CORE

Precant Angle, Deg . Core Gimbal Angle, Deg . (Max Q, Alpha ) Booster Core All engines operating Engine Out 0 0 1 8 22 1 0 0 1 0 1 6 10 5 7 9

10 5 10 12

Based on typical ALS trajectory to LE O Booster shutdown and separation conditio n

e Rockwell Internationa l Rocketdyne Division

91 ALS-060- 2 6

SEPARATE ENGINES VS . INTEGRATED SYSTE M

Separate Engines Integrated Syste m • Control Systems 7 n • He supply system n 7 Q • Heat exchange r n 7 F2- • LOX turbopump 7 4 • LH2-turbopump 7 n • Gas generato r 7 n n Ri • Thrust chambe r n n 7 nn

/ , Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 27

BOOSTER PROPULSION MODULE HARDWARE COMPARISON Separate Engines vs . Integrated Syste m Separate Engines Integrated System (Static ) Engine Elements No. of Components No . of Components Thrust chamber : MCC 7 8 Injector 7 8 Nozzle 7 8 Igniter 7 8 Oxidizer turbopump 7 4 Fuel turbopump 7 4 Gas generator 7 4 Heat Exchanger 7 2 Start System 7 1 PCA 7 1 Controller (avionics) 7 Gimbal bearing 7 0 Gimbal actuator 14 0 Propellant lines 14 4 Flexible inlet lines 14 0 Fixed inlet lines 0 8 Main valve/actuator 14 24 Prevalves 14 0 Crossover duct/lines 7 0 HP T/P discharge lines 0 8 Ring manifold . 0 2 HP T/C inlet lines 0 8 Miscellaneous 7 8 Center engine mount 1 0 Total 169 111

Rockwell I Rocketdyne Division

91ALS-060- 28 BOOSTER PROPULSION MODULE RELIABILITY Separate Engines vs . Integrated System

Separate Engines Integrated system Component Engine Elements No. of Subystem No. of Subsystem Reliability Components Reliability Components Reliability

Thrust chamber assy 0.99978 7 0.99846 8 0.99824 T/C ISO valve, ox 0.99996 0 - 8 0.99968 T/C ISO valve, fuel 0.99996 0 - 8 0.99968 Oxidizer turbopump 0 .99986 7 0.99902 4 0.99944 Fuel turbopump 0 .99972 7 0.99804 4 0.99888 MOV 0 .99996 7 0.99972 4 0.99984 MFV 0 .99996 7 0.99972 4 0.99984 Gas generator 0 .99983 7 0.99881 4 0.99932 PCA 0.99999 7 0.99993 1 0.99999 Controller 0.99996 7 0099972 1 0.99996 Gimbal system 0.99999 7 0.99993 0 - Heat exchanger 0.99989 7 0.99923 2 0.99978 Propellant lines 0.99999 14 0. 99986 4 0.99996 Inlet line, flex 0.99980 7 0.99860 0 - Inlet line, fixed 0.99980 7 0.99860 4 0.99920 Prevalve, oxid 0.99996 7 0.99972 0 - Prevalve, fuel 0.99996 7 0.99972 0 - Crossover duct 0.99980 7 0.99860 0 - HP T/P discharge lines 0.99999 0 -- 8 0.99992 Ring manifold 0.99991 0 - 2 0.99982 HP T/C inlet lines 0.99999 0 - 8 0.99992 Overall reliability 0 .98775 0.99351 STME Components

Rockwell Internationa l

Rocketdyne Division

91ALS-060-29 BOOSTER PROPULSION MODULE SYSTEM COST Separate Engines vs. Integrated System

Separate Engines Integrated Syste m Engine Unit Cost No. of Cost Elements No . of Cost $K Components $K Components $ K Thrust chamber: MCC 370 7 2590 8 2960 Injector 192 7 1344 8 1536 Nozzle 306 7 2142 8 2938 Igniter 31 7 217 8 248 Oxidizer turbopump 263 7 1841 4 1580 Fuel turbopump 400 7 2800 4 2400 Gas generator 29 7 203 4 11 6 Heat Exchanger 79 7 553 2 31 6 PCA 220 7 1540 1 220 Controller (avionics) 96 7 672 1 304 Gimbal bearing 71 7 497 0 0 Gimbal actuator 30 14 420 0 0 Propellant lines 21 14 294 4 84 Flexible inlet lines 18 14 252 0 0 Fixed inlet lines 12 0 0 8 96 Main valve/actuator 35 14 490 24 840 Prevalves 21 14 294 0 0 Crossover duct/lines 166 7 1162 0 0 HP T/P discharge lines 6 0 0 8 48 Ring manifold 100 0 0 2 200 HP T/C inlet lines 6 0 0 8 48 Miscellaneous -- -- 1767 71 2 Total Cost , $ 18,861,000 14,646,500 Cost per Engine, $M 2.69 1 .83 Cost factor for regen TIC T/P and HX: 1 .2, 1 .5 and 2. 0 500th unit cos t 10% separate ; 5% integrate d Rockwell Internationa l Basic STME $2.67 M

Rocketdyne Division

91ALS-060-3 0 BOOSTER PROPULSION MODULE SYSTEM WEIGH T Separate Engines vs . Integrated Syste m

Separate Engines Integrated Syste m Engine Unit Weight Elements Lbs No. of Weight No. of Weight Components Lbs Components Lbs Thrust chamber : MCC 613 7 4291 8 490 4 Injector 364 7 2548 8 291 2 Nozzle 2088 7 14616 8 1670 4 Igniter 31 7 217 8 248 Oxidizer turbopump 1726 7 12082 4 9664 (1 ) Fuel turbopump 1421 7 9947 4 7960 ( 1 ) Gas generator 121 7 847 4 484 (2) Heat Exchanger 101 7 707 2 404 (3) Start System 35 7 245 1 70 (3) PCA 82 574 1 82 Controller (avionics) 7 140 1 20 Gimbal bearing 158 7 1106 0 0 Gimbal actuator 190 14 2660 0 0 Propellant lines -- 14 (1186) 16600 4 (1587) 6348 Flexible inlet lines 734 14 10276 0 0 Fixed inlet lines 668 0 0 8 5344 Main valve/actuator 144 14 2016 24 3456 Prevalve 75 14 1050 0 0 Crossover duct/lines 214 7 1498 0 0 HP T/P discharge lines 360 0 0 8 2880 Ring manifold 3750 0 0 2 7500 HP T/C inlet lines 300 0 0 8 2400 Miscellaneous 585 7 4095 8 4680 Center engine mount 1826 1 1826 0 0 Total Weight 87,340 76,058 (1) Factor of 1 .4; (2) Factor of 1 .5; (3) Factor of 2. 0 el~ Rockwell Internationa l Rocketdyne Division

91ALS-060-3 1 INTEGRATED PROPULSION MODUL E IS RELIABLE AND LOW COS T

Factor Separate Integrated • Higher reliability 0.988 0.993 T/C and T/P out 0 0.999 • Lower engine (T/C) cost, $M 2.67 1 .83 • Less number of parts 169 11 1 • Lower potential weight, lbs . 87,340 76,058 • Lower operations cost 1 1 /3 No engine-out capability With T/C and T/P - out capability

® ~ Rockwell Internationa l 1 Rocketdyne Divisio n INTEGRATED DESIGN ADDRESSES OPERATION S PROBLEMS DIRECTLY

No . No.

Closed aft compartments 14 Ordnance Operations Hydraulic system (valve actuators and TVC) 15 Retractable T-O umbilical carrier plate s Ocean recovery/refurbishment 16 Pressurization syste m 4 Multiple propellants 17 Inert gas purg e 5 Hypergolic propellants (safety) 18 Excessive interfaces Accessibility 19 Helium spin start Sophisticated heat shielding 20 Conditioning/geysering (LO2 tank forward ) Excessive components/subsystems 21 Preconditioning syste m Lack hardware integration ® Expensive helium usage - heliu m 10 Separate OMS/RCS © Lack hardware commonality 11 Pneumatic system (valve actuators) ® Propellant contaminatio n 0 Gimbal system 25 Side-mounted booster vehicles (multipl e 13 High maintenance turbopumps stage propulsion systems)

Rockwell Internationa l Rocketdyne Division

91 ALS-06o- 33 INTEGRATED PROPULSION MODULE IS FLEXIBL E

• "Integrated" propulsion module is a single engin e • Meets wide range of thrust (1,000,000 - 4,000,000 Ibs) by adding or eliminating component s • "Integrated" propulsion module is operationally efficien t • Simpler • More reliable • More robust • More operable (operationally efficient) • Greater engine-out capabilit y • Lower cost • Lower weight

024 Rockwell Internationa l Rocketdyne Division

91ALS-060- 34

INTEGRATED PROPULSION MODULE HAS WID E PAYLOAD RANG E P/L 20,000 to 200,000 lb s

Payload Capability, lb s

Integrated Engine : T/C T/P 20K 40K 80K 120K 160K 200 K

1 . Single Element 2 1 X

2. Core: 2 x Elements 4 2 X

3. Booster : 4 x Elements 8 4 X

4 . Booster + Core : ALS 12 6 X

5. 2 x Boosters 16 8 X

6. 2 x Boosters + Core 20 10 X

Il~ Rockwell Internationa l Rocketdyne Division

91ALS-060- 35 CONCLUSIONS

• Operational efficiency starts at design concept (TQM )

• Integration results in simpler desig n • Simple design requires less operations support

• Integration yields higher reliability and lower cos t • New technology not require d

Rockwell Internationa l Rocketdyne Division

91 ALS-060- 36 ANTIGEYSER LOX TANK AFT PROPULSION CONCEP T

0 % Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060- 36a OEPSS CONCERN - LOX TANK POSITION

• Concern : ALS vehicle concepts position LOX tank forward of LH2 tank • Operational impacts • Potential for geysering in LOX feed line s • Heating of long feed lines form bubbles and ejection of liquid into tank • Rapid refill of lines creates possible catastrophic waterhammer • Control can require critical active systems and continuous monitorin g • Propellant preconditioning difficult y • Heat into long feed line can raise propellant above acceptable limits for engine operation • Can require bleed or recirculation system • Checkout of long feed line s • Access difficult for inspection and leak chec k • High propellant transfer require d • Elevation of LOX tank requires ground pumps for propellant loadin g • Other impacts • LH 2 tank and intertank structure required to support heavy LOX tan k

Rockwell Internationa l

Rocketdyne Division

91 ALS-060. 36b

ANTIGEYSER LOX TANK AFT PROPULSION SYSTE M

• Reverse tank positions ( • Short LOX feed lines greatly reduce (LOX aft, LH2 fwd) geysering and pogo problem s • Smaller LOX tank results in shorte r feed lines from forward tank • Weight reduction of feed lines and intertank structure • Reduced control authority from aft • Multipletanks C.G. location (similar to Saturn 1) • Cost similar to ALS vehicles • Both LOX and LH2 feed lines short LH 2 • Greatly reduced pogo and geyser problem s • Tank weight increased (= 10% ) • Large change in C .G . locations during bur n increases engine gimbal requirements • Higher total tank set cost may be offset by easier fabrication and transportation o f individual tanks

el~ Rockwell Internationa l Rocketdyne Division

91 ALS-060 . 36c ANTIGEYSER LOX TANK AFT PROPULSION SYSTE M

• Concentric tanks • Both LOX and LH2 feed lines short • Greatly reduced pogo geyser problems • Tank weight increased (= 10%) • Large change in C.G . locations during burn increases engine gimbal requirements • Fabrication problems can increase costs • Thrust loads carried by outer tan k • Both LOX and LH2 feed lines short • Greatly reduced pogo geyser problems • Tank weight increased (= 10%) • Reduced control authority from aft C .G. location • Fabrication problems can increase costs

• Efficient thrust load path LOX tank not involved ®1® Rockwell Internationa l Rocketdyne Divisio n

91ALS-060- 37 ANTIGEYSER LOX TANK AFT PROPULSION SYSTE M • Concentric tanks • Both LOX and LH2 feed lines short • Greatly reduced pogo geyser problems • Tank weight increased (= 10% ) • Large change in C .G. locations during burn increases engine gimbal requirements • Fabrication problems can increase costs • Thrust loads carried by outer tan k • Both LOX and LH2 feed lines short • Greatly reduced pogo geyser problem s • Tank weight increased (= 10% ) • Reduced control authority from aft C .G. location • Fabrication problems can increase cost s • Efficient thrust load path LOX tank no t involved e Rockwell Internationa l Rockeldyne Divisio n

91ALS-060- 37 VEHICLE CONTROL IMPACT

• Vehicle control evaluation performed for LOX aft vehicl e • Concentric tank option considered representativ e • Worse case single engine out assume d • Gimbal angle of 16° could be require d

• ALS configuration - • LOX tank aft C.G . fwd configuratio n evaluate d • C .G . near CP (Aero less disturbing ) • C.G . furthe r from CP • Large control momen t (Engine gimbal cente r • Shorter contro l to C .G .) momen t • Small aft travel of C .G . • Large C .G . trave

® ~ Rockwell International 1 Rocketdyne Division

91 ALS-060- 37a SUMMARY RECOMMENDATIO N

• Summary • Locating the LOX tank at the aft of the vehicle will significantly reduc e operations costs • Locating the aft end of both tanks aft (concentric or multiple tank options ) can further lower operations costs • Increased tankage costs may partially offset the operations cost reduction s • More engine gimbaling is required with LOX tank aft • Gimbal angles can be accommodated with feed line desig n • Symmetric vehicle rather than side mounted booster greatly reduce s gimbaling requirements • Recommendation : • Develop vehicle/propulsion design using LOX tank aft to reduc e operations costs

v ~ Rockwell Internationa l l Rocketdyne Division

91 ALS-060- 37b ROCKET ENGINE AIR-AUGMENTED AFTERBURNIN G PROPULSION CONCEP T

®1® Rockwell International OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) Agenda 14 August 199 0

• Introduction R . Rhodes

• Operationally Efficient Integrated P/M G. Wong

• Operations Problems G. Waldrop

• Operations Technology G . Wong

• Operations Database

Rockwell Internationa l

Rockeldyne Division

91ALS-060- c OPERATIONALLY EFFICIENT SYSTE M

• Any vehicle or system that simplifies, reduces or eliminate s operations requirements • Less manpower • Lower cost • Shorter timelines • Less equipment, facilities • High operability • Technician level operatio n

Rockwell Internationa l

Rocketdyne Division OEPSS CONCERNS LIST

• Follows on the heels of SGOE/T finding s • Focused on propulsion system onl y • Represents "launch site experience base" • Expendable launch vehicles (Atlas, Delta, Titan) • Apollo/Saturn • NSTS • Major launch site operations cost drivers

®1, Rockwell International OEPSS IDENTIFIES OPERATIONS PROBLEM S Causes and Effects

No . No.

1 Closed aft compartments 14 Ordnance Operation s 2 Hydraulic system (valve actuators and TVC) 15 Retractable T-O umbilical carrier plate s 3 Ocean recovery/refurbishment 16 Pressurization syste m 4 Multiple propellants 17 Inert gas purge 5 Hypergolic propellants (safety) 18 Excessive interfaces 6 Accessibility 19 Helium spin start 7 Sophisticated heat shielding 20 Conditioning/geysering (LO 2 tank forward ) 8 Excessive components/subsystems 21 Preconditioning syste m 9 Lack hardware integration 22 Expensive helium usage - heliu m 10 Separate OMS/RCS 23 Lack hardware commonality 11 Pneumatic system (valve actuators) 24 Propellant contaminatio n 12 Gimbal system 25 Side-mounted booster vehicles (multipl e 13 High maintenance turbopumps stage propulsion systems)

Rockwell Internationa l

Rocketdyne Division

91ALS-060- 40

OEPSS CONCERNS LIS T "Launch Site Experience Base " • Launch site systems create a "Nightmare" in process schedulin g

Test Conducto r QC Console Loaded DC A / C Other Disciplin e Support : PVD, ECS , HIMS Elec . Firin g Room

Active Fire Systems OI S Support Recorded

QC Technician Procedure

~11 Rockwell International Rocketdyne Divisio n

91ALS-060- 41

OPERATIONS SUPPORT STRUCTURE IS COMPLE X Customer Engineering Construction ~► Quality Portable Structural Facilities Maintenance GSE Repair Refurbishment Retrofit Customer TV ogistics Competitive biddin g RF voice ~ 1- Source development Harline voice Communication Purchasing Data links ccounting Customer Shipping/Receiving Transportation ► Configuration control

Work authorization documents approval Control rooms Quality reliability

Cleanliness ~— Commodity Sampling i~ "-On site distr. Mgt. ,.~~►~/ Off-site distr. sys. Engr. Storage Sampling Tech Off-load/Regulation Instr. Repa Repair OM interface Electrical NTD QC Retrofit Failure Analysi s Maintenance Operation Cleaning Refurbishment Machine Corrosion Control OM interfac Crane Calibration

OP Rockwell International Rockeldyne Division

91ALS0t64 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 1 • Closed aft compartments • Operational impacts : • Confinement of potential propellant leaks - criticality 1 failur e • Requires inert purging during loading operations • Requires conditioned environment for personnel • Requires sophisticated hazardous gas detection system • Drives the requirement for sophisticated heat shieldin g • Inhibits proper access to components • Drives the requirement for specialized/dedicated GS E • Imposes manloading restrictions for confined space • Unnatural personnel passageways elevates potential for H/W damag e • Additional interfaces required between vehicle and ground • Requires sophisticated ground support equipment • Environmental control system for personne l • Gaseous nitrogen regulation and distribution syste m • Must have redundant systems • Capable of local and remote operation • Requires an "army" for operation, maintenance, certification • Adds another function to the firing room operation • Tremendous risk to the safety of personnel and hardware • Drives many operations to be serial in flo w • Drives need for LCC that could delay or scrub a launch • Potential options for consideration : • Aft area should be completely open - Ref Sll and SIVB vehicle config . ®lo Rockwell Internationa l Rocketdyne Division

91ALS-060- 43 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern: OEPSS - 2 • Hydraulic system for valve actuators and thrust vector contro l • Operational impacts : • Requires sophisticated ground support systems • Expensive pumping units/control systems • De-aerators/filters • High piping systems • Both local and remote operating capabilit y • "Army" to operate, maintain, sample, and calibrate syste m • Requires sophisticated flight hardware • Auxiliary power unit/pumping uni t • Power units may demand lubrication equipmen t which may require cooling equipmen t • Control and filter systems • "Army "to operate, maintain, sample, and calibrate syste m • Requires long periods of circulation for de-aeration/filtering • Potential source of contamination for valve actuators • Another (2) fluid interfaces (minimum) between vehicle and groun d • Depending on APU propellants - can processing into periods of area clearing and serial operations .• Potential options for consideration : • Electromechanical actuators

Rockwell Internationa l

Rockeldyne Division

91 ALS-060- 44

HYDRAULIC POWER SYSTE M

Gaseous -04 Controller Nitrogen

APU Lube Oil

Gaseous Nitrogen Tank

Elevons

Rudder/ Scoed Brake

Body Fla p High Pressure Landing Gea r 3earbox Relief Brakes l=x Auxiliary Power Unit Thermal Fier Module Assembly Main Engine TVC 1:„ Bypass Valve Main Engine Control Valves f Notes : H Circulation Pump !Freon Heat 1. Typical for 3 Hydraulic Systems External Tank 131., Exchanger 2. Single Freon Heat Exchange r Umbilical Common to All 3 Hydraulic Systems Freon Effectors/Actuators/Control Valve

u 1 Pressure Actuated 1 I Control Valve

o , Rockwell International l Rocketdyne Division 91ALS-060.45 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 3 • Ocean recovery and refurbishment • Operational impacts : • Vehicle stages and components recovered from performance intensiv e operations require excessive refurbishmen t • STS orbiter requires approximately 2 months of intense 7-day week , 3-shift operations to recycle for launc h • SRBs require hazardous, tedious recovery from ocean impact , removal of 5000 part-numbered components, cross-country shipment and further intensive refurbishment prior to reload . Dynamic water impact and galvanic corrosion are creating highly significant component deterioration . Recycle time exceeds 6 months • Potential options for consideration : • Expendable LOW COST vehicle elements • Recoverable elements that require only a bare minimum of refurbishmen t • Low pressure, low RPM engines and turbopumps with simpl e operational cycles and minimized support system s • Robust structures and components that operate at reduced performance levels to assure long life and minimum rebuilding ; "Caterpillar diesels" rather than "Indy 500 racers"

® , Rockwell Internationa l 1 Rockeldyne Division

91ALS-060- 46

OEPSS CONCERNS LIST "Launch Site Experience Base " • Concern : OEPSS - 4 • Multiple propellants • Operational impacts : • Multiple commodities require : • Multiple facilities for storage and transfer • Multiple headcount and administrative support • Extra support for procurement/logistics • Vehicle complexity necessary for multiple system s requiring multiple propellants/commodities • Potential options for consideration : • Use LOX/LH2 for all consideration : • Main propulsion • OMS • RCS • PRSD/propellant-grade fuel cell • APU

•4 Rockwell Internationa l Rocketdyne Division

91ALS-060-47 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern: OEPSS - 5 • Hypergolic propellant • Operational impacts : • Loss of parallel processing caused by "area clear" evacuations require d during hypergol operation s • High cost in material and headcount for SCAPE-type operation s • Disposal of contaminated materials and fluids is expensiv e • Separate, hazardous facilities required • Personnel safety constantly in jeopard y • Potential options for consideration : • Provide systems that use less hazardous storable propellants • RP-1/H204, etc. • Use existing prime propulsion propellants, i. e., ELIMINATE HYPERGOLS (preferred option ) • GOX/GH2, etc. • Devise totally encapsulated system that is processed offline and attached to vehicle late in process to absolutely minimize safety concerns and duration (original goal of shuttle but design detai l did not permit)

® ~ Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060-48

OMS PRESSURIZATION AND PROPELLANT FEED SYSTE M

1 . All RC S t c,Otdls.,,l..a--1 yd.n ck,mn a I I? . 71115 P .uv . I . RA1S O, :f. w G n .l .. d VWvn A ,

024 Rockwell Internationa l Rocketdyne Division 90ALS-109-49 OEPSS CONCERNS LIST "Launch Site Experience Base"

• Concern: OEPSS - 6 • Accessibility • Operational impacts : • Restricted access can cause personnel hazard • Potential for hardware damage from personnel • Restricted access can force serial work • Increases complexity of GS E • Potential options for consideration: • Design for ample access for checkout and servicing • Provide provisions for easy removal of all LRUs

Rockwell Internationa l

Rocketdyne Division

91ALS-060-50

ME 2030 CONTROLLER R R (VERTICAL )

K. HOSHSTFIASSEI1 X-0673 101I(119 8 MON 10/09 1UE 10/10 WED 10111 THU 10/12 FRI 10/13 r SAT 1(1114 SUN 101115 MON 10116 TUE 10/1 7 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 S t PROMANI D EpSKXi ; OPEN UP AFT, t4STALL PLATFORM S ME _ MOVE E•2 HEATSHIELDS i

®11 INJIOVE ECP FROM VAD IIOM3 e j LOAD T-RAIL, XFER ECP TO PAD 0j 14111 MENU SSMEC F19 REMOVAL PREPS (V5E0303)] POSIDONENGINES (FIYDRAULI r ) {j I I t - I £I it1 . LOMA ESP l l RAISE ECI W11TI TRAIL, PAO 6 _I 1 1 1 ~ INSTALL TIIOMPSON RAIL 1 : , J INSTALL SCAFFOLDING ; REMOVE SSMEC F19 (V5E07r . INSTALL FXX (V!. j SSMEC :):1) r) { ,{~ • .1 l 6 SECURE SSMEC FXX (V5E03) REMOVE S(:AFF(XDIN G ,, !) REI.IOVE 1) IIJNIPSON PAIL ftI ( L -C=-- aLu Ia. 3Ji PCGf 11 0tl ENGINES NULL L -T- iDIJT Ili1Mrt IYl! EI.EC7RICAL RETEST (V5E01) 1 L-7 - PALL VALVE LEAK CHECK (V1016 ) -- "MU"SDU LIIEAISIHEEDS I ?f j

O1® Rockwell International flock elclyoe Division 90ALS-109. 51 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 7 • Sophisticated heat shielding • Operational impacts : • Manpower intensive due to weight and size • Means of fastening creates the need for "army" to accomplis h • Generally a serial operation for closeout to launc h • Time impacts to remove dedicated heat shielding t o gain access to a component • Restricts ready access to components • Structure that is critical to combustion overpessure at engine start • Provides containment for cryo leaks or cryo condensat e • Potential options for consideration : • Spray-on foam insulatio n • Insulation built into the component • Local shielding only for critical component s • Move sensitive component s

O Rockwell Internationa l Rocketdyne Division

91ALS-060-52 OEPSS CONCERNS LIST "Launch Site Experience Base"

• Concern : OEPSS - 8 • Excessive component/subsystem interfaces • Operational impacts : • Every interface must be verifie d • Leak checks • Electrical checks • Mechanical integrity check s • Interfaces can separate subsystems with differing requirements • Unnecessary checkout complicatio n • Potential options for consideration : • Integrate subsystems into larger subsystems/systems • Develop modules to replace component s

Rockwell Internationa l

Rockeldyne Division

91ALS-060-53 OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern: OEPSS - 9 • Lack of Hardware Integratio n • Operational impacts : • Leads to numerous interface s • Mechanical - adds weight - potential for leakage • Electrical - adds weight - potential for connector/pin damag e • Increases number of components • Stand-alone engine - each has duplicate hardwar e • Drives vehicle to have a similar system to support the engine syste m • Increases probability of launch hold or scru b • Drives ground support equipment costs up • Increases requirements for replacement hardware • The more components - the more maintenance, checkout, operation , calibration operations required - which drives the size of the "army" u p • Increased logistic support • Drives reliability down • Increases launch site flow time • Potential options for consideration : • Integrate hardware • (1) Avionics package, (1) Pneumatic package, etc. • Minimize interfaces • Occurs when using minimum number of component s • Multiple function hardware • Use LH2 tank vent for the tank pressurization line in flight (if needed ) and for "tank loaded overflow" (instead of tank loading sensors ) ® ~ Rockwell Internationa l 1 Rockeldyne Division

91ALS-060-54 OEPSS CONCERNS LIS T "Launch Site Experience Base " • Concern : OEPSS - 1 0 • Separate OMS and RC S • Operational impacts : • Maintenance and prelaunch checkout of multiple tankage an d associated systems • Added functional component checks • Added leak checks • Fill of separate tank systems • If earth storable propellants use d • • Added serial processing time • Potential options for consideration : • Combine OMS and RCS with common tankag e and propellant distributio n • Integrate total propulsion system - MPS, OMS, RC S

®lo Rockwell Internationa l Rocketdyne Division

91ALS-060-55 OEPSS CONCERNS LIST "Launch Site Experience Base"

• Concern : OEPSS - 1 1 • Pneumatic system for valve actuator s • Operational Impacts : • Additional flight hardware requiring joint-to-joint checkou t • Requires on-board storage tanks, regulation/distribution syste m • Requires redundant regulation/relief systems • Additional interfaces required between vehicle and groun d • Multiplies instrumentation requirements • Requires sophisticated ground support equipment • Must have redundant regulation/distribution syste m • Capable of local and remote operatio n • Requires an "army" for operation, maintenance, certificatio n • Adds another function to the firing room operatio n • Imposes labor intensive cleanliness verification on syste m • Potential options for consideration : • Electromechanical actuators

® , Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060- 56 OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern : OEPSS - 1 2 • Gimbal system requirements • Operational impacts : • System complexity - Actuator system, gimbal bearings, control syste m • Maintenance • Servicing • Prelaunch checkout • Hydraulics - addressed in OEPSS - 2 • Potential options for consideration : • Simplify syste m • EMAs replace hydraulic cylinder s • Consider reducing number of engines gimbaled • Hinge instead of gimbal • Consider alternate methods of TVC • Differential throttlin g • GG exhaust vectoring • Vanes

Rockwell Internationa l

Rocketdyne Division

91ALS-060-57 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS -1 3 • High maintenance turbopumps - recoverable propulsion syste m • Operational impacts : • Requirements for repeated torque and shaft travel measurement s • Final engine checkout/pump replacemen t • Post engine installation in vehicle • Disturbing critical fluid joints for above measurements • Potential for flange/seal damage • Potential for introducing a leak • Drives operation for repeated leak check s • Requires heat shielding to be removed for access • Potential for system contamination • Requirements for pump removal for turbine-end inspections • Potential options for consideration : • Use BIT/BITE for torque/shaft-travel measurements • Lower speed and turbine-end temperature s

Rockwell Internationa l

Rocketdyne Division Legend

1. Yaw contro l 2. Pitch contro l 3. Elevation contro l 4. Azimuth contro l 5. Roll control 6. Trolley drive winc h 7. Elevator track winc h 8. Trolley to elevator track rollers (8) 9. Trolley rails (2) 10. Elevator stanchion castors (4 ) 11. Elevator track slew drive contro l 12. Elevator track pitch drive control Trolley Assembl y

10 B 9 e , Rockwell Internationa l Trolley Rails l Rocketdyne Division 91 ALS-060-59 VERTICAL INSTALLE R (H70-0774-1) (RG2507A) (RG000327) Adapter Assembly Component Handling

Vertical Installe r Sling

Purpose : Install SSME Vertically Into Orbiter or Test Stand Rockwell Internationa Rocketdyne Division 91 ALS-060-60 HORIZONTAL ENGINE REMOVA L

~11 Rockwell Internationa l Rocketdyne Division 91 ALS--060-61 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 1 4 • Ordnance operations • Operational impacts : • Loss of parallel processing caused by "area clear" evacuations • Disposal of unused ordnance from recovered vehicle elements i s hazardous and costly • Separate, hazardous storage facilities required • Potential options for consideration : • Eliminate explosive ignition devices ; replace pyrotechnics with lasers • Eliminate explosive release and separation devices ; replace with electromechanical and Nitinol shape-memory alloy component s • Eliminate explosive range safety vehicle destruct devices ; consider use of ground-to-air military weapons perhaps assisted by vehicle homing-beacon

Rockwell Internationa l

Rocketdyne Division

91ALS-060. 62 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 1 5 • Retractable umbilical carrier plate s • Operational impacts : • Multiple systems sequenced for plate retract • Sequence initiation at commit • Pyrotechnic system for retract • Hinged vacuum jacketed line s • Drop-weight systems • Shock-absorber devices • Plate latching and unlatching from vehicl e • Present "tail service masts" are enclose d • Confined space for personne l • Access to equipment is marginal • Working from ladders and narrow platforms • Requires inert purgin g • Depending on design of plate - may require inert gas purging of inner cavitie s • High maintenance equipment • Potential options for consideration : • Lift-off umbilicals - no retraction of plates - separation occurs as vehicl e moves away. • Consider simple design and low cost quick disconnect to justify discardin g after launch versus expensive maintenance procedures

, o Rockwell Internationa l l Rocketdyne Division

91ALS-060-63

RETRACTABLE UMBILICALS

-bA,E1 til.r ASS r~c•c . .i CNL[ 1,10 (21::J

, .l C (■v 1

PIC CONt1E (

Irr rf~ — DETAIL AV ea

rY( w, ~

LtNiT A truck v 16,s ...E t . . u1 , 4to e+ Rockwell International - --- J 10",01 .4 6 OP . .V I I 7 v• \ul n Rocketdyne Division Z wAaw u C->D OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern : OEPSS - 1 6 • Pressurization system s • Operational Impacts : • Conventional system requires extensive maintenance and checkou t • Long plumbing runs from engines and ground interfaces to top of propellant tanks • Access for leak checks difficult • May not be possible to check at operating pressur e • Flow control valves • Inherently subject to problems because of operating environments • Associated control system requires verificatio n • Transducers, signal conditioners, software, etc . • Potential options for consideration: • Replace flow control valve(s) with fixed orifice where possibl e • Consider elimination of system by ground prepressurization onl y • Heavier tanks • NPSP concerns

Rockwell International

Rocketdyne Division

91ALS-060-65

MAIN PROPULSION SYSTE M HELIUM SUBSYSTEM SCHEMATIC

L;1 ORS P 01) {> 1– t> [7 AFT Iltx) Y

1.02 I 112 LII 2 --1.1 IJMB CAV I I Y FEED FEFD IifCIUU C tV 11ISCI1tINEC I _`l1 VALVE S 1%

I L112z RTL S DUFU VALVES 1 .112 1 - 112 Illrl l 111 2 PIIEVALVES RSV POIIIT BLEE D

10? FEVAI . F S 1.0 2 1 0 "U 1 RSV BLEEE D , C- t 1 n rl y ra t R1 L02 POGO VALVE S ~3-1) 11 .- El Q- -) (—El t . . D 4 77 Gl C :I - (~1_ Ijl I I _ 11 IIC LII2 IIANIEOL D I~ l -.-pv-_pq—N—f Elm_ REPRES S a}- p) -U - E-1 Cl— L02 HAILIFOL D -1>-4-Da—E— FtUI ENG EIIIi ~C}— REPRES S 00 .1 110 .2 110 . l L11 1_11 2 RECIRC1 1 j11 IIEP L 110AA(, ( /1111 4 . (►w1A1, 11 .1 II I AICOIAIe N I .II FM ) 110"( 1 Alllll VI V 111 i( 1 {Iw10I, 1,1 I1 1 lUAC a11rII I 1 112 RTL S I —T—1>

I ~ Rockwell International l Rockeldyne Division 90ALS-109- 6 6 OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern : OEPSS - 1 7 • Inert gas purging requirement s • Operational impacts : • Requires sophisticated ground distribution/control syste m • High pressure reduction/control system with redundanc y • Requires both local and remote operation capability • Requires "army" to maintain, operate, sample and calibrat e • Requires storage/distribution/control systems onboard vehicl e • Requires "army" to maintain, operate, sample and calibrat e • Redundancy requirement also drives gas storage to be double o r greater than what is needed • Additional interfaces between vehicle and groun d • Firing room operations increase d • Additional consoles, software development and manpowe r required to operate syste m • Drives the need for launch commit criteria that could delay o r scrub a launch • Commodities require expensive logistical support • Potential options for consideration : • Propellant turbopumps should be designed such as to eliminate th e requirement for intermediate seal cavity purges--i .e., consider separating the pump from the turbine • Use propellant gases for propulsion system shutdown purge requirement s

Rockwell Internationa l

Rockeldyne Division

91ALS-06067 LOX BLEED SYSTEM OPERATIONS IMPACTS

• Vehicle-to-ground interface • Connect : Techs (3), QC (1), Engr. (1 ) 3 hr • Leak checks: Techs (5), QC (3), Engr. (5) 3 hr • Vehicle LOX bleed system • Maintenance: Tech (1), QC (1), Engr . (1 ) 8 hr

• Ground LOX bleed syste m • Maintenance: Tech (1), QC (1), Engr . (1 ) 8 hr

• Engine LOX bleed valve • Leak checks: Techs (1), QC (1), Engr. (1) 6 hr • Removal/replacement : Techs (2), QC (1), Engr. (1) 28 hr

Direct support, only, success oriented

di% Rockwell International

STS MPS SYSTE M

., ../Fp

F m' 6J r { ..I [D I ) ,-, I , : ,,,,, v7., , : ) I _, 0-

PO J 1 1 i I . - ti n : \ CI? 1 AA.A, l , , /6 i c_ 1 - - - 1 1 •4 .6 r„ Y, , t Li.. ,.jj 1 -1-m-r.z....w, [ r[- 1 L1jrAzrAzat AO-WArrix,mu.c.A.AltrAzAAAArAsm AxA AA.am A71 ,. t.A:ctnsal r l .. I I .A-2rfr .-e- .042 N 1( T [ki lN rp.,41,611< 16 "RM. A.7 6U-4■.1, O M S A 1 ,-m

mAmAAAAmA.c. 4 L,11,IL " .1 " t L L ., ,

..„„„ 00 , 1,,1( iv--f .1 J. - ■ AIM _ .461 1 1 .{ r ;i> : (NO0 L 4., . .., 0 - w .L -t W 0-0 rrCj

0 0-0-0 tqrg ; p :7,x.:T.g.sn-.46W.cwx7s L-x ) . ., . ..

•6 441,146M.64 , ..^. .. 1 .A.1

]" 1. 1- 1 A 0 Il iIvArtrAs, .xg-t

1 1 : :7, .1w .■A■lt i 4 171T,M I 1 nu t, 6-.4 66 a .1 . ~rtr rt. -, 1 _, •4 . F .1,4 3 L. .e .1 1 11A IVA l .a 6,1, 11R__ - V570-4 500 7 . 1 1 ." IILA L ------1 1 7

02e Rockwell IntematiolvI l hock Pill yiP Ilivisino 90ALS-109- 69

HELIUM SUPPLY PANEL (MLP )

y 1I

1 1 4119 ., a AtWOI I 9} I• I A11O~f .- -IL I I iilljn NE-l e .9 .995• ; }• l - 1`l4" Il 5 1100I0)0►/19 1119 5 50)0 ►111 1 H 91004 I .100 ►1K 1 9,1,19 1 ►111 15114 .

1I AI ►)0 ►11G )ti 4141 .1 ~1 1)11 ►NG Y ., . I IlE- 2 1 49fOO9--N rrll 43a0 WOO 9114) 17• ^ L IO IW WPM I i . 9 . .1 1 1 1 1 l + 1..91 ~d))i1O]1 I l _ . 0E11 \1494 . 1 1 I{I 49111 ) .; 11194) (- 1 7 t l} M D 5011 AIf5 U7 1J 1`I 1 i ii 41500 1

~• 911 AI 1110 9510 1 7 11 01111 99 1113 rslc 51194 I - v m {1• 1~ - 1191 . T until . .5 0p An19)0 ED, ;7 "I ~-- 1 •} Ar1f19 2- 9 .119 I945 { 1 • 1 9410150 994 t_1 511 , 1110 9111 e k Y1141 01 1111 9915 rim V•~7 OA Rockwell Internationa l Ilocketdyne Division 9 0ALS-109- 70

GN2 PURGE PANEL MLP

11 ...... _--- rww .nw Q~O ( g l.r r r .

1 – 1 ~w j-lI I •au

I N AMMO du) l•~ r •1M.1 Y1M • 06 L:i-v j 1 N °--~ ---" -

■IM M

Irl 6 .1 1 r).,°im, .N M t .. N 1

t...•v. ...►.a--I h04 — 1.1 n1 $.t MAC ( M t k. Rt ..wlr •n . . r

•15554

------

.IM ._— . . .- . __ l_. • __— _--• ."-__•

1LS1[tiP _ --. tt .1 NM Pahl M Nails 11.1 .. t.t M.rw4 r1r I A I1 ,.1__ 11. ..1 .VC. .

__ .l_i . tw me tam man . at

P.1 .Ott M w l 11W

Rockwell Internationa l

Rocketdyne Division 90ALS-109-71 OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern : OEPSS - 1 8 • Numerous interfaces • Operational impacts : • Fluid systems - separable joint s • Potential leak paths requiring leak checkin g • Torque - relaxing with time/vibratio n • Labor intensive for joint preparation, assembly and leak checkin g • Increases hardware - drives logistics costs u p • Adds weight to vehicl e • Drives reliability down • Drives requirement for time-consuming and labor intensive installatio n and removal of insulation on cryogenic fluid line s • Electrical system s • Potential for connector damag e • Drives extensive end-to-end checkou t • Artificial interfaces - just because of a non-integrated componen t • Potential options for consideration : • Integrate hardware - minimize number of component s • Make vehicle as autonomous as possible to eliminate stage-to-stage interfaces • Consider "seal-welding" for mandatory separable joints to minimiz e potential leaks Rockwell Internationa l

Rocketdyne Division

91 ALS-060- 72 MLP MAIN PROPULSION GS E

• Interfaces orbiter with ground propellant system s • LO2 TSM • L02 propellant fill and drai n • L02 ET HE prepress • L02 bleed

• LH2 TSM • L02 propellant fill and drai n • L02 ET HE prepress • L02 high point blee d • HE bottle fill • SSME GN2 purge

Rockwell Internationa l

Rocketdyne Division

LH2 T-O UMBILICAL PANEL ORBITER LEFT SID E

GSE FCl S S MPS LII2 II I PRIMARIL Y TOP POINT (BLEED (PO17) COOLANT SUPPLY FWD f f

SI BEAR SPARE PI N SE ECLSS (D PRIMARILY COOLAN T RETURN J57 J6 1 .i(- I ..i) 41) i, MPS GN 2 f PURGE (PD14 ) 0 -11, ( I) tp -ORB/ET DISC PURG E J55 J59 J63 SPARE SPAR E MID FUSELAGE LEA K ^ DETECTION

MP PAYLOAD HAY LEAK S . PAYLOAD DETECTION L112 FIL L LII2 FIL L 3-- DRAI N IL DRAIN PAYLOAD LII 2 (Pul1 ) ` TANK VEN T

II, ,t , AFT FUSELAG E PRSD 11 2 LEAK DETECTIO N GAS SUPPLY q~ lip ct) .) ; u MPS LII2 II E - PREPRES S 0, 1) (iI) ( ~U I e III ti e (ft, (PD9 ) J65 J67 J69 J7 3 I. SPARE PAYLOAD COLD _ (Of - I . Id I , .. I . ,I~ I I , . , I ECLSS SECONDAR Y IIE FIL L (P ( ) COOLANT RETUR N (1 ) SIIEA R J5I J71 PIN ^MP S ECLSS SECONDAR Y HELIUM ~~— COOLANT SUPPLY ILL (PUB) el Rockwell Inter nationa l Rockeldyne Division 90ALS-109-74

L02 T-O UMBILICAL PANEL ORBITER RIGHT SID E

MPS L02 PRUDES , (PD9 ) EC5 Af T F USL L,+G c 1l1RGE

PAYLOAD RAY MI D FUSELAG E PURGE

PRSD 02 PAYLOAD PAYLOAD GAS SUPPLY GROUND COOLANT GROUND COOLAN T Rockwell Internationa l RETURN SUPPL Y flockeldyne Division 90ALS-109-75 OEPSS CONCERNS LIS T "Launch Site Experience Base" • Concern : OEPSS - 1 9 • Helium spin start • Operational impacts : • Additional flight hardware requiring joint-to-joint checkou t • Requires on-board storage tanks, regulation/distribution syste m • Requires redundant regulation/relief system s • Additional interfaces required between vehicle and groun d • Multiplies instrumentation requirement s • Requires sophisticated ground support equipment • Must have redundant regulation/distribution syste m • Capable of local and remote operation • Requires an "army" for operation, maintenance, certificatio n • Adds another function to the firing room operatio n • Imposes labor intensive cleanliness verification on system • Potential options for consideration : • Cryogen spin-up system - utilizing liquid hydrogen being tanked - diverted to holding bottle for pressure elevation and used at star t sequence • Tank head start • SPGG Start

Rockwell International

Rocketdyne Division

91ALS-060- 76 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 20 • Liquid tank forward desig n • Operational impacts : • Potential for Geysering - criticality I failure • Time-critical operations required for on-pad abor t • Skilled/experienced engineer required for consol e • Additional hardware and operations require d • Gaseous helium injection system - flight • Requires checkout/maintenanc e • Requires ground based regulation/distribution syste m • Additional personnel required for system maintenanc e • Additional interface between vehicle and groun d • Long LOX lines - - additional checkout and maintenance • Drives requirement for intertank structur e • Forces propellant conditioning of engine systems • Pogo impacts • Potential options for consideration : • Concentric tank configuration - Ref . SIB configuration • Antigeyser lines

Oi% Rockwell Internationa l Rocketdyne Division

91ALS-060- 77 OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 21 • Preconditioning syste m • Operational impacts : • Added flight hardware • Hydrogen recirc system - pumps, prevalves, lines, etc . • Oxygen bleed system - valves, lines, etc. • Added ground hardware • Disconnect, bleed line, etc . • Pump power supply, controls, etc. • Prelaunch operations • Preconditioning procedure s • Engine start constraints • Potential options for consideration : • Design engines with natural percolation abilit y • Utilize slow start sequence to accommodate wider rang e of propellant inlet condition s

Rockwell Internationa l

Rocketdyne Division

91ALS-060- 78

STS-3OR R&R LH2 RECIRCULATION LINE REV 13

4-29-89 SAT SUN 4-30 MON 5-1 TUE 5-2, WED 5-3 T11U 5- 4

!MIL S (PO .TI 1T( It()N pl If f PAPER RFVIF.II/SIGHOTF QP2 3 ~► WAI KPOWN (ASSTflitI F Ai IIADGE HOARD ) Ir(S11_ PI( ROAM ) i IfIS(E(;1 LIN E MM( ) ,?/,~7 Ji " HulI 11 A l rCS S (I [- AC ) 4 INS11 !1/Al P PANEL. I I -111Ir1OV F III? RFC1111ILAIl(1 N LINE 1PS (Mill ) ~yJi9f, Bum) FNCI (1SIIR E (SPC) 1 ,~ Vf:IIIE Y 8/ALP, AVAI L AR I E SALIPLF [NC I ()SUR E 1 1 Ritl1)V E 1.11i RECIRCl1LA110t ( I.INE (M11C ) ~~~J~~JJTfly INSTI. RECIRCULATIO N LINE/IOCKWIR F (MC ) ///- 50 PS I IAR K TO REL.IRCIIIATIO N LIN E (SPC ) PRESSIiR17 E LI12 TANK (SPC ) I tJJ, LEAK CHEC K LINE (SPC ) 7Jt ~ POSITIO N 0X250 CAR 1 PEAD i FOR 51006 I SOCIIEM/R X 250 SPRA Y (SPC. ) ♦ CUR E Jy2iROUG H I TRIll (ISI CI) rf REMOV E KEC O UNI F REMOV E ENCLOSUR E (SPC ) J REMOV E ACCES S (LFAC) REMOV E 0X25 0 CAR T

SIIPPO R I REq U KEC O UNI T SCAFFOLDIN G 0X25 0 CART ! ELEPHAN T HIDE (ORB)

0 Rockwell Internationa l Rocketdyne Division 90ALS-109 . 79

TK mr~ " . :Is -a-primary aoaceen.-, III . , .

Hi m Crane Usage Restricted/ Must Be Aoorovea l KSC Integrated Control Schedule ovaoaPAD at =3C cneauting Meeting 4.3 Hrs in Advance l 71 IT•tu1 .CO .CU . .e .cr - B i> a .,ox c w .rou Our n rlsr TI•. . • crr .1 •tu r .rl .rn . . . .r•uo. • 01 .0110 . ! NOTE ALL aORK COOROINATED w/PAD LEADER BOX CAR 671 FOR SCHEDULE APPROVAL SEA 6 HONE i 50Jai7 SS66 CALL START,COMPLETION OF EACH TASK - - ` t . t A SLV A\ Z ;,CO 1 11 1 MONOAY i-l-A9 ( --ESDAT .ED NSEEDA Y 71+12 31112131112131 r1 213I+12 ;3Ittt1~IT1 3

00 < r " " " " " l i l I 1 r•~ C01 ASV PVA ~_ 0 1 1 1 1 ( l l l I l l l l l 1 1 1 1 1 i I 1 i 1 1 1 I I ! I I I I I I ! ! ! I 1 l i l l 1 l l . 11 111I I l 1 Loll Iill !I. : i !ii !11ilI 1111illlii l~ll 111111 11111111111111111111 i1 1111111111111 1 """" " 1 I , 1 1 111 1 1 (1 1 HMI 1111 SR S PVR7`!EC, D(1W - CTCBI RE: 0 ~2 / 1 0 1 1 1 1 1 1 1 i 1 1 11 1 1 1 1 1 1 IIII ! ! 1 IIII 1 1 .1 •O CO REMAt y 1y ETT£ C 031 ~ ; ! i 1 1 111 i ; III IIiilliIIiiii IIIii11 1111 1 11 , 1111111111 . !

041 l!llllrillll Illi!11111111111 111111 1 Iiiilillililll 1111 1illll l ill J ,051 li l 1 ; 1 1I111I1I II!Illlllli!11I HIM 1111111 Illlllll!1111 l 11!11111111111! I llill l ll I! I! 1 1061111 11111Jill 1111111,111111 1111111 li lllilllll!!illlli111 IIIIIII ~llilll! ll! ;III~I i! l l l l l , I1 i o711t ; ; I 1,11111 1 11111 llllll111111 II I II IIII I!II111ll lill llll!I lilllillllil I i I i 1 1 i 1 1 o51,1i ; ,li lilll111ll11 111111 ~IIWWIIBInI U1 iillll II!lil II pre y 1 I ; 10911 1 I!! I , I 1 l i I I1 i 11 n111U11111UUI11WI11wWp 11nWl ! I i I 11111 1 1 1 i 1! I i! i i 1101 1 1 1! I I I I I I i 111 111111 WWm W~WnIIInWIIIIIIII11111Wg1I ), 11 1111 PR ET-29-PP-0356 LH2 RECtRC LINE REP i

1 1 2 1 1 1 1 1 ! 1 ; i 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I I II~I1 I1111~1I11 11 11111111111 illl,I~llil I!IIIli I

113lI ;iil!i!I11IIIiIl ;lll 1111111111111 I I I UlliWilll III IjIiftiI!II :II!II 11 1 1 1! 1! i t IIII I 11 A ~ ua" c_ss If 11111 iIIIllI1111111 Illlllililli111111illll1i i 11llll(illll ~ 11511(1 1 +11 PRO COVER Ils- IIIIII II WW1 I 111 1 ;1111 Illliill I! i I I 11 I i! (III I 1161 :011111~ YDEFOPStcovERsTLH2 .aECIRC:. PUN? 1iPKDI I i 11111111111111 111111111 1 1 1 , I! 1 I 1 1 11 1 1 1 1

1171 I;; i 11 I i l 1 1 1~ ,EC :-.0 LINE REM 11 ln11ff1WAl111=111Wl 11111n111HURE WlI I i 11 I 1 ! I l l I I

1 1 8 1 ! , 1 ! 1 ! 1 ! i "iii W 11MMUIUUWW HU N H UN f W W 1 1 1 i I I i 111 1 I 1 I 1 1 1 1 9 1 I J I l I I I I 1 1 l l ij 1 1 1 1 Hit RECIRC LINE INSTL I gl1U1WUIl11WIUlQnln I WA I P UW 1 1 1 ! 1 1 1 1! 1 I I I I i i 1201 13 RECIRC SYS LK CKS =77 I 1! l 1 I I ,R nPS-O :.87 1! II I I +ASS SPEC ? " I 1 r 1 I II 1 1 11 1 t i 1 1 111 1111II I 1 FEc. IRC pump E LEC" :.-.-E DR7 SPItN 1111 1 11 ~ 111 1 li . Ii! 111 III1111 1 ~ ,nilunln lnrlf((77 T 1 2 2 1 1 - 1 ! ! 1 1 1 1 1 , I I 1 1 1 I 1 1 1 ~ I I I I ~ I I j I R fA D Y F O R 51006 I ~ I 1 1 1 1 1 1 I I MEE= I ! I I I I I 1 1 I I I ( I I I I I I I 1 ( I I l I I I I 1 I 1 1 1 I 1 I I ( 1 oa 1 1 1 1 1 r — r.- 1 11 1 I 1 11 1 11 1 1 I 124 I l l i l .1 1 nnu lWllliili~Ui ImIm mumlWul AFT CLOSEOUT I I I I I, 1 T i 1 1 1 2 5 1 1 1 ! I I I I I I 1 I I 1! IWIIIIWWIIIgnIW11111n11WU1f11WWI111 I I 1 s o I /so-, DOOR IVSTi. ! I I 1 i 1 1 I I 1 I 126 1 I 1111 1 1 1 1 I I InIW11111WW1U11WiUWI1n11nII111WIU1 I I I i I II 1 I 1! I I i I l i IIII i ;271111l .11l1111 I I I I I I J I r I II .~~ IPR- ORV-02 . . - , II I 1 IIg111W1111111 11 1 1 11 1 1 1 1 1 . 3281 1 l 111 ! I Iul hw uw _""PR I I CSI to 19411 rl l l l lill - MINIUU1111IM11111 ~~~ry ~~ 1291 1 1 1 1 1!y s p a-4t — f :CC, r C r c P ~g11lWWllUlllWl/wIWW~WWU I! l l i l l! I! I !IIII 11 I 1 T 11 33oi I I I I I l i ~~rti/ " c~l` Sl C a I I uii c sI II I I UM 11 I I 1111 I I III ! 1 1 !III 1 1 1 1 ~~1 fl .g) 1 331 1PR-FRI-A~~s LD8 1 2 ~~~~DV!( 1 1 I I 11111 ~ ~ 1 1 1 1 1 1 1 1 1 1 1 1 / 1 1 1 i I 1! 11( I I ! I 1 I I 132 1111111 1111111 I1111111Tf1T ~i! : I I . 1 1 1 1 1 II 1111111 1 1 1 i I l i 1 1 1 1 11 1,1 II11 C111 1 T~III`D1 T11111I I I I 111 1331 1 1 1 11iiiii1I 111 I Ii1111111ll 1 i S R 150 RAD-1071 FARl11 II I I I 11 1 4 13 ,!111111111 1 !1111 .II11 n11nlWWIn1UnU IWIIW ( 1 1 1 8 1 1 i I ; 1 1 111 111 i! I 1 3351 11 1" 1.1ilV1122 E-I SEO 37/38 ORBITER ECS/LPAC SYS SUPT II III 11 11 111111 ! I 1,111111 1 1 1 1 ~,1 .lnrmrm 1 YTrnn~m,,I .~,rrrrrr .r III I . . . .:1 ...... 1 3361 11111111111111 1 1 1 WWIIWWWWWwW1UiWIWW 111 1 1 1 1 1 1 1 I I l I i I I I I I I 1 11 11 1 i 1 1 ! 137111 I I I I I 1111111 WwWWInWWnWWWIWWU{nl 11 I I I i l l I i l I III l!! I I l i. I i 135111 i I I l®IImtlI1mW1111WI gg 111IgIWW1U1Wgl lqqifUlilq I1 1! ; I 1! I I I i ; I i I l i l ! ; 139 11 I I I I IW8IWIIIn11WWIWI gmWWQUliW1UWUnngnIlIWWWU l 1 111 1 340 11 111 111 I I IWIIWWnIU11U111~WI1111ni111UI11gU111nIWWflllnlnnl l 1 l 1 1 1 1 i l I l l l l 1 1 1 1 1 1.11 ItUBtmWIWWlInnUWWIn IgU lgUwnlwWWwlIwWIWW 1 i I Iii 1 11 I 1 1 1 342 1 1 1 1 1 1 I I 1 1 1 111 UIIIWnnWWInn1111111gI11nWIlnW11111WIII1W I I I 1 1 1 1 1 1 I .1 i! 1 1 i! 1 . ; I ! 14 3111nU11WIW11uhWW111111nmumlIlIUUHIWn11IlUWUlnwilWIIW i I I 1 i 1 111 111 I I I 1 aWIIIIlnn111n11111111WUI1nnnWwn~UnnuWnun gnn111n~I1I1111~WW11 1 1 11111111 I I I I 1 145 lhW11111WIIWg1UW11111111WWt1I1111u11111U111WIW11nIluhIIWllllillllllll 1 ! 1 1 11 ; I i 11111111 1 346 mIW111U11111nlIWWiUUWIW11W1Uiif11W111111WhIluhI1111UIIIIWWIUI~IB111111W I I 54711 111 I lnluminlllllulWWwlmlWnuuWnwmq ulunuunwllwu I I 1 I I I 1 1 1 1 1 348 WWlllniw1111n1In11WiIIUIII111111[11111iIIIIII 111111UI1W111anmm~U111~ 11 1 I I 1 1 3 1 1 I lmaulwm mm11u1m 1 I I I I 111 I I 11 ; 1 l i L i l I I I I v2357 lEV D-1 ?SK E2 SA14LC OKIO SCRUBBERS (CLR 200 RAD FAR1/11 4 7 5 L+(Ll2 9 5 A80VE VEtl:) (0800- 0900) I I 930 1 1 1 1! . 1 11 1 1 1 1 :11 1 L L.L LA .LLL 1 1 1 1( 1 1 LI 1 1 1 1 1 . 1 1 1 . 1 1 . ,, . . 1. .1 1 ...... 11 .1 .1 1 1 1 1 1 1 1 1 1 L . LL: . 1 1 BS1I V1 258 R EY E-2 1liItl SAMLL FUEL SCRUBBCRS (C1.R 200 PAD ?ARM/Mt 7 5 LVLl295 ABOVL VEKT)(0900- 100 ) .11111 1 11 111111 1 1111I11l1111lII11IiIIIII1111111(1111111)1)IIiillIIIIT1 1SK11 II ) I Ii( 1 1II I IIlIItIt 1 I + t 0 1 l OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 22 • Expensive commodity usage - Heliu m • Operational impacts : • Logistics of getting Helium to the use r • Railcar shipment/transfer of gas to holding facility • Elaborate distribution/regulation systems required • Continual sampling for purity and particulat e • Maintenance, operation and calibration of the above system s • Maintenance, operation and calibration of pressure reduction an d regulation station s • Improper use of valving creates major maintenance requirement s • Potential options for consideration : • Design for the storage and use at ambient temperature s • Use SPGG or tank head start (eliminate tank prepressurization ) • Eliminate turbopump "intermediate"seal cavities by physically separatin g turbine and pump. • Use residual " propellant gases" for propulsion systemshutdown purge s • Explore the use of less expensive gas (gaseous nitrogen) for larg e tankage blanket pressures.

Rockwell International

Rocketdyne Division 91 Ads-060- 81

MPS HELIUM SYSTE M SSME HELIUM SUPPLY RATED FLOW VS . TIM E

515-1 VALIII:°.

.5 SE C

1,5(X1

I, 000 020 A-.5 SEC 606,7

1– 2 .0 SEC 5(X) 3O) 3010 A . 10 SE C FUEL SYS 1LII1GE 123157 .2 ..Z-3oSn 7 256_7

IIIX)TI INTLRFICDJATE SCAT . 1IIRGE

0 _ • T _1( T -3 . 0 T +2 .60 5S)IE S/(•6 5/0.16 S/D+ 1 I1 0 o o SSW. nllll S10!1IX1I71 ST II T (:(NAND C UI.I tAN D !GU

TIME (SECONDS) ®~® Rockwell International Rockeldyne Division 90ALS-109- 82 OEPSS CONCERNS LIS T "Launch Site Experience Base " • Concern: OEPSS - 24 • Contamination • Operational impacts : • Potential for criticality 1 failure s • Particulate impact in oxygen system s • Requires rigorous controls • Component failures • Impacts launch schedule • Time consuming replacement and checkou t • Potential options for consideration : • Utilize system and component filters • Design components less sensitive to contaminant s • Proper materials • Adequate clearances

~1® Rockwell Internationa l Rocketdyne Division OEPSS CONCERNS LIST "Launch Site Experience Base" • Concern : OEPSS - 25 • Side mount booster launch vehicle s • Operational impacts : • Doubles the tanking systems (at the vehicle ) • Doubles the tanking systems distribution/control skid s • Doubles the tank ground pressurization system s • Doubles the number of vehicle-to-ground interface s • Drives booster engines to canted installation to reduce gimbal angle requirements • Increases complexity of engine RR, GS E • Adds complexity to systems required for tanking operations t o compensate for loads induced in connected fixed tanks due t o shrinkage from cryogenics • Lift-off drift drags flame across platform and systems adding t o refurbishment operations and cost s • Increases propulsion flight hardware checkout, ie separate tanks , pressurization system, feed systems, control valves, instrumentation, etc . • Doubles ground control consoles and software • Add complexity to holddown and release systems and clearance t o prevent contact with facility systems • Potential options for consideration: • Stage and a half vehicle with fall-away booster hardware - Atlas vehicl e concept and possibly drop tanks if require d 0 4 Rockwell Internationa l 1 Rocketdyne Division

91ALS-060- 85 OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) Agenda 14 August 199 0

• Introduction R. Rhodes

• Operationally Efficient Integrated P/M G. Wong

• Operations Problems G. Waldrop

• Operations Technology G. Wong

• Operations Database

I ® Rockwell Internationa l l Rocketdyne Division

91ALS-060- d PROPULSION SYSTEM OPERATIONS TECHNOLOG Y

• No purge pump seals • No purge combustion chamber (start-shutdown) • Oxidizer-rich turbine, LOX turbopum p • Hermetically sealed inert engine and tanks (prelaunch) • Combined OyH Z MPS, OMS, RCS, fuel cell, thermal control system s • Flash boiling tank pressurizatio n • Zero - NPSH pumps • Large flow range pumps • Differential throttling • Electric Motor Actuator (EMA) • No leakage mechanical joint s • Automated self-diagnostic condition monitoring syste m • Integrated modularized propulsion module concep t • Anti-geyser, LOX tank aft propulsion concep t • Rocket engine air-augmented afterburning concep t

Rockwell Internationa l

Rocketdyne Division

91ALS-060- 87

OPERATIONALLY EFFICIENT LAUNCH VEHICL E

• No pneumatics • No hydraulics • No APU • No OMS No tank pressurization • Minimum ground interfaces systems (none above pad level) RCS propellant fro m MPS tankage OMS function provided by MPS Non-gimbaling booster engines

EMAS gimbal core engines Local component heat shielding only

Rockwell Internationa l Rockeldyne Division 91ALS-060-88

OPERATIONS TECHNOLOGY APPLICATIO N Vehicle Systems Technology STS Sh-C LRB ELV ALS Sh-ll Space • No purge pump seals X X X X • No purge combustion chamber (start-shutdown ) X X X X

• Oxidizer-rich turbine, LOX turbopump X X X X • Hermetically sealed inert engine and tanks (prelaunch) X X • Combined 02/H3 MPS, OMS, RCS, fuel cell , X X X X thermal control system s • Flash boiling tank pressurizatio n X X X X • Zero - NPSH pump s X X X X X • Large flow range pumps X X X X • Differential throttlin g X • Electric Motor Actuator (EMA ) X X X X X X X • No leakage mechanical joint s X X X X • Automated self-diagnostic condition monitoring system X X X X X X X • Integrated modularized propulsion module concept X X X X X • Anti-geyser, LOX tank aft propulsion concep t X X X

• Rocket engine, air augmented afterburning concept X X X

®1® Rockwell Internationa l Rocketdyne Division

91 ALS-060- 89

OPERATIONS CONCERNS RESOLVED BY TECHNOLOG Y OEPSS Concerns : 00000000000 0 0@000000 .000 g e Technology OEPSS Concerns Addresse d • No purge pump seals ® 17 18 • No purge combustion chamber (start-shutdown) ® 17 18 0 • Oxidizer-rich turbine, LOX turbopump ® 13 17 • Hermetically sealed inert engine and tanks (prelaunch) ® 17 18 01 • Combined 02/H2, MPS, OMS, RCS, fuel cell , 1 0 thermal control systems ® 0 0 • Flash boiling tank pressurization ®09 16 1 8 • Low NPSH pumps 13 16 19 ©1 • Large flow range pumps ® 13 19 ©1 • Differential throttling ®07 ® ©1 • Electric Motor Actuator (EMA) 09 11 © 15 1 8 • No leakage mechanical joints 001 0 03 ®®1116 17 18 • Automated, self-diagnostic, condition monitoring system ®© 11 1© 13 15 ©1 • Integrated modularized propulsion module concept ©~ 7 8 9 m 1 ® ~ 1 3 • Anti-geyser, LOX tank aft propulsion concept 09 19 QO 01 • Rocket engine, air-augmented afterburning concept @ 09 16 17

®1® Rockwell Internationa l Rocketdyne Division

91ALS-060- 90 OPERATIONS TECHNOLOGY PROGRA M No Purge Pump Seals

• Objective • Eliminate need for LOX turbopump helium buffer purge • Allow engine design that requires no helium

• Approach • Determine LOX/turbine gas flammability limits for applicable pressures • Perform seal test series to evaluate candidate configuration s • Perform seal test series with pump simulation seal packag e

• Schedule • 4 years

Rockwell Internationa l Rocketdyne Division

91ALS-060- 91 NO PURGE PUMP SEAL PROGRA M

Tasks Year 1 2 3 4 5 Task I: Flammability limits testin g Define environment for drain Perform testing for all cases Task II : Seal component testing Procure candidate seals Test seals to characterize Task III : Seal package testin g Assemble pump seal packag e Test package to verify acceptability

OP Rockwell Internationa l Rocketdyne Division

91ALS-060- 92 OPERATIONS TECHNOLOGY PROGRA M No Purge Combustion Chambe r

• Objective • Eliminate start and shutdown purge s • Allow engine design that requires no heliu m

• Approach • Evaluate start with no purge s • Develop shutdown sequence which minimizes/eliminates injector damag e • Design close coupled propellant valves and low volume injecto r manifolds • Schedule • 2 years

~ Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060- 93 NO PURGE COMBUSTION CHAMBER PROGRA M

Tasks Yea r 1 2 3 4 5

Task I : Evaluate start with no purge s Transient modelin g Identify component issue s Task II : Develop no purge shutdown Identify critical issue s Transient modeling to address issue s Evaluate proposed shutdown sequenc e Task III : Hardware conceptual desig n Low volume injector configurations - Close coupled valve configurations Tank ullage gas purge

I ~ Rockwell Internationa l l Rocketdyne Division

91ALS-060- 94 OPERATIONS TECHNOLOGY PROGRA M Oxidizer-rich Turbine For LOX Turbopum p

• Objective

• Eliminate need for LOX turbopump helium buffer purg e • Allow engine design that requires no heliu m

• Approac h • Analyze candidate engine cycle s

• Perform oxygen compatibility testing on turbine component s • Develop LOX rich injector technolog y

• Perform engine start/shutdown analysis

• Schedul e

• 4 years

Rockwell Internationa l

Rocketdyne Division

91ALS-060- 95

OXIDIZER RICH TURBINE TECHNOLOGY PROGRA M

Tasks _ Year 1 2 3 4 5 Task I : Engine cycle analysi s Define candidate cycles Identify technology issues Task II : Oxygen compatibility testin g Define turbine component material s Identify required testin g Perforte~tin q Task Ill : LOX rich injector technology Design and analysi s Model flow test Hot-fire demonstration componen t Task IV : Transient analysis Model syste m Start/shutdown sequence development System evaluation

® ~ Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060. 96 OPERATIONS TECHNOLOGY PROGRA M Hermetically Sealed Inert Engine And Tanks (Prelaunch)

• Objective • Eliminate purge requirements prior to start • Allow engine design that requires no helium at launch pa d

• Approach • Define engine sealing concepts • Characterize seal concepts through test • Define operational impacts

• Schedule • 1 year

®1® Rockwell Internationa l Rocketdyne Division

HERMETICALLY SEALED INERT ENGINE PROGRA M

Tasks Year 1 2 3 4 5

Task I : Sealing concepts q Identify requirements Define candidate methods Task II : Test seal concepts I 1 Characterize leakage Evaluate operability Task III: Define operational impacts C Trade seal qualities vs. operability Select sealing method

011 Rockwell Internationa l Rocketdyne Division

91 ass-osa 98 COMBINED 02/H2 MPS, OMS, RCS, FUEL CELL S THERMAL MANAGEMEN T

• Objective • Develop a design for an integrated hydrogen/oxygen system • Replaces conventional separate MPS, OMS, RCS , and fuel cell system s • Goal is a single propellant tank set providing 02 an d H2 for all function s • As a minimum, the design should incorporate singl e ground fill interface for each propellant • Incorporate into the design other features to provide operationa l efficiency

e ~ Rockwell Internationa l l Rocketdyne Division

91 ALS-060. 99 COMBINED 02/H2 MPS, OMS, RCS, FUEL CELL S THERMAL MANAGEMEN T • Approach • Create candidate system configurations which integrate one o r more of the MPS, OMS, RCS, and fuel cell systems • Perform preliminary evaluation of the candidate systems based on appropriate criteri a • Feasibility • Cost • Operability • Technology • Potential applications • Select options which best meet criteria for more detailed stud y • Develop preliminary designs for specific applications • Identify subsystem or component technology developmen t requirements • Develop preliminary design of most promising concept • Continue concept development through prototype demonstratio n • Schedule 4 years e Rockwell Internationa l Rocketdyne Division

91 nos-060- 100 COMBINED 02/H2 MPS, OMS, RCS, FUEL CELLS THERMAL MANAGEMEN T

Tasks Year 1 2 3 4 5 Candidate concept identificatio n Preliminary concept evaluatio n I Preliminary desig n I Technology definitio n Technology developmen t Prototype system development Prototype system demonstration C

I , Rockwell Internationa l l Rocketdyne Division

91 ALS-060-101 COMBINED 02/H2 MPS, OMS, RCS, FUEL CELLS

• Operational requirements eliminated • Toxic propellant handlin g • Personnel hazards • Serial processing tim e • Multiple propellant sets + Multiple tank sets to maintain, checkout, and service • Multiple associated fill, vent, insulation, etc ., systems • Separate vehicle interfaces and ground support systems for eac h vehicle system • Multiplicity of components/functions/requirement s • Each system has different types of components with uniqu e maintenance, checkout, and servicing requirements • Separate systems need separate crews of ground support personne l • Complex logistics requirements

Rockwell Internationa l Rockeldyne Division

91 ALS-060. 102 OPERATIONALLY EFFICIENT PROPULSIO N SYSTEM STUDY (OEPSS) Agenda 14 August 1990

• Introduction R. Rhodes

• Operationally Efficient Integrated P/M G. Wong

• Operations Problems G. Waldrop

• Operations Technology G. Wong

• Operations Database

e Rockwell Internationa l Rocketdyne Division

91ALS-060- e

OEPSS FOCUSES ON ALS OPERABILIT Y

• SLSOC ALS • Cost Drivers • Generic Vehicle • CIRCA 2000 • Head count/skill mix • Functions/flow/OM I/tim e

SGOET OEPSS

•Shuttle Data • Work volume indicators

• ALS contractor work shop s

Q Rockwell Internationa l Rocketdyne Division

91 ALS-060-103 SHUTTLE GROUND OPERATIONS EFFICIENCIES/ TECHNOLOGIES STUDY (SGOE/T )

• Shuttle prime data base • Functions/responsibilities • Manpower • Timelines • Work volume indicators • Operational cost drivers • STAS assessmen t • Circa 2000 vehicle concept

Q Rockwell Internationa l Rocketdyne Division

91 ALS-060- 104 SGOE/T LESSONS LEARNED - THE PROBLEMS

• Vehicle processing/launch preps • Systems not readily serviceabl e • Too many people • Too much tim e • High cost • Principal problem categorie s • Vehicle preparation s • Personnel evacuations • Hypergols • Ordnance • Complex vehicle trail • Multiple handling • Hazardous rotation and high lifts • Multiple, complex support facilities and GS E • Large operational and maintenance headcount and material investmen t

0 4 Rockwell Internationa l 2 Rocketdyne Division

91 ALS-060- 1 05 GROUND OPERATIONS COST DRIVER S Vehicle Testand Checkout LaunchPad • Propulsion • Ground operations • Vehicle support structure • Main • Computers • Stage/mate • OMS/RCS • Test requirements • Water/ECS • Payloads • Flame trench • Autonomous vehicl e • Onboard T C • Access/ • Ground power Maintainability • Propellant system s • Avionics/electronics • Processing attitud e • Carriers • Horizontal • Structure • Vertical • Vehicle interfaces • Tankage • Propellants • Transfer to pad • Command/control • Energy storag e • Ordnance • Vehicle rotation to • Vehicle access vertical • Payloads

Rockwell Internationa l Rocketdyne Division

91ALS-060-106 VEHICLE CONFIGURATION COST DRIVER S

• Simplified, robust propulsion system • Integrate MPS, OMS, RCS • Less sensitive start requirements • Thermal conditioning • Valve timing • Delete/minimize all purges and pre-pressurizatio n • Electro-mechanical valves • No gimballed engines • TVC by Delta thrus t • No hydraulics • Electronic health and status monitoring

~1® Rockwell Internationa l Rocketdyne Division

91ALS-060-107 VEHICLE CONFIGURATION COST DRIVER S

• Leak resistant tankage and plumbin g

• One oxidizer/one fuel • Minimize ground facilities

• No hypergols • Eliminates costly, life support equipmen t

• Robust thermal protection system s • High density electrical power storag e • Eliminate/simplify AP U

Rockwell Internationa l Rocketdyne Division

91ALS-060-108 TEST AND CHECKOUT COST DRIVER S

• Integrated fault tolerant avionic s • Computer interconnectivity • Onboard test and checkou t • Eliminate/minimize GS E • Isolated systems enable parallel activit y • Returned vehicle components contain self-test element s • Verify flight readiness/problem isolation • Eliminate/simplify ground power • Eliminate vehicle power-up as milestone event

®1~ Rockwell Internationa l Rocketdyne Division

91ALS-060-109 LAUNCH PAD COST DRIVER S

• Flyaway umbilicals/QDs • Auto-mate geometry • Gravity powered exhaust protection doors • No retracting umbilical carriers

• No hardwire interfaces • Optical/RF/IR links • Minimal launch control interface • No ground powe r • Vehicle and payload autonomous for 24 hr + missio n • Electrical ground and propellants connect only

®1, Rockwell Internationa l Rocketdyne Division

91ALS-060-110 INTEGRATED CMS VITAL TO EFFICIENT OPERATION S

• Automated vehicle/propulsion system checkou t

• Enhanced red line (safety) monitoring • Detect impending flight failures • Take action to assure a completed missio n

• Automated maintenance decision capabilit y • Performance and trend analysi s • Direct, non-intrusive measurement of key failur e parameters

• Modular system for ease of reconfiguratio n

Q Rockwell Internationa l Rocketdyne Division

91 ALS-060-111 LESSONS LEARNED YIELD EFFICIENT OPERATION S

• System design • Minimize separable joints • Simplify fastening system s • Maximize accessibility • Maximize hardware commonality • Minimize fluid requirement s • Integration • Minimize interfaces • Minimize installation/removal • Maximize accessibility • Testing • Minimize routine maintenance • Minimize functional checkouts • Maximize automation • GSE • Minimize quantity • Simplify operatio n • Promote commonality/multiple use

OP Rockwell Internationa l Rocketdyne Division

91 ALS-060- 112 INTEGRATION OF PROPULSION SYSTE M REQUIREMENTS

• Start sequence does not require pre-conditionin g • Eliminates bleed syste m • Eliminates re-circ pumps and pre-valve s • No need for critical propellant inlet start bo x • Control functions integrated into vehicl e • Significant reduction in hardwar e • Electronics located in more benign environmen t • Regulated helium supply • Nitrogen purge not require d • Engine supplies electrical power tor TV C • Power take-off from pump shaft, o r • Separate gas driven turbin e

Rockwell Internationa l

Rocketdyne Division

91ALS•060-113 OPERATIONAL EFFICIENCY ENHANCED B Y SIMPLE SYSTEMS

• No hydraulics syste m • Electromechanical actuators (EMA) for TVC • Simplified helium syste m • No vacuum jacketed feed line s • Common feed line desig n • Common valve design • Single type cryo valve • Single type solenoid valve

Rockwell Internationa l Rocketdyne Division

91 ALS-060-114 OPERATIONAL CONSIDERATIONS STRON G DESIGN DRIVE R

• Maintenance reduce d • No scheduled maintenance • Robust designs reduce unscheduled maintenance • Components easily replace d • Ready access • Retention hardware easily remove d • Simple ground interface • Rise-off Q/Ds at AFT end

Ile Rockwell Internationa l Rocketdyne Division

91 ALS-060-115 GENERIC VEHICLE DESCRIPTIO N

LOX/LH2 (Multiple Engines) Propulsion Systems Support (Ground/Flight) • Line Replaceable Unit • Command Avionics System • Turbopump Fe d • Pneumatics • Augmented Spark Ignition • Electric Powe r • Gimbal Capability • Ground Support for Checkout • Engine Supervisory Avionics • Hydraulic/Pneumatic Valve Actuators Attitude Adjustment Syste m • Limited Throttle Capability • Hypergolic Fuel Oxidize r • Single Start • Pressure Fed • Electric Valves Propellant Management Syste m • Engine Conditionin g Orbit Adjustment Syste m • Tank Pressure • Hypergolic Fuel/Oxidize r • Fill/Drain • Pressure Fed • Tank Conditioning • Gimbal Capability (Electric) • Electric Valves Propulsion System Support (Ground/Flight ) Propulsion System Suppor t • Electric Power (Ground/Flight) • Pneumatics • Electric Power • Hydraulics • Pneumatics • Hazardous Gas Detection/Alert Syste m • Hydraulics • Ground Support for Checkout • Ground Support for Checkout Propellant Management Syste m • Engine Conditionin g • Tank Pressur e • Fill/Drain • Tank Conditioning LOX/LH2 (Multiple Engines) • Line Replaceable Unit • Engine Supervisory Avionic s • Turbopump Fed • Hydraulic/Pneumatic Valve Actuator s • Augmented Spark Ignition • Limited Throttle Capabilit y ® ~ Rockwell International • Gimbal Capability • Single Start 1 Rocketdyne Division

91ALS-060-116 GENERIC VEHICLE DATABAS E

• Booster - Expendable LOX/LH2 - Modeled after KSC/LSOC Liqui d Rocket Booster (LRB) Integration Stud y • Core - Recoverable LOX/LH2 Propulsion Module - Modele d after KSC/STS Orbiter refurbishment ground processin g • Core - Expendable LOX/LH2 Tankage - Modeled afte r KSC/STS external tank ground processin g • Orbiter - Recoverable, unmanned, Hypergolic Propulsion Syste m modeled after KSC/STS Orbiter refurbishing processin g • Solid Rocket Booster (SRB) data are included for reference only - Generic vehicle baseline does not include solid propellant s

Rockwell Internationa l

Rockeldyne Division

91 ALS-0 60-117 GENERIC VEHICLE ASSUMPTION S

• All vehicles use multiple engines

• Retractable umbilicals for ground-to-vehicle servicin g

• Ground propellant, pneumatic, and electrical systems ar e common to existing launch facilitie s

• Method of operation is common to existing launch operation s

• Processing facilities are common to the existing launch facilitie s

0 Rockwell Internationa l Rocketdyne Division

91 ALS-060-118 GENERIC CORE VEHICLE PROPULSION SYSTEM DATA GENERATE D

• Top logic diagram generated for LOXILH 2 propulsion syste m

• Logic diagram and processing duration and manpowe r generated for major systems :

• Engine syste m • Main propulsion syste m • Hydraulics/APU systems • Electrical systems • Thermal control system s

Rockwell Internationa l

Rocketdyne Division

91 ALS-060•119 OEPSS GENERIC CORE VEHICLE TOP LOGIC DIAGRA M Recoverable LOX/LH2 Propulsion syste m

Remove SSM E HEX HGM, LOX, MPS/SSM E MPS Valve MPS Vacuu m SSME Engine Remove SSME Offline 1 Install SSME LH2 Leak Helium Configure for Jacket Line Heat Shields Drying SSME Operations Carrier Panels_ Functionals Signature Test Rollout Check s

SSME Flight Install Heat Ammonia Boiler Readiness Shields 8 Servicing Test Carder s

Post Ferry Opers . He Syste m e.g . tail Cone Flight Press Removal 150 Test

Water Spray Water Spra y Boiler Leak Boiler Functional Servicin g Vehicle Fina l Hydraulic GSE Power Dow n Conditioning Hydraulic Tray/Hos e Configure o Hydraulic Hydraulic Tow t High Ba y Vehicle Aft Integration Bldg. Powe r System Fill Closeout For Erect/Mate Inspection Hydraulic Up/Down Bleed Syste m Inspection -- Power Syste m Vehicle at APU Lube or APU Fuel Valve APU Leak Validatio n Processin g Deservlce Resistance Test Functional Facitry ;onnect Vehicle Bu s urge Redundancy Disconnect Purge Ai r Flight Contro l Electrica l Test MPSTTVC Checkout System • Checkout Remove Vehicle Power Instrument Up/Down LH2/LO X System Testing Carrier Plates MPS H e Electrical • System Leak Syste m unc . Checkout Validation DPS Computer Disconnect 1PS Tip Loads MPS Vacuum Complex T-O Umbilica l Screen Jacket Line Checkout Plates Check s Inspections MPS LH2 System MPS L02 Checkout Syste m Checkout APU Water Dose Nice / Services

APU Lube Oil Service

®1~ Rockwell Internationa l Rocketdyne Division 91A LS-060-12 0

OEPSS GENERIC CORE VEHICL E MPS Logic Diagra m

OR D02 OR092A OR092 OR117 OR 756 OR628 OR536 Vehicle at Vehicl e MPS He MPS H e MPS/SSM E MPS/SSM E MPS VL V MPS VJ Processin g Power Sys L F Sys L F He Sig Test He Sig Tes t Config For Line Facility Up/Down C/O POSU C/O POI Rollout Checks 2 V1009 .03 V1009 .0 3 V1201 V1201 V1171 V901 9 Vehicl e Final Power Down /--- J OR168 OR61 9 OR11 2 MPS Tip Tow to Load s MPS Integratio n VJ Lin e Aft Closeout Screen Bldg . For Inspec Checks Erect/Mate V1009.01 V901 9 V103 2 OR500 Connect Vehicl e Purge OR12 5 V3555 OR550 OR171 Remove MPS LH2/ MPS L0 2 LH2/L02 LOX Sys Sys C/O Carrier Plates C/O POS U V351 5 V1009.04/.05 V1009 .04 OR58 7 MPS/SSME He Sig Test OR300 OR55 1 POSU Disconnect He Sys I MPS LH 2 2 v12o 1 Purge Ai r Fit Pres Sys C/O ISO Test POSU See V355 5 V1009.05 Engine s Systems Diagram OR545 OR097 OR58 6 Flight Flight Flight Control Control Control MPS/TV C MPS/TV C MPS/TV C C/O POS U C/O Runt C/O Run2 Rockwell Internationa l 0 V1063 V1063 V1063 Rocketdyne Division

91 ALS-060-121 OEPSS GENERIC CORE VEHICL E Main Propulsion System Processing Duration and Manpowe r Dur. Head Oper. OMI Activity Hrs. Count Manhours OR002 Vehicle at Processing Facilit y 0R092A V1009.03 MPS He sys. LF C/O POSU 16 9 144 OR092 V1009.03 MPS He sys. LF C/O 48 9 432 OR117 V1201 MPS/SSME He sig test 40 11 440 OR756 V1201 MPS/SSME He sig test POI 16 5 80 OR628 V1171 MPS VLV config . for rollout 4 2 8 OR536 V9019 MPS vacuum jacket line checks 8 5 40 OR168 V1009.01 MPS tip loads screen inspect 56 9 504 OR619 V9019 MPS VJ line checks 8 5 40 OR112 V1032 Aft closeout 312 15 4680 OR500 V3555 Connect vehicle purge 4 7 28 0R125 V3515 Remove LH2/LO2 carrier plates 4 3 1 2 OR550 V1009.04/.05 MPS LH2/LO2 Sys . C/O POSU 16 8 128 OR171 V1009.04 MPS LO2 sys . C/O 48 8 384 OR587 V1201 MPS/SSME He Sig test POSU 72 7 504 OR300 V3555 Disconnect purge air 4 7 28 OR551 V1009.05 MPS LH2 sys C/O 48 8 384 OR545 V1063 Flight control MPS/TVC C/O POSU 8 4 32 OR097 V1063 Flight control MPS/TVC C/O Run 1 10 4 40 OR586 V1063 Flight control MPS/TVC C/O Run 2 10 4 40 TOTAL 732 7948

Aft closeout includes the full spectrum o f vehicle activities (not propulsion only) Rockwell Internationa l

Rocketdyne Division

91 ALS-060-122

OEPSS GENERIC CORE VEHICL E Engine System Logic Diagram

01151 9 SSME Engine Removal POSU OR002 OR214A 011214 01173 7 011041 8041 A 011738 V5058 01159 6 Vehicle at Remove Remove SSME SSM E SSME Remove Processing SSME Heat Heat Shields Engine Engine Engine SSME 1/213 Facility Shields Carrier Drying Drying Drying POI POSU Panels POSU V5043 V5043 V1011 .01 V1011 .01 V1011 .01 V505 8

OR559 OR57 1 01109 1 Install HEX Leak HGM/LOX/ SSME 1 F Checks LH2 LF V5005 V1011 .04 V1011 .0 5

OR560 011104 011105 MPS/SSM E MPS Valve Vehicle Install Install Heat He Sig Test > MPS/SSME He Sig Config. For Final Power SSME 2 SSME FRT Shields He Sig Test Test POI Carriers POSU n Rollout Down

V5005 V1011 .06 V5043

011561 011552 011553 Install He Sys Flt He Sys Fl t /----/ i SSME 3 Pres ISO Pres ISO MPS VJ Test POSU Test Line F V5005 V1009/03 V1009.03 Checks MPS MPS MPS He LH2 Sys. Flight System C/O Control LF C/O MPS/ TVC - See MPS Logic Diagram -

®1® Rockwell Internationa l Rocketdyne Division

91ALS-060-123

OEPSS GENERIC CORE VEHICL E Engine Systems Processing Duration and Manpowe r

Dur . Head Oper. OMI Activity Hrs. Count Manhours OR002 Vehicle at Processing Facility 0R214A V5043 Remove SSME heat shields carriers POSU 9 12 108 OR214 V5043 Remove SSME heat shields carriers 103 12 1236 OR737 V1011 .01 SSME engine drying POSU 20 3 60 0R041/0 .41A V1011 .01 SSME engine drying 24 7 168 OR738 V1011 .01 SSME engine drying P01 5 3 1 5 OR519 V5058 SSME engine removal POSU 64 14 896 OR596 V5058 Remove SSME 1/2/3 32 14 448 O R431 SSME offline opers 672 18.7 12544 OR559 V5005 Install SSME1 12 15 180 OR560 V5005 Install SSME2 12 15 180 OR561 V5005 Install SSME3 12 15 180 OR571 V1011 .04 Hex leak checks 50 3 150 OR091 V1011 .05 HGM/LOX/LH2 LF 54 4 21 6 OR104 V1011 .06 SSME FRT 12 6 72 OR105 V5043 Install heat shields and carriers 72 10 720 OR552 V1009.03 He sys fit pres ISO test POSU 16 8 128 OR553 V1009.03 He sys fit pres ISO test 24 8 192 TOTAL 1193 17,493 Rocketdyne manpower for SSME offline OM Techs Quality Engrs. 1st Shift 8 3 1 2 2nd Shift 8 3 2 3rd Shift 6 2 1 Shop support 6 3 2 28 11 17 TOTAL - 56 Heads ale Rockwell International 672 Hrs . is 28 days of 3-shift operations for an average headcount of 18 .7 at all times. Rocketdyne Division

91 ALS-060-124

OEPSS GENERIC CORE VEHICL E Hydraulic and APU Logic Diagra m

OR002 01171 7 OR71 8 01171 9 Vehide at APU H2 0 APUH? O APU H2 0 Vehicle Aft 2 Vehide Valves RR/ 2 Processing Power Deservice Service Closeout Facility Deservice Secure Up/Down POS U Service V5UO2J V5UO2 / V1153 V115 3 V1153

01161 1 01107 1 011733 011600 APU Lube APU Lube Hyd Sys Fill Oil Servic e APU Lube Oil Servic e Bleed POSU Oil Service POI 011452 POSU Hyd. V1078 V1078 V1078 V1010 Tray/Hose Configure

V9002 011068 ORAA4 01152 5 Hyd. Hyd. Hyd Sys Power Up Power Fill Blee POSU Up/Down

V9002.07 V9002. 1 viola 011053 Hyd Sys Inspect

OR083A- D V601 2 APU Catch Bottle Drain

V1196N1158

011572 013573 011532 011533 011741 OR741 A APU Lube APU Lube APU Fuel APU Leak APU Leak APU Leak Oil Oil Valve Func. Func. Func. Deservice Deservice Resistance POSU POI 011202 POSU Test V1078 V1078 V1235 V1019 V101 9 V1019 Vehicle 2 Hyd GSE Final Power Conditioning 2 Down V9002 .04

Oitii ) Rockwell International Rockeldyne Division

91 ALS-060-125

OEPSS GENERIC CORE VEHICL E Hydraulics and APU Processing Duration and Manpowe r

Dur. Head Oper. OMI Activity Hrs . Count Manhours

OR002 Vehicle at Processing Facility OR717 V5UO2N1153 APU H2O VLVS RR/Deservice POSU 32 5 160 OR718 V5UO2/V1153 APU H2O Deservice/Service 80 8 640 O R719 V1153 APU H2O Service secure 4 4 1 6 OR611 V1078 APU tube oil service POSU 8 5 40 OR071 V1078 APU tube oil service 26 10 260 OR733 V1078 APU tube oil service POI 8 4 32 OR600 V1010 Hyd. sys. fill bleed POSU 24 5 120 OR452 V9002 Hyd . tray/hose configure 10 11 11 0 OR068 V9002.07 Hyd Power-up POSU 17 3 5 1 ORAA4 V9002 .1 Hyd. Power-up/down 2 11 22 OR525 V1010 Hyd.sys. fill bleed 32 14 448 OR053 V6012 Hyd . sys. inspect 64 4 256 OR083 A-D V1196/1158 APU catch bottle drain 96 23 2208 OR572A V1078 APU lube/oil deservice POSU (STSX .67) 64 10 640 OR573 V1078 APU lube/oil deservice 9 10 90 OR532 V1235 APU fuel vlv. resistance test 40 5 200 OR533 V1019 APU leak functional POSU 16 10 160 OR741 V1019 APU leak functional 176 10 1760 0R741 A V1019 APU leak functional POI 48 8 384

TOTAL 756 7597

Contains POSU for 3 procedures; one of which is for OMS/RC S hypergols not used by generic core . ® , Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060-12 6

OEPSS GENERIC CORE VEHICL E Electrical Systems Logic Diagra m

OR002 OR800 OR031 OR102 Vehicle at Vehicle Vehicl e Bus Processin g Power-U p Power Redundancy Facility POSU Up/Dow n Test OR540 I OR136 V9001 V9001 V1161 Instr. Vehicle Sys. Final Power Testing OR593 Dow n V1004 DPS V900 1 Computer Complex C/O V1059 OR12 4

OR720A OR720 Disconnect Elec. Sys . Elec. T-O Plates Valid . Sys. V3507 POSU Valid . V1183 V1183 Tow to Integratio n OR161 Bldg for Vehicle Erect/mat e Elec. Aft Sys. C/O Closeou t V1009 .02 OR087 Power Sys. Valid . V1003

,1® Rockwell Internationa l Rocketdyne Division

91ALS-060.127

OEPSS GENERIC CORE VEHICLE Electrical Systems Processing Duration and Manpowe r

Dur. Head Oper. OMI Activity Hrs. Count Manhours OR002 Vehicle at Processing Facilit y OR800 V9001 Vehicle power-up POSU 26 14 364 OR031 V9001 Vehicle power-up/down 2 10 20 OR102 V1161 Bus redundancy test 128/15 x.5 64 8 51 2 OR540 V1004 Instrument system testing 48 5 240 OR593 V1059 DPS computer complex c/o 8 4 32 OR136 V9001 Vehicle final power down 2 8 1 6 OR124 V3507 Disconnect T-O umbilical plates 4 6 24 0R720A V1183 Electrical system validation POSU 8 14 11 2 OR720 V1183 Electrical system validation 20 7 140 OR161 V1009.02 Electrical system C/O 44 8 352 OR087 V1003 Power system validation 48 11 528

TOTAL 274 2340

OlO Rockwell Internationa l Rocketdyne Division

91 ALS-060-12 8 OEPSS GENERIC CORE VEHICL E

Active Thermal Control Syste m Processing Duration and Manpowe r

Dur. Head Oper. OMI Activity Hrs. Count Manhours OR002 Vehicle at Processing Facility _ OR049 V1037 Ammonia boiler servicing POSU 64 7 448 OR108 V1037 Ammonia boiler servicing 24 11 264 OR764 V1037 Ammonia boiler servicing POI 2 4 8 OR555 V1017 WSB leak and functional POSU 32 5 160 OR556 V1017 WSB leak and functional 144 8 1152 OR743 V1017 WSB leak and functional POI 4 4 1 6 OR567 V1018.01 WSB servicing POSU 8 7 56 OR060 V1018 .01 WSB servicing 12 7 84 OR744 V1018 .01 WSB servicing POI 2 4 8

TOTAL 292 2196

Rockwell Internationa l

Rocketdyne Division

91 ALS-060- 13 0 OEPSS GENERIC CORE VEHICL E Processing Critical Path Tasks and Duratio n

Activity Duration, hrs.

OR002 Vehicle at Processing Facility door 103 OR214 Remove SSME heat shields and carriers 20 OR737 SSME engine drying POSU 24 OR041 SSME engine dryin g 0R738 SSME engine drying POI 5 OR596 Remove SSME (20 hr/engine) x 3 90 OR431 SSME offline operations 672 hrs 36 OR559 Install SSME (12 hr/engine) x 3 50 OR571 SSME HEX leak checks 54 OR091 SSME HGM/LOX/LH2 leak and functiona l OR105 Install SSME heat shield and carrier 72 OR587 MPS/SSME He signature test (preps) 72 OR117 He signature test 40 OR756 He signature test POI 1 6 OR112 Vehicle aft closeout 31 2 TOTAL 894

1. 894 hrs equates to 111 .7 shifts 2. LSOC planning for STS-33 shows 57 days process time for these tasks ; an average 2 .1 shifts per day, 7 days per week.

® ` Rockwell Internationa l 1 Rocketdyne Division

91 ALS-060-13 1