Taxonomy of Cyanobacteria: a Contribution to Consensus Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948). -
A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
UC San Diego UC San Diego Previously Published Works Title A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Permalink https://escholarship.org/uc/item/6z2365ft Journal Microbiome, 8(1) ISSN 2049-2618 Authors Podell, Sheila Blanton, Jessica M Oliver, Aaron et al. Publication Date 2020-06-23 DOI 10.1186/s40168-020-00877-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Podell et al. Microbiome (2020) 8:97 https://doi.org/10.1186/s40168-020-00877-y RESEARCH Open Access A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell1 , Jessica M. Blanton1, Aaron Oliver1, Michelle A. Schorn2, Vinayak Agarwal3, Jason S. Biggs4, Bradley S. Moore5,6,7 and Eric E. Allen1,5,7,8* Abstract Background: Marine sponges and their microbiomes contribute significantly to carbon and nutrient cycling in global reefs, processing and remineralizing dissolved and particulate organic matter. Lamellodysidea herbacea sponges obtain additional energy from abundant photosynthetic Hormoscilla cyanobacterial symbionts, which also produce polybrominated diphenyl ethers (PBDEs) chemically similar to anthropogenic pollutants of environmental concern. Potential contributions of non-Hormoscilla bacteria to Lamellodysidea microbiome metabolism and the synthesis and degradation of additional secondary metabolites are currently unknown. Results: This study has determined relative abundance, taxonomic novelty, metabolic -
Supplementary Information
Supplementary Information A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell, Jessica M. Blanton, Aaron Oliver, Michelle A. Schorn, Vinayak Agarwal, Jason S. Biggs, Bradley S. Moore, Eric E. Allen Contents Supplementary Figures S1-S13 ....................................................................................................... 2 Supplementary Tables S1-S8 ........................................................................................................ 16 References ..................................................................................................................................... 26 Supplementary Figure 1. Cyanobacteria MAGs classified taxonomically. A) PhyloPhlAn multi-locus concatenated tree [1], with Crinalium epipsammum as an outgroup. B) 16S rRNA gene/and average amino acid identity matrix with closest database relatives. Guidelines for assigning species, genus, family, and order-level taxonomic granularity were based on [2, 3] for AAI and [4] for 16S rRNA gene percent nucleotide identity. A B Pleurocapsa_PCC_7327 1 Stanieria_cyanosphaera 1 SP5CPC1 1 0.993 Prochloron_didemni_P3 1 Prochloron_didemni_P4 Gloeobacter_violaceus Stanieria_cyanosphaera SP5CPC Prochloron_didemni_P3 Prochloron_didemni_P4 Gloeobacter_violaceus Crinalium_epipsammum Desertifilum_IPPASB1220 GM7CHS1 GM202CHS1 GM102CHS1 SP12CHS1 SP5CHS1 Nostoc_punctiforme 92/65 89/61 89/61 89/61 88/51 90/63 91/62 90/60 90/60 -/60 89/60 90/60 88/63 Pleurocapsa_PCC_7327 Crinalium_epipsammum -
A Novel Species of the Marine Cyanobacterium Acaryochloris With
www.nature.com/scientificreports OPEN A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and Received: 12 February 2018 Accepted: 1 June 2018 lifestyle Published: xx xx xxxx Frédéric Partensky 1, Christophe Six1, Morgane Ratin1, Laurence Garczarek1, Daniel Vaulot1, Ian Probert2, Alexandra Calteau 3, Priscillia Gourvil2, Dominique Marie1, Théophile Grébert1, Christiane Bouchier 4, Sophie Le Panse2, Martin Gachenot2, Francisco Rodríguez5 & José L. Garrido6 All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscof (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It difers from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confrmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. -
DOMAIN Bacteria PHYLUM Cyanobacteria
DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub -
Discrimination Between Synechocystis Members (Cyanobacteria) Based on Heterogeneity of Their 16S Rrna and ITS Regions
804 DOI: 10.17344/acsi.2017.3262 Acta Chim. Slov. 2017, 64, 804–817 Scientific paper Discrimination Between Synechocystis Members (Cyanobacteria) Based on Heterogeneity of Their 16S rRNA and ITS Regions Mojca Juteršek, Marina Klemenčič and Marko Dolinar* Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia * Corresponding author: E-mail: [email protected] Received: 06-02-2017 Abstract Cyanobacteria are an important group of microorganisms displaying a range of morphologies that enable phenotypic differentiation between the major lineages of cyanobacteria, often to the genus level, but rarely to species or strain level. We focused on the unicellular genus Synechocystis that includes the model cyanobacterial strain PCC 6803. For 11 Syn- echocystis members obtained from cell culture collections, we sequenced the variable part of the 16S rRNA-encoding region and the 16S - 23S internally transcribed spacer (ITS), both standardly used in taxonomy. In combination with microscopic examination we observed that 2 out of 11 strains from cell culture collections were clearly different from typical Synechocystis members. For the rest of the samples, we demonstrated that both sequenced genomic regions are useful for discrimination between investigated species and that the ITS region alone allows for a reliable differentiation between Synechocystis strains. Keywords: Synechocystis; DNA barcoding; Cyanobacteria; rRNA; ITS region dividuals of different species.5 Although overall evolution 1. Introduction of the 16S rRNA gene is rather slow, there are regions that Cyanobacteria are Gram-negative prokaryotes char- are more variable, which allows for studying evolutionary acterized by their ability to execute oxygenic photosynthe- relationships both between distant and closely related sis. -
Prochlorophyta: a Sub-Class of Chlorophyta
PROCHLOROPHYTA: A SUB-CLASS OF CHLOROPHYTA Prochlorophyta are a photosynthetic prokaryote members of the phytoplankton group Picoplankton. These oligotrophic organisms are abundant in nutrient-poor tropical waters and use a unique photosynthetic pigment, divinyl-chlorophyll, to absorb light and acquire energy. These organisms lack red and blue Phycobilin pigments and have staked thylakoids, both of which make them different from Cyanophyta. Prochlorophyta were initially discovered in 1975 near the Great Barrier Reef and off the coast of Mexico. The following year, Ralph A. Lewin, of the Scripps Institution of Oceanography, assigned them as a new algal sub-class. Prochlorophytes are very small microbes generally between 0.2 and 2 µm (Photosynthetic picoplankton). They morphologically resemble Cyanobacteria, Members of Prochlorophyta have been found as coccoid (spherical) shapes, like Prochlorococcus, and as filaments, like Prochlorothrix. In addition to Prochlorophyta, other phytoplankton that lack Phycobilin pigments were later found in freshwater lakes in the Netherlands, by Tineke Burger-Wiersma. These organisms were termed Prochlorothrix. Prochloron (a marine symbiont) and Prochlorothrix (from freshwater plankton) contain chlorophylls a and b; Prochlorococcus (common in marine picoplankton) contains divinyl-chlorophylls a and b. In 1986, Prochlorococcus was discovered by Sallie W. Chisholm and his colleagues. These organisms might be responsible for a significant portion of the global primary production. Like cyanophytes they are all clearly photosynthetic prokaryotes, but since they contain no blue or red bilin pigment they were assigned to a new algal sub- class, the Prochlorophyta. However, since their possible phylogenetic relationships to ancestral green-plant chloroplasts have not received support from molecular biology, it now seems expedient to consider them as aberrant cyanophytes. -
Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection
toxins Review Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection Isidro José Tamele 1,2,3 and Vitor Vasconcelos 1,4,* 1 CIIMAR/CIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal; [email protected] 2 Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal 3 Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique 4 Faculty of Science, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-223-401-817; Fax: +351-223-390-608 Received: 6 May 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Microcystins (MCs) are cyanotoxins produced mainly by freshwater cyanobacteria, which constitute a threat to public health due to their negative effects on humans, such as gastroenteritis and related diseases, including death. In Mozambique, where only 50% of the people have access to safe drinking water, this hepatotoxin is not monitored, and consequently, the population may be exposed to MCs. The few studies done in Maputo and Gaza provinces indicated the occurrence of MC-LR, -YR, and -RR at a concentration ranging from 6.83 to 7.78 µg L 1, which are very high, around 7 times · − above than the maximum limit (1 µg L 1) recommended by WHO. The potential MCs-producing in · − the studied sites are mainly Microcystis species. -
Regulatory Rnas in Photosynthetic Cyanobacteria Matthias Kopf and Wolfgang R
FEMS Microbiology Reviews, fuv017, 39, 2015, 301–315 doi: 10.1093/femsre/fuv017 Review Article REVIEW ARTICLE Regulatory RNAs in photosynthetic cyanobacteria Matthias Kopf and Wolfgang R. Hess∗ Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany ∗ Corresponding author: Faculty of Biology, Institute of Biology III, University of Freiburg, Schanzlestr.¨ 1, D-79104 Freiburg, Germany. Tel: +49-761-203-2796; Fax: +49-761-203-2745; E-mail: [email protected] One sentence summary: Hundreds of potentially regulatory small RNAs (sRNAs) have been identified in model cyanobacteria and, despite recent significant progress, their functional characterization is substantial work and continues to provide surprising insights of general interest. Editor: Emmanuelle Charpentier ABSTRACT Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. -
"Phycology". In: Encyclopedia of Life Science
Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition. -
Species Specificity of Symbiosis and Secondary Metabolism in Ascidians
The ISME Journal (2015) 9, 615–628 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Species specificity of symbiosis and secondary metabolism in ascidians Ma Diarey B Tianero1, Jason C Kwan1,2, Thomas P Wyche2, Angela P Presson3, Michael Koch4, Louis R Barrows4, Tim S Bugni2 and Eric W Schmidt1 1Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT, USA; 2School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA; 3Study Design and Biostatistics Center, Division of Epidemiology, University of Utah, Salt Lake City, UT, USA and 4Department of Pharmacology and Toxicology, L.S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT, USA Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these ‘chemical symbioses’. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R ¼À0.037, P-value ¼ 0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. -
And Transcriptomic-Profiling of the Host-Associated Cyanobacteria Prochloron and Acaryochloris Marina
The ISME Journal (2018) 12, 556–567 © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18 www.nature.com/ismej ORIGINAL ARTICLE In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina Lars Behrendt1,2,3, Jean-Baptiste Raina4, Adrian Lutz5, Witold Kot6, Mads Albertsen7, Per Halkjær-Nielsen7, Søren J Sørensen3, Anthony WD Larkum4 and Michael Kühl2,4 1Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland; 2Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; 3Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark; 4Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia; 5Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia; 6Department of Environmental Science—Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark and 7Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendo- symbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable,