Taxonomic Evaluation of Cyanobacteria Using Morphological Characters and Molecular Phylogeny Using Cpcb and Cpca Gene Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. -
Photosymbiosis for Biomedical Applications
fbioe-08-577204 October 3, 2020 Time: 17:45 # 1 REVIEW published: 06 October 2020 doi: 10.3389/fbioe.2020.577204 Photosymbiosis for Biomedical Applications Myra N. Chávez1†, Nicholas Moellhoff2†, Thilo L. Schenck2, José Tomás Egaña3* and Jörg Nickelsen1* 1 Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany, 2 Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany, 3 Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. Edited by: “Photosynthetic strategies,” based on the recognition that photosynthesis is the source Bruce Alan Bunnell, University of North Texas Health of all oxygen, offer a revolutionary and promising solution to pathologies related to Science Center, United States tissue hypoxia. These approaches, which have been under development over the past Reviewed by: 20 years, seek to harness photosynthetic microorganisms as a local and controllable Matjaž Jeras, source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. University of Ljubljana, Slovenia Kar Wey Yong, To date, their applications extend from the in vitro creation of artificial human tissues to University of Alberta, Canada the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, *Correspondence: while their potential use in other medical approaches has just begun to be explored. -
Gene Content and Organization
Photosynth Res DOI 10.1007/s11120-006-9122-4 REGULAR PAPER Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization Chieko Sugita Æ Koretsugu Ogata Æ Masamitsu Shikata Æ Hiroyuki Jikuya Æ Jun Takano Æ Miho Furumichi Æ Minoru Kanehisa Æ Tatsuo Omata Æ Masahiro Sugiura Æ Mamoru Sugita Received: 30 August 2006 / Accepted: 6 December 2006 Ó Springer Science+Business Media B.V. 2006 Abstract The entire genome of the unicellular of the potential protein-coding genes showed cyanobacterium Synechococcus elongatus PCC 6301 sequence similarities to experimentally identified and (formerly Anacystis nidulans Berkeley strain 6301) predicted proteins of known function, and the prod- was sequenced. The genome consisted of a circular ucts of 35% of the genes showed sequence similarities chromosome 2,696,255 bp long. A total of 2,525 to the translated products of hypothetical genes. The potential protein-coding genes, two sets of rRNA remaining 9% of genes lacked significant similarities genes, 45 tRNA genes representing 42 tRNA species, to genes for predicted proteins in the public DNA and several genes for small stable RNAs were databases. Some 139 genes coding for photosynthesis- assigned to the chromosome by similarity searches and related components were identified. Thirty-seven computer predictions. The translated products of 56% genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly & C. -
DOMAIN Bacteria PHYLUM Cyanobacteria
DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub -
Predicting the Metabolic Capabilities of Synechococcus Elongatus PCC 7942 Adapted to Different Light Regimes
Research Article Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes Jared T. Broddricka,b, David G. Welkiea, Denis Jalletc,1, Susan S. Goldena, Graham Peersc, and Bernhard O. Palssonb,† aDivision of Biological Sciences, University of California, San Diego, La Jolla, CA, USA, bDepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA, cDepartment of Biology, Colorado State University, Fort Collins, CO, USA ABSTRACT KEYWORDS There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal cyanobacteria, importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis photosynthesis, to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically Synechococcus realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here elongatus, flux we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria balance analy- Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale sis, constraint flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and based modeling, high light conditions. Additionally, by constraining photon uptake fluxes, we characterize the metabolic cost of genome scale excess excitation energy. The predicted energy fluxes are consistent with known light-adapted phenotypes in modeling cyanobacteria. Finally, we leverage the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism. -
Discrimination Between Synechocystis Members (Cyanobacteria) Based on Heterogeneity of Their 16S Rrna and ITS Regions
804 DOI: 10.17344/acsi.2017.3262 Acta Chim. Slov. 2017, 64, 804–817 Scientific paper Discrimination Between Synechocystis Members (Cyanobacteria) Based on Heterogeneity of Their 16S rRNA and ITS Regions Mojca Juteršek, Marina Klemenčič and Marko Dolinar* Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia * Corresponding author: E-mail: [email protected] Received: 06-02-2017 Abstract Cyanobacteria are an important group of microorganisms displaying a range of morphologies that enable phenotypic differentiation between the major lineages of cyanobacteria, often to the genus level, but rarely to species or strain level. We focused on the unicellular genus Synechocystis that includes the model cyanobacterial strain PCC 6803. For 11 Syn- echocystis members obtained from cell culture collections, we sequenced the variable part of the 16S rRNA-encoding region and the 16S - 23S internally transcribed spacer (ITS), both standardly used in taxonomy. In combination with microscopic examination we observed that 2 out of 11 strains from cell culture collections were clearly different from typical Synechocystis members. For the rest of the samples, we demonstrated that both sequenced genomic regions are useful for discrimination between investigated species and that the ITS region alone allows for a reliable differentiation between Synechocystis strains. Keywords: Synechocystis; DNA barcoding; Cyanobacteria; rRNA; ITS region dividuals of different species.5 Although overall evolution 1. Introduction of the 16S rRNA gene is rather slow, there are regions that Cyanobacteria are Gram-negative prokaryotes char- are more variable, which allows for studying evolutionary acterized by their ability to execute oxygenic photosynthe- relationships both between distant and closely related sis. -
Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection
toxins Review Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection Isidro José Tamele 1,2,3 and Vitor Vasconcelos 1,4,* 1 CIIMAR/CIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal; [email protected] 2 Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal 3 Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique 4 Faculty of Science, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-223-401-817; Fax: +351-223-390-608 Received: 6 May 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Microcystins (MCs) are cyanotoxins produced mainly by freshwater cyanobacteria, which constitute a threat to public health due to their negative effects on humans, such as gastroenteritis and related diseases, including death. In Mozambique, where only 50% of the people have access to safe drinking water, this hepatotoxin is not monitored, and consequently, the population may be exposed to MCs. The few studies done in Maputo and Gaza provinces indicated the occurrence of MC-LR, -YR, and -RR at a concentration ranging from 6.83 to 7.78 µg L 1, which are very high, around 7 times · − above than the maximum limit (1 µg L 1) recommended by WHO. The potential MCs-producing in · − the studied sites are mainly Microcystis species. -
Regulatory Rnas in Photosynthetic Cyanobacteria Matthias Kopf and Wolfgang R
FEMS Microbiology Reviews, fuv017, 39, 2015, 301–315 doi: 10.1093/femsre/fuv017 Review Article REVIEW ARTICLE Regulatory RNAs in photosynthetic cyanobacteria Matthias Kopf and Wolfgang R. Hess∗ Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany ∗ Corresponding author: Faculty of Biology, Institute of Biology III, University of Freiburg, Schanzlestr.¨ 1, D-79104 Freiburg, Germany. Tel: +49-761-203-2796; Fax: +49-761-203-2745; E-mail: [email protected] One sentence summary: Hundreds of potentially regulatory small RNAs (sRNAs) have been identified in model cyanobacteria and, despite recent significant progress, their functional characterization is substantial work and continues to provide surprising insights of general interest. Editor: Emmanuelle Charpentier ABSTRACT Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. -
Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics
sustainability Review Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics Giovanni Davide Barone 1,* , Damir Ferizovi´c 2 , Antonino Biundo 3,4 and Peter Lindblad 5 1 Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria 2 Institute of Analysis and Number Theory, Graz University of Technology, 8010 Graz, Austria; [email protected] 3 Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy; [email protected] 4 Interuniversity Consortium for Biotechnology (CIB), 70125 Bari, Italy 5 Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Massive plastic accumulation has been taking place across diverse landscapes since the 1950s, when large-scale plastic production started. Nowadays, societies struggle with continuously increasing concerns about the subsequent pollution and environmental stresses that have accompanied this plastic revolution. Degradation of used plastics is highly time-consuming and causes volumetric aggregation, mainly due to their high strength and bulky structure. The size of these agglomerations in marine and freshwater basins increases daily. Exposure to weather conditions and environmental microflora (e.g., bacteria and microalgae) can slowly corrode the plastic structure. As has been well documented in recent years, plastic fragments are widespread in marine basins and partially in main global rivers. These are potential sources of negative effects on global food chains. Cyanobacteria (e.g., Synechocystis sp. PCC 6803, and Synechococcus elongatus PCC 7942), which are photosynthetic microorganisms and were previously identified as blue-green algae, are currently under close attention for their abilities to capture solar energy and the greenhouse gas carbon dioxide for the production of high-value products. -
Plasticity of the Genomic Haplotype of Synechococcus Elongatus Leads to Rapid Strain Adaptation Under Laboratory Conditions Justin Ungerera, Kristen E
LETTER LETTER REPLY TO ZHOU AND LI: Plasticity of the genomic haplotype of Synechococcus elongatus leads to rapid strain adaptation under laboratory conditions Justin Ungerera, Kristen E. Wendta, John I. Hendryb, Costas D. Maranasb, and Himadri B. Pakrasia,1 Zhou and Li (1) describe a classic phenomenon in mi- Considering the sequencing results reported by crobiology in which the genotypes of bacteria rapidly Zhou and Li (1), we find their report and that of Lou evolve to optimize growth under selective conditions. et al. (3) to be consistent with our original work (4). In the original paper describing the fast-growing cya- Zhou and Li report that the Synechococcus 2973 hap- nobacterium Synechococcus elongatus UTEX 2973, lotype (obtained from UTEX) lacks the atpA SNP, Yu et al. (2) described the genome sequence that de- whereas the premise of Lou et al.’s. report is that Syn- fines the strain. Since 2015, several colleagues who echococcus 7942 with only the atpA SNP grows at the obtained the strain directly from the original Pakrasi same rate as the Synechococcus 2973 strain. In our laboratory stock successfully replicated the 2-h dou- work, we show that Synechococcus 2973 with the bling time of the strain. Seemingly, specific loci affect- atpA SNP removed does grow at the same rate as ing growth rate and light tolerance rapidly interconvert Synechococcus 7942 with only the atpA SNP in- between alternative haplotypes based on the growth cluded (figure 1 of ref. 4). Sequencing results by Zhou conditions. This is confirmed by the sequencing results and Li show that Synechococcus 2973 in their labora- of Zhou and Li (1) who report that the sample in their tory has reverted the atpA SNP; thus, as our data laboratory has mutated toward the Synechococcus show, it grows at the same rate as Synechococcus 7942 haplotype via SNP conversion. -
Differential Toxicity of Cyanobacteria Isolated from Marine Sponges Towards Echinoderms and Crustaceans
toxins Article Differential Toxicity of Cyanobacteria Isolated from Marine Sponges towards Echinoderms and Crustaceans Ana Regueiras 1,2 ID , Sandra Pereira 1, Maria Sofia Costa 1,3 ID and Vitor Vasconcelos 1,2,* ID 1 CIIMAR/CIMAR, Blue Biotechnology and Ecotoxicology—Centre of Environmental and Marine Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal; [email protected] (A.R.); [email protected] (S.P.); [email protected] (M.S.C.) 2 Department of Biology, Sciences Faculty, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal 3 Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, Reykjavik 107, Iceland * Correspondence: [email protected]; Tel.: +351-220-402-738 Received: 28 May 2018; Accepted: 16 July 2018; Published: 18 July 2018 Abstract: Marine sponges and cyanobacteria have a long history of co-evolution, with documented genome adaptations in cyanobionts. Both organisms are known to produce a wide variety of natural compounds, with only scarce information about novel natural compounds produced by cyanobionts. In the present study, we aimed to address their toxicological potential, isolating cyanobacteria (n = 12) from different sponge species from the coast of Portugal (mainland, Azores, and Madeira Islands). After large-scale growth, we obtained both organic and aqueous extracts to perform a series of ecologically-relevant bioassays. In the acute toxicity assay, using nauplii of Artemia salina, only organic extracts showed lethality, especially in picocyanobacterial strains. In the bioassay with Paracentrotus lividus, both organic and aqueous extracts produced embryogenic toxicity (respectively 58% and 36%), pointing to the presence of compounds that interfere with growth factors on cells. -
Snps Deciding the Rapid Growth of Cyanobacteria Are Alterable LETTER Jie Zhoua and Yin Lia,1
LETTER SNPs deciding the rapid growth of cyanobacteria are alterable LETTER Jie Zhoua and Yin Lia,1 Cyanobacteria researchers are keen to understand cyanobacteria strains were grown under a high light why Synechococcus elongatus UTEX 2973 (Synecho- intensity of 500 μE or 800 μE, at 38 °C, with 5% CO2. coccus 2973) can grow more than two times faster Two independent experiments and sequencing were than Synechococcus elongatus PCC 7942 (Synecho- performed. coccus 7942), as their genome sequences share 99.8% To our great surprise, no SNP was found in the identity (1). atpA gene, in either S. 2973-1 or S. 7942 HL-1. E260D A recent paper in PNAS by Ungerer et al. (2) gives in Ppnk and Q121R/E134K in RpaA were found in S. an answer. The authors investigate the molecular de- 2973-1, which is consistent with what Ungerer et al. (2) terminants accounting for the rapid growth of Syne- describe for Synechococcus 2973, while Q121R in chococcus 2973. They believe that the rapid growth of RpaA was found in S. 7942 HL-1. This SNP is described Synechococcus 2973 is decided by four SNPs in three in Synechococcus 2973 (2), but not in Synechococcus proteins, namely C252Y in AtpA, E260D in Ppnk, and 7942 HL (3). Q121R/E134K in RpaA. In our laboratory, S. 7942 HL-1 grows as fast as S. In a separate study, Lou et al. (3) coincidently 2973-1 under a high light intensity of 500 μEor obtained a Synechococcus 7942 mutant (designated 800 μE, at 38 °C, with 5% CO2.