Simplified Tilt

Total Page:16

File Type:pdf, Size:1020Kb

Simplified Tilt Simplified tilt FRÉDÉRIC ROCHAT Master of Science Thesis Stockholm, Sweden 2007 Simplified tilt Frédéric Rochat Master of Science Thesis MMK 2007:26 MPK 586 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2007:26 MPK 586 Enklare korglutning Frédéric Rochat Godkänt Examinator Handledare 2007-03-16 Jan-Gunnar Persson Vincent Capponi (EPFL) Paul Xirouchakis (EPFL) Uppdragsgivare Kontaktperson Sebastian Stichel Sammanfattning Detta projekt leddes av Bombardier Transportation i Västerås i samarbete med KTH Stockholm och EPFL Lausanne. Projektet syftar till att utveckla en ny och enklare korglutning för spårfordon. Ökat konkurrens på marknaden beroende på ett bredare utbud av andra transportmedel tvingade tågkompanier att förbättra sin prestanda. En av de mest uppenbara faktorerna för hög prestanda är restiden, som kan minskas genom användning av höghastighetståg. De kräver kurvor med stor radie och långa övergångskurvor för att undvika minskad komfort, vilket är ett andra mått på prestanda. Att bygga nya spår, som är anpassade till höghastighetståg, är mycket dyrbart och kan bara möjliggöras där antalet resenärer är högt. Tåg som har förmågan att luta korgen inåt i kurvor är ett billigare alternativ. Genom att korglutning minskar sidoaccelerationen passagerarna upplever, kan tågen hålla högre hastighet genom kurvorna med bibehållen komfort. Risken för åksjuka ökar dock. Fördelar med korglutningståg är förbättrad möjlighet till hög hastighet in i kurvor samt högre passagerarkomfort, men är dyrare både vad gäller inköps- och underhållskostnad. Eftersom konventionella tåg dessutom har ökat hastigheten i kurvor har prestandafördelen med korglutningståg minskat. Skillnaden i pris förblir dock tydlig och tycks vara konstant. Dessutom har korglutningståg dåligt rykte vad gäller pålitlighet och på grund av åksjuka. Detta arbete presenterar en state of the art av korglutningståg med fokus på deras mekanik, men tar också i övervägande reglersystem och aktuatorer/motorer. Nya och enklare lösningar har hittats och presenteras i jämförelse med nuvarande industriella konstruktioner. Nuvarande lösningar förväntas förbli fördelaktiga på den framtida marknaden. En ny lösning är föreslagen, men kräver mer detaljerade studier för att utvärdera och bedöma om den är utförbar. Ingen förändring förväntas ske på aktuatorområdet. Komplexa algoritmer som använder lagrad spårinformation och tågpositionen förväntas ta över marknaden inom en snar framtid. Master of Science Thesis MMK 2007:26 MPK 586 Simplified tilt Frédéric Rochat Approved Examiner Supervisor 2007-03-16 Jan-Gunnar Persson Vincent Capponi (EPFL) Paul Xirouchakis (EPFL) Commissioner Contact person Sebastian Stichel Abstract This project was led on behalf of Bombardier Transportation in Västerås, Sweden, in collaboration with KTH Stockholm and EPFL Lausanne. This project is connected to the development of a new and simplified tilt system for rail vehicles. Growing competition from other means of transportation has forced railway companies throughout the world to search for increased performances. Travelling time is the most obvious performance indicator that may be improved by introducing high-speed trains. They require very large curve radii and long transitions curves not to impair ride comfort, another performance indicator. Building new tracks adapted to high speed trains is very costly and can only be justified where the passenger base is large. Trains with the capability to tilt the carbodies inwards the curve is a more cost efficient alternative. The tilt inwards reduces the lateral force felt by the passengers allowing the train to pass curves at enhanced speed with maintained ride comfort but increases the frequency of motion sickness. The benefits of tilting trains are improved speed capability in curves and enhanced passengers comfort, but at higher buying and maintenance cost. As the conventional trains increase their speed in curves, the performance advantage of tilting trains is reduced while their prize is still kept significantly higher and constant. Moreover, tilting trains often suffer from bad reputation regarding reliability and motion sickness. This work presents a state of the art of tilting trains mainly focused on their mechanisms, but also taking in consideration control and activation. New and simplified solutions have been researched and are presented in comparison with existing embodiments. Existing solutions are expected to stay advantageous and available on the market. A new possible solution is proposed and requires further investigations to verify its feasabilty. No change is expected concerning activation. It is foreseen that complex control algorithms using onboard track data and train position are going to be usual technology. Frédéric ROCHAT 2006-2007 Diploma thesis Simplified tilt Contents 1TU UT IntroductionTU UT .....................................................................................................2 1.1TU UT BackgroundTU of this studyUT ............................................................................2 1.2TU UT ObjectivesTU of this studyUT ..............................................................................3 2TU UT Track,TU trains and tiltUT .........................................................................................4 2.1TU UT InfrastructureTU UT .............................................................................................4 2.2TU UT VehiclesTU UT ....................................................................................................11 2.3TU UT StoryTU of tiltingUT ...........................................................................................16 2.4TU UT DevelopmentTU trendsUT ..................................................................................18 2.5TU UT RailsTU dynamicsUT ..........................................................................................20 2.6TU UT ComfortTU UT .....................................................................................................29 2.7TU UT MotionTU sicknessUT ........................................................................................31 2.8TU UT HowTU much to tiltUT .......................................................................................35 2.9TU UT PerformanceTU and advantages of tilting trainsUT ...........................................35 2.10TU UT AdditionalTU requirements of tilting trainsUT ...................................................36 3TU UT RequirementsTU for the optimal solutionUT ...........................................................40 4TU UT TiltTU mechanismUT ...............................................................................................48 4.2TU UT DifferentTU possible configurationsUT ..............................................................52 4.3TU UT PatentsTU UT .....................................................................................................56 4.4TU UT OverviewTU of existing mechanismsUT .............................................................56 4.5TU UT BrainstormingTU & creativityUT ........................................................................68 4.6TU UT NovelTU designsUT............................................................................................68 4.7TU UT OverviewTU of all possible tilt mechanismsUT ..................................................78 4.8TU UT SystemsTU to be assessedUT ............................................................................79 4.9TU UT AssessmentTU of different mechanismsUT ........................................................80 5TU UT ActuatorsTU UT ........................................................................................................92 5.1TU UT PneumaticTU actuatorsUT .................................................................................92 5.2TU UT HydraulicTU actuatorsUT ...................................................................................93 5.3TU UT Electro-mechanicTU actuators.......................................................................93UT 5.4TU UT Electro-hydraulicTU actuatorsUT .......................................................................94 5.5TU UT AssessmentTU of actuatorsUT ...........................................................................94 6TU UT ControlTU UT ............................................................................................................97 6.1TU UT RequirementsTU of tilt controlUT ......................................................................97 6.2TU UT ReactiveTU tiltUT...............................................................................................98 6.3TU UT PredictiveTU tiltUT ..........................................................................................101 6.4TU UT ComparativeTU diagramUT ..............................................................................107 7TU UT ConclusionsTU and further workUT .......................................................................108 7.1TU UT ConclusionsTU UT .............................................................................................108 7.2TU UT FurtherTU workUT ...........................................................................................108 8TU UT AcknowledgementsTU UT .......................................................................................110 9TU UT BibliographyTU UT ....................................................................................................II
Recommended publications
  • Mezinárodní Komparace Vysokorychlostních Tratí
    Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Hospodářská politika MEZINÁRODNÍ KOMPARACE VYSOKORYCHLOSTNÍCH TRATÍ International comparison of high-speed rails Diplomová práce Vedoucí diplomové práce: Autor: doc. Ing. Martin Kvizda, Ph.D. Bc. Barbora KUKLOVÁ Brno, 2018 MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta ZADÁNÍ DIPLOMOVÉ PRÁCE Akademický rok: 2017/2018 Studentka: Bc. Barbora Kuklová Obor: Hospodářská politika Název práce: Mezinárodní komparace vysokorychlostích tratí Název práce anglicky: International comparison of high-speed rails Cíl práce, postup a použité metody: Cíl práce: Cílem práce je komparace systémů vysokorychlostní železniční dopravy ve vybra- ných zemích, následné určení, který z modelů se nejvíce blíží zamýšlené vysoko- rychlostní dopravě v České republice, a ze srovnání plynoucí soupis doporučení pro ČR. Pracovní postup: Předmětem práce bude vymezení, kategorizace a rozčlenění vysokorychlostních tratí dle jednotlivých zemí, ze kterých budou dle zadaných kritérií vybrány ty státy, kde model vysokorychlostních tratí alespoň částečně odpovídá zamýšlenému sys- tému v ČR. Následovat bude vlastní komparace vysokorychlostních tratí v těchto vybraných státech a aplikace na český dopravní systém. Struktura práce: 1. Úvod 2. Kategorizace a členění vysokorychlostních tratí a stanovení hodnotících kritérií 3. Výběr relevantních zemí 4. Komparace systémů ve vybraných zemích 5. Vyhodnocení výsledků a aplikace na Českou republiku 6. Závěr Rozsah grafických prací: Podle pokynů vedoucího práce Rozsah práce bez příloh: 60 – 80 stran Literatura: A handbook of transport economics / edited by André de Palma ... [et al.]. Edited by André De Palma. Cheltenham, UK: Edward Elgar, 2011. xviii, 904. ISBN 9781847202031. Analytical studies in transport economics. Edited by Andrew F. Daughety. 1st ed. Cambridge: Cambridge University Press, 1985. ix, 253. ISBN 9780521268103.
    [Show full text]
  • September – November 1998
    Topics September – November 1998 2 September –– Swiss Air MD11 en route tional Airport in Ho Chi Minh City, southern 27 September –– DC10 Aircraft of Japan to Geneva from New York crashed into Vietnam Airlines en route from Sendai to Hawaii hit Atlantic off coast of Nova Scotia, Canada, turbulence over Pacific injuring 11 passen- killing all 229 passengers and crew on board 19 September –– Inaugural flight of gers Skymark Airlines Boeing 767-300 between 2 September –– Last four wagons of freight Haneda and Fukuoka as first new airline to 29 September –– Lion Airlines Antonov car- train belonging to The Burlington Northern enter Japan’s newly deregulated domestic rying 54 crew and passengers destined for Santa Fe Railway derailed en route to Los market in 35 years. Fare of ¥13,700 (50% Colombo lost immediately after take-off from Angeles causing explosion and fire but no lower than recommended fare) achieved by Jaffna Airport, northern Sri Lanka injuries hiring foreign pilots and offering simpler in- flight services 6 October –– JR East celebrated 1 billion 3 September –– Maintenance wagon col- passengers carried on three shinkansen lided with ballast-spreading train on out- 23 September –– JR East and Shiki Theat- over 16 years of operation. Tohoku bound track of Aioi–Okayama section of rical Company inaugurated performing arts Shinkansen carried approximately 656 mil- Sanyo Shinkansen delaying 18 shinkansen complex in Hamamatsu-cho, Tokyo, as first lion passengers, Joetsu Shinkansen 335 trains including Nozomi by up to 50 minutes permanent
    [Show full text]
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Opening of Tohoku Shinkansen Extension to Shin Aomori and Development of New Faster Carriages—Overview of Series E5/E6 Shinichiro Tajima
    Expansion of High-Speed Rail Services Opening of Tohoku Shinkansen Extension to Shin Aomori and Development of New Faster Carriages—Overview of Series E5/E6 Shinichiro Tajima Introduction FASTECH 360 Z were started in June 2010. These carriages will be coupled with Series E5 carriages in commercial In preparation for the December 2010 opening of the Tohoku operation to run at 320 km/h. Shinkansen extension to Shin Aomori, JR East worked steadily from 2002 on technologies to increase speed, Path to Speed Increase finally settling on a commercial operating speed of 320 km/h after various considerations, including running tests using The Tohoku Shinkansen started operation in 1982 at a the FASTECH 360 test train. Furthermore, Series E5 pre- maximum speed of 210 km/h. Today, the commercial production models were built to determine the specifications operation speed is 275 km/h but 20 years have passed since of carriages used for commercial operations; running tests the first 275 km/h operation with Series 200 carriages on the confirmed the final specifications ahead of introduction of the Joetsu Shinkansen in 1990. Full-scale operation at 275 km/h Series E5 in spring 2011. Moreover, Series E6 pre-production started with the introduction of the E3 and E2 at the opening models reflecting development successes using the of the Akita Shinkansen and Nagano Shinkansen in 1997. Figure 1 Path to Speed Increase km/h 450 JNR JR 425 km/h (STAR21, 1993) Max. test speed 400 345.8 km/h (400 series, 1991) 350 319 km/h 320 km/h (961 series, 1979) 300 km/h (2013) (2011) 300 275 km/h (1990) Max.
    [Show full text]
  • Shinkansen - Wikipedia 7/3/20, 1048 AM
    Shinkansen - Wikipedia 7/3/20, 10)48 AM Shinkansen The Shinkansen (Japanese: 新幹線, pronounced [ɕiŋkaꜜɰ̃ seɴ], lit. ''new trunk line''), colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. Initially, it was built to connect distant Japanese regions with Tokyo, the capital, in order to aid economic growth and development. Beyond long-distance travel, some sections around the largest metropolitan areas are used as a commuter rail network.[1][2] It is operated by five Japan Railways Group companies. A lineup of JR East Shinkansen trains in October Over the Shinkansen's 50-plus year history, carrying 2012 over 10 billion passengers, there has been not a single passenger fatality or injury due to train accidents.[3] Starting with the Tōkaidō Shinkansen (515.4 km, 320.3 mi) in 1964,[4] the network has expanded to currently consist of 2,764.6 km (1,717.8 mi) of lines with maximum speeds of 240–320 km/h (150– 200 mph), 283.5 km (176.2 mi) of Mini-Shinkansen lines with a maximum speed of 130 km/h (80 mph), and 10.3 km (6.4 mi) of spur lines with Shinkansen services.[5] The network presently links most major A lineup of JR West Shinkansen trains in October cities on the islands of Honshu and Kyushu, and 2008 Hakodate on northern island of Hokkaido, with an extension to Sapporo under construction and scheduled to commence in March 2031.[6] The maximum operating speed is 320 km/h (200 mph) (on a 387.5 km section of the Tōhoku Shinkansen).[7] Test runs have reached 443 km/h (275 mph) for conventional rail in 1996, and up to a world record 603 km/h (375 mph) for SCMaglev trains in April 2015.[8] The original Tōkaidō Shinkansen, connecting Tokyo, Nagoya and Osaka, three of Japan's largest cities, is one of the world's busiest high-speed rail lines.
    [Show full text]
  • Cfs0997all2.Pdf
    Acknowledgements United States Department of Transportation Secretary Federico F. Peña; Rodney E. Slater Deputy Secretary Mortimer L. Downey Federal Railroad Administration Administrator Jolene M. Molitoris Deputy Administrator Donald M. Itzkoff Associate Administrator for Railroad Development James T. McQueen Deputy Associate Administrator for Railroad Development Arrigo P. Mongini Study manager; general editor; principal writer Neil E. Moyer System benefits; financing; Alice M. Alexander Magnetic levitation John T. Harding contract administration James L. Milner Transportation analysis Bruce Goldberg Chapter 1; liability; State Gareth W. Rosenau Helen Ng opportunities Volpe National Transportation Systems Center Senior study advisor; Volpe Center project manager Ronald A. Mauri Travel demand forecasting Simon P. Prensky System concept definition Michael N. Coltman David M. Nienhaus Leonore I. Katz-Rhoads Sarah J. Lawrence* Robert P. Brodesky* Model implementation: Todd C. Green* Energy and emissions model Howard M. Eichenbaum* projections of operating results David L. Skinner implementation and investment needs *EG&G/Dynatrend Argonne National Laboratories Charles River Associates Energy and emissions model Donald M. Rote Demand model development Dan Brand development Zian Wang Thomas E. Parody Mark R. Kiefer DeLeuw, Cather & Co. and Associated Firms DeLeuw, Cather project manager Michael Holowaty Operating expense model Duncan W. Allen Ancillary activities model Steven A. LaRocco development Winn B. Frank development Richard L. Tower (Wilbur Eric C. MacDonald Smith) Charles H. Banks (R.L. Banks) Public benefits model design and Guillaume Shearin Liability Charles A. Spitulnik implementation Robert J. Zuelsdorf (Wilbur (Hopkins & Sutter) Smith) Kenneth G. Sislak (Wilbur Anne G. Reyner (Wilbur Smith) Smith) Jeffrey B. Allen Parsons Brinckerhoff Quade & Douglas, Inc. Parsons, Brinckerhoff project manager John A.
    [Show full text]
  • JR East High-Speed Rolling Stock Development Koji Asano Director of the Advanced Railway System Development Center, Research and Development Center of JR East Group
    Special feature article JR East High-speed Rolling Stock Development Koji Asano Director of the Advanced Railway System Development Center, Research and Development Center of JR East Group 1 Introduction The history of Shinkansen rolling stock for JR East started with the series 200 Shinkansen, which debuted at the opening of the Tohoku/Joetsu Shinkansen in 1982 in the Japanese National Railway era. It was initially a 12-car all motor car train with a maximum operating speed for 210 km/h. The Shinkansen network spreading out in five directions later came to have a variety of forms of operation (Fig. 1); and even after the series 200, Shinkansen rolling stock conforming to those forms of operation and with increased speeds was developed. In addition to the standard type of Shinkansen dedicated rolling stock, others appeared such as rolling stock for through service between Shinkansen and conventional lines to Akita and Shinjo and double deck rolling stock for large-volume short-distance transport. A variety of services came to be provided as well, such as GranClass providing a higher level of service and fun-to-ride Looking at high-speed railway trends around the world, we “Toreiyu” and “Genbi Shinkansen” (Fig. 2). see that many countries have achieved commercial operation The Shinkansen, handling long-distance transport, has been in excess of 300 km/h, and Italy has announced further speed forced to compete with airlines and others with the expansion of increases with a goal of 360 km/h commercial operation. And the Shinkansen network. In order to have customers choose the for JR East to transfer high-speed railway technologies abroad, Shinkansen, we need to think up how to make it more attractive we need to accumulate technologies for high-speed running in and amenity-rich.
    [Show full text]
  • Disabled Person's Protection Policy
    Disabled Person’s Protection Policy February 2011 eastcoast.co.uk Contents 1. Introduction 8. At the station and on the train 2. Our commitment to disabled customers 8.1 Assistance 8.2 Automatic ticket gates 3. East Coast services 8.3 Getting on and off the train 3.1 Where we operate 8.3.1 Ramps 8.4 Seats on trains 4. Planning your journey 8.5 Wheelchair and priority seating areas 4.1 Plan ahead 8.6 Scooters and wheelchairs 4.2 Assisted travel team 8.7 Assistance dogs 4.3 At our ticket offices 8.8 Assistance during the journey 4.4 Online 8.9 On-board announcements 4.5 National Rail Enquiries 8.10 Accessibility features of our trains 4.6 Live travel updates 9. Onward travel 5. Assistance 9.1 Interchange with other forms of 5.1 Booking Assistance transport or onward rail connections 5.2 Assistance with luggage 9.2 Assistance with onward rail 6. Getting to and from the station connections 6.1 By car 9.3 Information about other modes 6.1.1 Pick ups and drop off of transport 6.1.2 Parking 10. Service disruption 6.2 Buses 10.1 How we will assist you during 6.3 Taxis service disruption 6.4 On foot 10.2 Assistance for disabled customers 7. Buying your ticket during emergencies 7.1 The Disabled Persons Railcard 10.3 Changes to station access 7.2 Concessionary fares available without a 11. Communicating this policy Disabled Persons Railcard 7.3 Season Tickets for blind or visually 12.
    [Show full text]
  • Part 2: Speeding-Up Conventional Lines and Shinkansen Asahi Mochizuki
    Breakthrough in Japanese Railways 9 JRTR Speed-up Story 2 Part 2: Speeding-up Conventional Lines and Shinkansen Asahi Mochizuki Reducing Journey Times on is limited by factors such as curves, grades, and turnouts, so Conventional Lines scheduled speed can only be increased by focusing effort on increasing speed at these locations. Distribution of factors limiting speed Many of the intercity railways in Japan are lines in The maximum speed of any line is determined by emergency mountainous areas. So, objectives for increasing speeds braking distance. However, train speeds are also restricted by cannot be achieved by simply raising the maximum speed. various other factors, such as curves, grades, and turnouts. Acceleration and deceleration performance also impact Speed-up on curves journey time. The impact of each element depends on the The basic measures for increasing speeds on curves are terrain of the line. The following graphs show the distributions lowering the centre of gravity of rolling stock and canting the of these elements for the Joban Line, crossing relatively flat track. However, these measures have already been applied land, and for the eastern section of the Chuo Line, running fully; cant cannot be increased on lines serving slow freight through mountains. trains with a high centre of gravity. Conversely, increasing The graph for the Joban Line crossing the flat Kanto passenger train speed through curves to just below the limit Plain shows that it runs at the maximum speed of 120 km/h where the trains could overturn causes reduced ride comfort (M part) for about half the journey time.
    [Show full text]
  • Appendix 1 FINAL , Item 56. PDF 274 KB
    BACKGROUND TO THE EAST COAST MAIN LINE AND INTERCITY EAST COAST FRANCHISE 1 The East Coast Main Line 1.1 The East Coast Main Line (ECML) is one of two high-capacity north-south trunk routes that run between Scotland and London. Whilst not formally defined, it is broadly accepted as being the rail line from Edinburgh southwards via Newcastle, York, Doncaster, and Peterborough to London Kings Cross. The mainline from Leeds to Doncaster via Wakefield Westgate (often referred to the West Riding section) is also regarded as part of the East Coast Main Line. 1.2 Whilst the route serves an important function for long-distance Anglo-Scottish inter-city passenger trains, the InterCity East Coast franchise operates fewer than half the trains on the route. It is a multi-functional railway, accommodating many other local and regional services, together with freight traffic along various parts of its length. For the City Region this includes: TransPennine Express services on the route north of York to Middlesbrough, Newcastle, and in future, Edinburgh; InterCity Cross Country services north of York to the north east and Scotland, and also south of York and Leeds towards Sheffield, the midlands and south west; open access operators: . Grand Central services between West Yorkshire, Doncaster and London; . Grand Central services between the north east, York and London . Hull Trains services between Hull, Selby, Doncaster and London. Local services between Leeds and Doncaster / Sheffield via Wakefield Westgate. 1.3 The route’s role in the “heavy-lifting” of commuter traffic into Leeds itself, and increasingly into Wakefield, Doncaster and York too, is vital to the economic success of the region, and to providing socially inclusive and sustainable access to work and education opportunities.
    [Show full text]
  • Railway Technologies & Services Japan Market Study
    Railway Technologies & Services Japan Market Study JULY 2019 © Copyright EU Gateway | Business Avenues The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. The contents of this publication are the sole responsibility of EU Gateway | Business Avenues and can in no way be taken to reflect the views of the European Union. The purpose of this report is to give European companies selected for participation in the EU Gateway | Business Avenues Programme an introductory understanding of the target markets countries and support them in defining their strategy towards those markets. For more information, visit www.eu-gateway.eu. EU Gateway to Japan Central Management Unit Japan Market Study July 2019 Submitted to the European Commission on 22 July 2019 Railway Technologies & Services - Japan Market Study - Page 3 of 143 Table of contents LIST OF ABBREVIATIONS ........................................................................................................................................ 7 EXECUTIVE SUMMARY ............................................................................................................................................. 9 2. WHAT ARE THE CHARACTERISTICS OF JAPAN? .........................................................................................
    [Show full text]