Habitat Edge Effects Alter Ant-Guard Protection Against Herbivory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crop Type Influences Edge Effects on the Reproduction of Songbirds in Sagebrush Habitat Near Agriculture
VOLUME 9, ISSUE 1, ARTICLE 8 Knight, E. C., N. A. Mahony, and D. J. Green. 2014. Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture. Avian Conservation and Ecology 9(1): 8. http://dx.doi.org/10.5751/ACE-00662-090108 Copyright © 2014 by the author(s). Published here under license by the Resilience Alliance. Research Paper Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture Elly C. Knight 1, Nancy A. Mahony 2 and David J. Green 1 1Simon Fraser University, 2Environment Canada ABSTRACT. Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR) observed in orchard edge habitat, but additional factors are likely important. -
Evidence for Edge Enhancements of Soil Respiration in Temperate Forests
RESEARCH LETTER Evidence for Edge Enhancements of Soil 10.1029/2019GL082459 Respiration in Temperate Forests Key Points: Ian A. Smith1 , Lucy R. Hutyra1, Andrew B. Reinmann1,2,3, Jonathan R. Thompson4 , • Soil respiration increases with 5 proximity to temperature forest and David W. Allen edges 1 2 • Edge soil respiration enhancements Department of Earth and Environment, Boston University, Boston, MA, USA, Advanced Science Research Center at the are driven by large positive gradients Graduate Center, City University of New York, New York, NY, USA, 3Department of Geography, Hunter College, New in soil temperature York, NY, USA, 4Harvard Forest, Harvard University, Petersham, MA, USA, 5National Institute of Standards and • Forest edge carbon dynamics are Technology, Gaithersburg, MD, USA generally omitted from ecosystem models and carbon accounting frameworks Abstract Forest fragmentation impacts carbon uptake and storage; however, the magnitude and Supporting Information: direction of fragmentation impacts on soil respiration remain poorly characterized. We quantify soil • Supporting Information S1 respiration rates along edge‐to‐interior transects in two temperate broadleaf forests in the eastern United States that vary in climate, species composition, and soil type. We observe average soil respiration rates 15–26% higher at the forest edge compared to the interior, corresponding to large gradients in soil Correspondence to: temperature. We find no significant difference in the sensitivity of soil respiration to temperature between I. A. Smith, [email protected] the forest edge and interior. Fragmentation and resultant shifts in microenvironment alter forest productivity and soil respiration near forest edges. Ecosystem models do not currently represent edge dynamics, but given the prevalence of landscape fragmentation and its effect on carbon cycling along forest Citation: Smith, I. -
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects. -
1 Insects As Indicators of Habitat Quality, Ecological Integrity And
Insects as Indicators of Habitat Quality, Ecological Integrity and Restoration Success in Illinois Prairies, Savannas and Woodlands Project Number: T-92-R-1 Final Report Project Start Date: 9/1/2014 Project End Date: 7/1/2017 Sam W. Heads (Principal Investigator), Catherine E. Dana, Michael R. Jeffords, Susan L. Post, & Joseph L. Spencer Illinois Natural History Survey Prairie Research Institute, University of Illinois 1816 South Oak Street Champaign, IL 61820 1 Summary The typical methods that ecologists use for assessing habitat quality involves calculating quality based on primarily floristic data. This is true of evaluation of habitats in Illinois – although new methods have become available for assessing habitats based on other taxa. These alternative methods are often not in widespread use, especially in Illinois, and consist of using invertebrate indicator taxa to assess the ecological integrity of prairies, savannas, and woodlands (aquatic invertebrate survey tend to be more commonly used). There is a large diversity of invertebrates for which we have information on the life history, seasonality, and diet that live in these unique habitats. Critically, these organisms are often sensitive to environmental change and habitat fragmentation. Insects in particular can thus be valuable indicators of habitat quality and ecosystem integrity. For this study, we chose to look at four groups of insects as indicators, based on their life history, ease of identification, and knowledge of the co-authors. These groups are well represented in grassland biomes and include: (1) grasshoppers (Orthoptera: Acridoidea); (2) butterflies (Lepidoptera: Rhopalocera); (3) cicadas (Hemiptera: Cicadoidea); and (4) tiger beetles (Coleoptera: Carabidae). By looking at both the abundance and species diversity at a given site for each of these groups, we hoped to develop tools that would allow land managers to utilize these taxa as indicators of high quality prairie. -
Invasive Plant Ecology
Invasive Plant Biology and Ecology San Joaquin Valley Livestock Symposium Travis Bean Department of Botany and Plant Sciences Invasive Plants Not necessarily “weeds” No inherent environmental or economic impact Time and space dependent • Alien • Casual • Naturalized • Invasive Subset are “transformers” Compare with definition of weeds The term “weed” is often anthropocentric (and outdated) • Undesirable location (WSSA 1956) • Competitive with more valuable plants (Brenchley 1920) • Unwanted or with undiscovered virtues (Bailey & Bailey 1941, Emerson 1878) • Anything we didn’t plant (Brenchley 1920, Harper 1944) • Unsightly (Thomas 1956) “… weeds are little more than plants that have aroused a certain level of human dislike at some particular time or place” Not useful in helping explain: • Why and where weeds exist • How they interact with crops • How to manage them effectively A more useful definition Any plant species that interferes with the management objective for particular time and place Usually very: • Prolific • Competitive • Harmful/destructive • Difficult to control Not all weeds are invasive… (and vice versa) Invasiveness and Invasibility Ecology of plant invasion = interaction of biology and environment Invasiveness (biological component) • Capacity of a plant species to spread beyond introduction site and establish at new sites Invasibility (environmental component) • Susceptibility of habitat to colonization and establishment of new species Invasiveness: biological characteristics • “General purpose” – high fitness over -
A Subgeneric Revision of Crematogaster and Discussion of Regional Species-Groups (Hymenoptera: Formicidae)
Zootaxa 3482: 47–67 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:42F5ABE3-37EC-48D6-AB1A-357BCC93DF68 A subgeneric revision of Crematogaster and discussion of regional species-groups (Hymenoptera: Formicidae) BONNIE B. BLAIMER Department of Entomology, University of California-Davis, One Shields Ave, Davis, CA 95616. E-mail: [email protected]; [email protected] Abstract Crematogaster ants are diverse, widespread and abundant in tropical, subtropical and warm-temperate climates throughout the world. The species diversity of this genus has been notoriously difficult to manage based upon morphology alone, and former attempts have generated a vaguely defined subgeneric system. I propose an improvement of the previous subgeneric classification and recognize two subgenera based upon a concurrent molecular study of the global diversity of these ants. Five of 13 former subgenera of Crematogaster are hereby synonymised under the subgenus Orthocrema Santschi: Neocrema Santschi syn. nov., Eucrema Santschi syn. nov., Rhachiocrema Mann syn. nov., Mesocrema Santschi syn. nov. and Apterocrema Wheeler syn. nov.. The eight remaining subgenera are synonymised under the subgenus Crematogaster sensu stricto: Decacrema Forel syn. nov., Oxygyne Forel syn. nov., Atopogyne Forel syn. nov., Sphaerocrema Santschi syn. nov., Colobocrema Wheeler syn. nov., Paracrema Santschi syn. nov., Physocrema Forel syn. nov. and Xiphocrema Forel syn. nov.. I present keys, morphological diagnoses and illustrations for the two revised, globally distributed subgenera Orthocrema and Crematogaster sensu stricto, based upon the worker caste. The two subgenera can be distinguished from each other by a combination of features of the petiole, postpetiole and propodeal spiracle. -
Bill Baggs Cape Florida State Park
Wekiva River Basin State Parks Approved Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks October 2017 TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................2 PURPOSE AND SCOPE OF THE PLAN..................................................... 7 MANAGEMENT PROGRAM OVERVIEW ................................................... 9 Management Authority and Responsibility .............................................. 9 Park Management Goals ...................................................................... 9 Management Coordination ................................................................. 10 Public Participation ............................................................................ 10 Other Designations ........................................................................... 10 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 13 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 19 Natural Resources ............................................................................. 19 Topography .................................................................................. 19 Geology ...................................................................................... -
Recruitment of Three Non-Native Invasive Plants Into a Fragmented Forest in Southern Illinois Emily D
Forest Ecology and Management 190 (2004) 119–130 Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois Emily D. Yatesa, Delphis F. Levia Jr.b,*, Carol L. Williamsa aDepartment of Geography, Southern Illinois University, Carbondale, IL 62901-4514, USA bDepartment of Geography, Center for Climatic Research, University of Delaware, Newark, DE 19716, USA Received 28 July 2003; received in revised form 10 September 2003; accepted 11 November 2003 Abstract Plant invasions are a current threat to biodiversity conservation, second only to habitat loss and fragmentation. Density and heights of three invasive plants, Rosa multiflora, Lonicera japonica, and Elaeagnus umbellata, were examined between edges and adjacent interiors of forest sites in southern Illinois. Density (stems mÀ2) and heights (cm) of invasive plants were obtained in plots along transects at edge and interior sampling locations within forest sites. The effect of species, sampling location, and site shape index on invasive plant density was investigated, as well as differences in heights of invasive plants in edge vs. interior sampling locations. Species, sampling location, and fragment shape index were significant factors influencing invasive plant density at study sites. Density for all three species ranged from 0 to 18 stems mÀ2. All three species invaded interiors of sites, however, R. multiflora and L. japonica had significantly greater densities in edge as opposed to interior transects. These two species also had significant differences in density among site shape indices. Density of E. umbellata was not significantly different between edge and interior sampling locations or among site shape indices. Mean heights of all three invasive plants were higher in edge transects, however, this relationship was only significant for L. -
The Feasibility of Use of Caecal and Diverticular Coloration in Field Determination of Grasshopper Diet
The Great Lakes Entomologist Volume 4 Number 1 -- Spring 1971 Number 1 -- Spring Article 4 1971 July 2017 The Feasibility of Use of Caecal and Diverticular Coloration in Field Determination of Grasshopper Diet Michael Tyrkus Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Tyrkus, Michael 2017. "The Feasibility of Use of Caecal and Diverticular Coloration in Field Determination of Grasshopper Diet," The Great Lakes Entomologist, vol 4 (1) Available at: https://scholar.valpo.edu/tgle/vol4/iss1/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Tyrkus: The Feasibility of Use of Caecal and Diverticular Coloration in F THE MICHIGAN ENTOMOLOGIST Vol. 4, No. 1 THE FEASIBILITY OF USE OF CAECAL AND DIVERTICULAR COLORATION IN FIELD DETERMINATION OF GRASSHOPPER DIET',' Michael Tyrkus Department of Biology, Wayne State University, Detroit, Michigan 48202 INTRODUCTION Many studies have been undertaken in the past on the food selection, food preferences, and economic damage of various grasshoppers and their allies. Among the more salient of these researches are those of Anderson (1961, 1964); Ball (1 936); Bindra (1958); Boldyrev (1928); Blackith and Blackith (1966); Brues (1946); Chapman (1957); Dibble (1940); Gangwere (1959, 1960, 1961, 1965, 1965a, 1966, 1966a, 1967);Husain etal. (1946); Isely (1938, 1946); Isely and Alexander (1949); Joyce (1952); Mulkern and Anderson (1959); Mulkern, Anderson, and Brusven (1962); Mulkern et al. -
Edge Effects in the Primate Community of the Biological Dynamics of Forest Fragments Project, Amazonas, Brazil
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 155:436–446 (2014) Edge Effects in the Primate Community of the Biological Dynamics of Forest Fragments Project, Amazonas, Brazil Bryan B. Lenz,1,2* Katharine M. Jack,1 and Wilson R. Spironello3 1Department of Anthropology, Tulane University, New Orleans, LA 70118 2Projeto Dinamica^ Biologica de Fragmentos Florestais (PDBFF), Instituto Nacional de Pesquisas da Amazonia,^ Av. Andre Araujo 2936, Cx. 2223, Petropolis, 69067-375 Manaus, AM, Brazil 3Coordenac¸ao~ de Biodiversidade; Instituto Nacional de Pesquisas da Amazonia,^ Av. Andre Araujo 2936, Cx. 2223, Petropolis, 69067-375 Manaus, AM, Brazil KEY WORDS community ecology; conservation; fragmentation; habitat disturbance; sec- ondary forest ABSTRACT While much is known about abiotic and Alouatta macconnelli (folivore-frugivore), Chiropotes chi- vegetative edge effects in tropical forests, considerably ropotes (frugivorous seed predator), Saguinus midas (fru- less is known about the impact of forest edges on large givore-faunivore), and Sapajus apella apella (frugivore- mammals. In this study, we examine edge effects in a pri- faunivore); one species’ density was lower: Ateles paniscus mate community to determine: 1) the distance from the (frugivore); and the final species, Pithecia chrysocephala edge over which edge effects in primate density are (frugivorous seed predator), did not show an edge-related detectable, 2) whether individual species exhibit edge pattern. The lone significant relationship between the bio- effects in their density, and 3) whether biological charac- logical characteristics examined (body weight, diet, group teristics can be used to predict primate presence in edge size, and home range size) and primate presence in edge habitats. Given their importance to many primate spe- habitats was a negative relationship with the amount of cies, we also examine the influence of the number of large fruit consumed. -
Preliminary Checklist of the Orthopteroid Insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2001 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham Garland, TX Thomas A. Stidham University of California, Berkeley, CA Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Stidham, John A. and Stidham, Thomas A., "Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas" (2001). Insecta Mundi. 180. https://digitalcommons.unl.edu/insectamundi/180 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 15, No. 1, March, 2001 35 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham 301 Pebble Creek Dr., Garland, TX 75040 and Thomas A. Stidham Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, Abstract: Texas has one of the most diverse orthopteroid assemblages of any state in the United States, reflecting the varied habitats found in the state. Three hundred and eighty-nine species and 78 subspecies of orthopteroid insects (Blattodea, Mantodea, Phasmatodea, and Orthoptera) have published records for the state of Texas. This is the first such comprehensive checklist for Texas and should aid future work on these groups in this area. Introduction (Flook and Rowell, 1997). -
Distancelimited Dispersal Promotes Coexistence at Habitat Boundaries
Ecology Letters, (2011) doi: 10.1111/j.1461-0248.2010.01580.x LETTER Distance-limited dispersal promotes coexistence at habitat boundaries: reconsidering the competitive exclusion principle Abstract Florence De´ barre* and Understanding the conditions for the stable coexistence of different alleles or species is a central topic in Thomas Lenormand theoretical evolution and ecology. Different causes for stable polymorphism or species coexistence have already Centre dÕE´ cologie Fonctionnelle et been identified but they can be grouped into a limited number of general processes. This article is devoted to E´ volutive, CNRS – UMR 5175, 1919 the presentation and illustration of a new process, which we call Ôhabitat boundary polymorphismÕ, and which Route de Mende, F-34293 relies on two key ingredients: habitat heterogeneity and distance-limited dispersal. Under direct competition and Montpellier Cedex 5, France with fixed population densities, we show that this process allows for the equilibrium coexistence of more than *Correspondence: E-mail: n types in a n-habitat environment. Distance-limited dispersal indeed creates local maladaptation at habitat [email protected] edges, which leaves room for the invasion of more generalist alleles or species. This mechanism provides a generic yet neglected process for the maintenance of polymorphism or species coexistence. Keywords Allele polymorphism, cline, exclusion rule, generalist, habitat, habitat fragmentation, intermediate heterogeneity hypothesis, landscape complementation, spatial heterogeneity, specialist, species diversity. Ecology Letters (2011) characterized by different selective conditions. In absence of INTRODUCTION frequency and density dependence on fitness, and with haploid For more than 40 years, the question of the maintenance of genetic selection (which is equivalent to competition between two species in polymorphism or of species coexistence has been central in both an ecological setting), it is widely acknowledged that a maximum of theoretical ecology and evolution.