Multitrophic Level Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Multitrophic Level Interactions Multitrophic Level Interactions The multitrophic level approach to ecology addresses the com- plexity of food-webs much more realistically than the tradi- tional focus on simple systems and interactions. Only in the last twenty years have ecologists become interested in the nature of more complex systems, including tritrophic interactions between plants, herbivores, and natural enemies. Plants may directly influence the behavior of their herbivores’ natural enemies, ecological interactions between two species are often indirectly mediated by a third species, landscape structure directly affects local tritrophic interactions, and below-ground food-webs are vital to above-ground organisms. The relative importance of top-down effects (control by predators) and bottom-up effects (control by resources) must also be deter- mined. These interactions are explored in this exciting new volume by expert researchers from a variety of ecological fields. This book provides a much-needed synthesis of multitrophic level interactions and serves as a guide for future research for ecologists of all descriptions. teja tscharntke is Professor of Agroecology at the University of Göttingen, Germany. His research focus is on plant–herbivore–enemy interactions including parasitism, pre- dation and pollination, insect communities and food-webs on a landscape scale, and temperate–tropical comparisons. He is editor-in-chief of Basic and Applied Ecology and a member of the editorial board of Oecologia. bradford a. hawkins is an Associate Professor in the Department of Ecology and Evolutionary Biology at the University of California, Irvine. His research focus is on the biology and ecology of insect parasitoids, insect community ecology, food-webs, and energy-diversity theory. He is the author of Pattern and Process in Host–Parasitoid Interactions (1994, ISBN 0 521 46029 8), and editor of Parasitoid Community Ecology (1994) with William Sheenan and Theoretical Approaches to Biological Control (1999, ISBN 0 521 57283 5) with Howard V. Cornell. Multitrophic Level Interactions Edited by Teja Tscharntke Universität Göttingen and Bradford A. Hawkins University of California, Irvine Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521791106 © Cambridge University Press 2002 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2002 isbn-13- 978-0-511-06719-8 eBook (NetLibrary) isbn-10- 0-511-06719-4 eBook (NetLibrary) isbn-13- 978-0-521-79110-6 hardback isbn-10- 0-521-79110-3 hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents List of contributorsvi 1Multitrophic level interactions:an introduction1 Teja Tscharntke and Bradford A. Hawkins 2Plant genetic variation in tritrophic interactions8 J. Daniel Hare 3 Multitrophic/multispecies mutualistic interactions: the role of non-mutualists in shaping and mediating mutualisms44 Judith L. Bronstein and Pedro Barbosa 4 Tritrophic interactions in tropical versus temperate communities67 Lee A. Dyer and Phyllis D. Coley 5 Endophytic fungi and interactions among host plants, herbivores, and natural enemies89 Stanley H. Faeth and Thomas L. Bultman 6 Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes124 Saskya van Nouhuys and Ilkka Hanski 7 The chemical ecology of plant–caterpillar–parasitoid interactions148 Ted. C. J. Turlings, Sandrine Gouinguené, Thomas Degen, and Maria Elena Fritzsche-Hoballah 8Canopy architecture and multitrophic interactions174 Jérôme Casas and Imen Djemai 9Tritrophic below- and above-ground interactions in succession197 Valerie K. Brown and Alan C. Gange 10Multitrophic interactions in decomposer food-webs223 Stefan Scheu and Heikki Setälä Index265 [v] Contributors Pedro Barbosa Department of Entomology, Plant Science Building, University of Maryland, College Park, MD 20742, USA Judith L. Bronstein Department of Entomology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA Valerie K. Brown CABI Bioscience Environment, Silwood Park, Ascot, Berks SL7 5PY, UK Thomas L. Bultman Division of Science, Truman State University, Kirksville, MO 63501, USA Jérôme Casas University of Tours, Institut de Recherche sur la Biologie de l’Insecte, IRBI-CNRS ESA 6035, F-37200, Tours, France Phyllis D. Coley Biology Department, University of Utah, Salt Lake City, UT 84112, USA Thomas Degen Institute of Zoology, University of Neuchâtel, CH-2007, Neuchâtel, Switzerland Imen Djemai University of Tours, Institut de Recherche sur la Biologie de l’Insecte, IRBI CNRS ESA 6035, F-37200, Tours, France Lee A. Dyer Biology Department, Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA [vi] List of contributors vii Stanley H. Faeth Department of Biology, Arizona State University, Tempe, AZ 85287, USA Maria Elena Fritzsche-Hoballah Institute of Zoology, University of Neuchâtel, CH-2007, Neuchâtel, Switzerland Alan C. Gange School of Biological Sciences, Royal Holloway College, University of London, Egham Hill, Surrey TW20 0EX, UK Sandrine Gouinguené Institute of Zoology, University of Neuchâtel, CH-2007, Neuchâtel, Switzerland Ilkka Hanski Department of Ecology and Systematics, Division of Population Biology, University of Helsinki, FIN-00014, Helsinki, Finland J. Daniel Hare Department of Entomology, University of California, Riverside, CA 92521, USA Bradford A. Hawkins Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA Stefan Scheu Technische Universität Darmstadt, Fachbereich 10, Biologie, D-64287, Darmstadt, Germany Heikki Setälä Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351, Jyväskylä, Finland Teja Tscharntke Agroecology, University of G¨öttingen, D-37073, Göttingen, Germany Ted C. J. Turlings Institute of Zoology, University of Neuchâtel, CH-2007, Neuchâtel, Switzerland Saskya van Nouhuys Department of Ecology and Systematics, Division of Population Biology, University of Helsinki, FIN-00014, Helsinki, Finland teja tscharntke and bradford a. hawkins 1 Multitrophic level interactions: an introduction Terrestrial ecosystems are characterized by a huge diversity of species and a corresponding diversity of interactions between these species, but community ecology has historically been dominated by interactions between two trophic levels; in particular, plant–herbivore and preda- tor–prey interactions. Only more recently have ecologists become inter- ested in the nature of more complex interactions involving three or more trophic levels (e.g., Price et al., 1980; Bernays and Graham, 1988; Barbosa et al., 1990; Hawkins, 1994; Gange and Brown, 1997; Olff et al., 1999; Pace et al., 1999; Dicke, 2000; Schmitz et al., 2000). It has quickly become clear that a multitrophic level approach addresses the complexity of food-webs much more realistically than does the simpler approach. Our reasons for generat- ing this book are to provide an overview of progress that has been made in demonstrating how research on more realistic models of food webs has enriched our understanding of complex biological systems, and to high- light new and particularly exciting avenues of future research in this area. In the past two decades there has been intense interest in tritrophic interactions between plants, herbivores, and natural enemies, driven by the need both to integrate host plant resistance and biological control in the management of arthropod pests and to understand the relative importance of direct and indirect interactions in ecological communities. Many examples document the direct effects of physical, chemical, and nutritional qualities of plants on the attack rate, survival and reproduc- tion of natural enemies. In addition, it is well known that in some cases these same plant qualities have indirect effects on natural enemies by influencing the distribution, abundance, and vulnerability of herbivores. Even so, there is a need to specify conditions where multitrophic interac- tions are important and to determine the habitat characteristics that [1] 2 teja tscharntke and bradford a. hawkins influence the relative importance of top-down effects (control by preda- tors) and bottom-up effects (control by resources). This latter problem remains an important part of community ecology and is answerable only when we utilize multitrophic level thinking. This book provides an overview and current perspectives on the field of multitrophic interactions. The book comprises ten chapters, the topics of which have been selected by the editors to include what we feel repre- sent the most important aspects of multitrophic interactions. We have selected several standard topics that should be included in a book with this theme, but we have also selected newly emerging topics that should receive greater attention in the coming years. Consequently, the book will very much focus on the future rather than on the history
Recommended publications
  • Habitat Edge Effects Alter Ant-Guard Protection Against Herbivory
    Landscape Ecol (2013) 28:1743–1754 DOI 10.1007/s10980-013-9917-6 RESEARCH ARTICLE Habitat edge effects alter ant-guard protection against herbivory Daniel M. Evans • Nash E. Turley • Joshua J. Tewksbury Received: 25 November 2012 / Accepted: 11 July 2013 / Published online: 20 July 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Edge effects are among the most important plants far from edges, where herbivory pressure was drivers of species interactions in fragmented habitats, highest, despite the fact that aphids and ants were least but the impacts of edge effects on multitrophic abundant on these plants. Conversely, ants did not interactions are largely unknown. In this study we provide significant protection near edges, where assess edge effects on species interactions within an herbivory pressure was lowest and aphids and ants ant–plant mutualistic system—where ants protect were most abundant. We conclude that a strong edge plants against herbivory—to determine whether hab- effect on grasshopper abundance was a key factor itat edges alter the amount of protection ants provide. determining the amount of protection ants provided We focus on a single species of myrmecophytic plant, against herbivory. Future studies of the impacts of Solanum americanum, and experimentally manipulate habitat fragmentation on ant–plant mutualisms will ant access to study plants in large-scale fragmented benefit from studies of ant behavior in response to habitat patches at the Savannah River Site National herbivory threats, and studies of edge effects on other Environmental Research Park, USA. In this system, S. species interactions may also need to consider how americanum commonly hosts honeydew-producing species’ behavioral patterns influence the interactions aphids that are tended by ants, and grasshoppers are in question.
    [Show full text]
  • Arboreal Arthropod Assemblages in Chili Pepper with Different Mulches and Pest Managements in Freshwater Swamps of South Sumatra, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3065-3074 DOI: 10.13057/biodiv/d220608 Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia SITI HERLINDA1,2,3,♥, TITI TRICAHYATI2, CHANDRA IRSAN1,2,3, TILI KARENINA4, HASBI3,5, SUPARMAN1, BENYAMIN LAKITAN3,6, ERISE ANGGRAINI1,3, ARSI1,3 1Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia. Tel.: +62-711-580663, Fax.: +62-711-580276, ♥email: [email protected] 2Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 3Research Center for Sub-optimal Lands, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 4Research and Development Agency of South Sumatera Province. Jl. Demang Lebar Daun No. 4864, Pakjo, Palembang 30137, South Sumatra, Indonesia 5Department of Agricultural Engineering, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia 6Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia Manuscript received: 13 April 2021. Revision accepted: 7 May 2021. Abstract. Herlinda S, Tricahyati T, Irsan C, Karenina T, Hasbi, Suparman, Lakitan B, Anggraini E, Arsi. 2021. Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia. Biodiversitas 22: 3065-3074. In the center of freshwater swamps in South Sumatra, three different chili cultivation practices are generally found, namely differences in mulch and pest management that can affect arthropod assemblages.
    [Show full text]
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Hymenoptera, Ichneumonidae) from China
    European Journal of Taxonomy 658: 1–26 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.658 www.europeanjournaloftaxonomy.eu 2020 · Sun S.-P. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:B83ADC8D-9B61-4873-81CA-9A2006096314 The species of Campodorus Förster, 1869 and a related species (Hymenoptera, Ichneumonidae) from China Shu-Ping SUN 1, Tao LI 2, Mao-Ling SHENG 3,* & Jun LÜ 4 1,2,3 General Station of Forest and Grassland Pest Management, National Forestry and Grassland Administration, 58 Huanghe North Street, Shenyang 110034, P.R. China. 4 Forest Pest Control and Quarantine Station of Kuandian Manzu Autonomous County, Kuandian Liaoning 118200, P.R. China. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:974C0354-6118-4EA9-890F-EF5ECE8F257A 2 urn:lsid:zoobank.org:author:AE2C4D7F-6132-4A33-A5EC-04CF541BD80E 3 urn:lsid:zoobank.org:author:3C0EBDB7-26F7-469B-8DB1-5C7B1C6D9B89 4 urn:lsid:zoobank.org:author:D5E7E123-3B35-4CEC-85C8-D315EC51B689 Abstract. Ten species of Campodorus Förster, 1869 are reported from China and five species are new to science: C. albilineatus Sheng, Sun & Li sp. nov. from Guangxi Zhuang Autonomous Region in the Oriental part of China, C. punctatus Sheng, Sun & Li sp. nov. and C. rasilis Sheng, Sun & Li sp. nov. from Beijing, C. shandongicus Sheng, Sun & Li sp. nov. from Shandong Province and C. truncatus Sheng, Sun & Li, sp. nov. from Liaoning Province.
    [Show full text]
  • Diversity of Coccinellid Predators in Upland Rainfed Rice Ecosystem
    Journal of Biological Control, 27(3): 184–189, 2013 Research Article Diversity of coccinellid predators in upland rainfed rice ecosystem B. VINOTHKUMAR Hybrid Rice Evaluation Centre, Tamil Nadu Agricultural University, Gudalur, The Nilgiris, Tamil Nadu. Email: [email protected] ABSTRACT: The diversity of coccinellids and impact of pest population on coccinellids density has been studied in the upland rainfed rice agroecosystem in Bharathy variety cultivated in different rice establishment techniques at Hybrid Rice Evaluation Centre, Tamil Nadu Agricultural University, Gudalur. The Nilgiris for three years during Kharif 2010 to Kharif 2012. Three aspects, population of coccinellids and pests in different rice establishment techniques, diversity of coccinellids species in different rice establishment techniques and impact of pest density on the population of coccinellids were studied. A total of 13 species of coccinellids were observed from four different treatments of upland rice crop at different days after transplantation. Among the coccinellids, Cheilomenas sexmaculatus, Coccinella transversalis, B rumoides suturalis, Harmonia octomaculata and Microspia discolour were predominant during crop season and they have significant positive correlation with the population of brown plant hopper and green leaf hopper. Regression analysis revealed that 71 percent of C. sexmaculatua, 89 percent of C. transversalis, 62 percent of B. suturalis, 79 percent of H. octomaculata and 75 percent of M. discolour population depends on the incidence of BPH and GLH in the upland rainfed rice ecosystem. Diversity indices revealed that diversity of coccinellids was more in the direct sown without weeding operation method than other methods. KEY WORDS: Biodiversity, coccinellids, upland rice, rainfed rice, diversity indices. (Article chronicle: Received: 07-02-2013; Revised: 24-07-2013; Accepted: 04-08-2013) INTRODUCTION new records from district Haridwar, India.
    [Show full text]
  • Food Webs in Space: on the Interplay of Dynamic Instability and Spatial Processes Robert D
    Ecological Research (2002) 17, 261–273 Food webs in space: On the interplay of dynamic instability and spatial processes Robert D. Holt* Department of Zoology, University of Florida, Gainesville, Florida 32611-8525, USA Ecologists increasingly recognize that a consideration of spatial dynamics is essential for resolving many classical problems in community ecology. In the present paper, I argue that understanding how trophic interactions influence population stability can have important implications for the expression of spatial processes. I use two examples to illustrate this point. The first example has to do with spatial determinants of food chain length. Prior theoretical and empirical work has sug- gested that colonization–extinction dynamics can influence food chain length, at least for specialist consumers. I briefly review evidence and prior theory that food chain length is sensitive to area. A metacommunity scenario, in which each of various patches can have a food chain varying in length (but in which a consumer is not present on a patch unless its required resource is also present), shows that alternative landscape states are possible. This possibility arises if top predators moder- ate unstable interactions between intermediate predators and basal resources. The second example has to do with the impact of recurrent immigration on the stability of persistent populations. Immi- gration can either stabilize or destabilize local population dynamics. Moreover, an increase in immigration can decrease average population size for unstable populations with direct density- dependence, or in predator–prey systems with saturating functional responses. These theoretical models suggest that the interplay of temporal variation and spatial fluxes can lead to novel quali- tative phenomena.
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Moths & Butterflies of Grizzly Peak Preserve
    2018 ANNUAL REPORT MOTHS & BUTTERFLIES OF GRIZZLY PEAK PRESERVE: Inventory Results from 2018 Prepared and Submi�ed by: DANA ROSS (Entomologist/Lepidoptera Specialist) Corvallis, Oregon SUMMARY The Grizzly Peak Preserve was sampled for butterflies and moths during May, June and October, 2018. A grand total of 218 species were documented and included 170 moths and 48 butterflies. These are presented as an annotated checklist in the appendix of this report. Butterflies and day-flying moths were sampled during daylight hours with an insect net. Nocturnal moths were collected using battery-powered backlight traps over single night periods at 10 locations during each monthly visit. While many of the documented butterflies and moths are common and widespread species, others - that include the Western Sulphur (Colias occidentalis primordialis) and the noctuid moth Eupsilia fringata - represent more locally endemic and/or rare taxa. One geometrid moth has yet to be identified and may represent an undescribed (“new”) species. Future sampling during March, April, July, August and September will capture many more Lepidoptera that have not been recorded. Once the site is more thoroughly sampled, the combined Grizzly Peak butterfly-moth fauna should total at least 450-500 species. INTRODUCTION The Order Lepidoptera (butterflies and moths) is an abundant and diverse insect group that performs essential ecological functions within terrestrial environments. As a group, these insects are major herbivores (caterpillars) and pollinators (adults), and are a critical food source for many species of birds, mammals (including bats) and predacious and parasitoid insects. With hundreds of species of butterflies and moths combined occurring at sites with ample habitat heterogeneity, a Lepidoptera inventory can provide a valuable baseline for biodiversity studies.
    [Show full text]
  • D Church Stretton Bugs Fowler.Xlsx 21 July 2016
    D Church Stretton Bugs Fowler.xlsx 21 July 2016 Invertebrates recorded on 21st July 2016 by Keith Fowler in Stretton Wetlands Family Taxon Common name Habitat Host Status Hemiptera Acanthosomatidae Acanthosoma haemorrhoidale Hawthorn shieldbug Grassland - wet Common Anthocoridae Anthocoris confusus A flower bug Grassland - wet Maple Common Anthocoridae Anthocoris nemoralis A flower bug Grassland - wet Maple Common Anthocoridae Anthocoris nemorum Common flower bug Grassland - wet Common Aphrophoridae Aphrophora alni Alder spittlebug Grassland - wet Common Aphrophoridae Aphrophora major A froghopper Grassland - wet Nationally notable B Aphrophoridae Neophilaenus lineatus A froghopper Grassland - wet Water mint Common Aphrophoridae Philaenus spumarius Common froghopper Grassland - wet Meadowsweet Common Cicadellidae Alebra wahlbergi A planthopper Grassland - wet Maple Common Cicadellidae Anoscopus albifrons A planthopper Grassland - wet Common Cicadellidae Anoscopus flavostriatus A planthopper Grassland - wet Common Cicadellidae Aphrodes makarovi A planthopper Grassland - wet Common Cicadellidae Arthaldeus pascuellus A planthopper Grassland - wet Common Cicadellidae Cicadella viridis A planthopper Grassland - wet Common Cicadellidae Eupteryx aurata A planthopper Grassland - wet Nettle Common Cicadellidae Eupteryx signatipennis A planthopper Grassland - wet Nettle Local Cicadellidae Eupteryx urticae A planthopper Grassland - wet Nettle Common Cicadellidae Evacanthus interruptus A planthopper Grassland - wet Common Cicadellidae Fagocyba cruenta
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Schutz Des Naturhaushaltes Vor Den Auswirkungen Der Anwendung Von Pflanzenschutzmitteln Aus Der Luft in Wäldern Und Im Weinbau
    TEXTE 21/2017 Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forschungskennzahl 3714 67 406 0 UBA-FB 002461 Schutz des Naturhaushaltes vor den Auswirkungen der Anwendung von Pflanzenschutzmitteln aus der Luft in Wäldern und im Weinbau von Dr. Ingo Brunk, Thomas Sobczyk, Dr. Jörg Lorenz Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Tharandt Im Auftrag des Umweltbundesamtes Impressum Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Durchführung der Studie: Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Professur für Forstzoologie, Prof. Dr. Mechthild Roth Pienner Straße 7 (Cotta-Bau), 01737 Tharandt Abschlussdatum: Januar 2017 Redaktion: Fachgebiet IV 1.3 Pflanzenschutz Dr. Mareike Güth, Dr. Daniela Felsmann Publikationen als pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4359 Dessau-Roßlau, März 2017 Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3714 67 406 0 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren. UBA Texte Entwicklung geeigneter Risikominimierungsansätze für die Luftausbringung von PSM Kurzbeschreibung Die Bekämpfung
    [Show full text]
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]